A Hypothesis Test for Network Comparison

Ha Khanh Nguyen The Ohio State University

Dec 10, 2018

Ha Khanh Nguyen, OSU A Hypothesis Test for Network Comparison

Big Network Analysis Challenge: *Researchers want to compare two observed networks and decide whether they come from the same network model or not.*

- Identify different groups of brain networks
- Compare protein-protein interaction networks
- Compare communication interactions in different social groups

This is an ongoing research project with Jinzhao (Daniel) Chen, Kartik Lovekar, and Dr. Vishesh Karwa.

Goal: Define a statistical framework for comparing two networks

Result: Given any metric that measures the distance between two networks, we propose a hypothesis test to calibrate that test to the right type I error.

- Examine the proposed test under the light of the permutation test theory
- Implement the test in R and simulate networks from different network models to estimate the test type I error and power
- Explore the effect of different sampling methods and the sampling rate on the test performance

Assume
$$\mathcal{G}_1 \sim \mathbb{P}_1$$
 and $\mathcal{G}_2 \sim \mathbb{P}_2$.

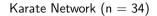
Hypotheses:

$$H_0: \mathbb{P}_1 = \mathbb{P}_2$$
 vs. $H_1: \mathbb{P}_1 \neq \mathbb{P}_2$

Input: G_1 , G_2 , α (type I error) and a graph metric $\rho(u, v)$. $\rho(u, v)$ has to satisfy the following 4 conditions:

$$(u, u) = \rho(v, v) = 0$$

$$(u, v) = \rho(v, u)$$


- 3 $\rho(u, v)$ is graph invariant.
- $\rho(u, v)$ does not depend on the sizes of u and v.

Output: *p*-value, reject H_0 /fail to reject H_0 .

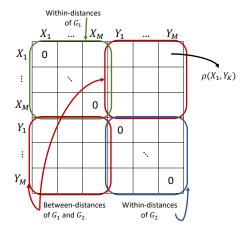
Consider the graph G_1 and G_2 in the figure below.

Dolphins Network (n = 62)

- **→** → **→**

Part 1: Generate M samples each from G_1 and G_2 .

$$X_1,\ldots,X_M \overset{\text{sample}}{\sim} G_1$$


 $Y_1, \ldots, Y_M \overset{\text{sample}}{\sim} G_2$

Assume the sampling method preserves the properties of the original graph and the samples are independent from one another.

$$X_1, \ldots, X_M \stackrel{iid}{\sim} \mathbb{P}_1,$$
$$Y_1, \ldots, Y_M \stackrel{iid}{\sim} \mathbb{P}_2.$$

Proposed Test

- Part 2: Matrix Permutation
 - **Or Compute the distance matrix**, *D*:

э

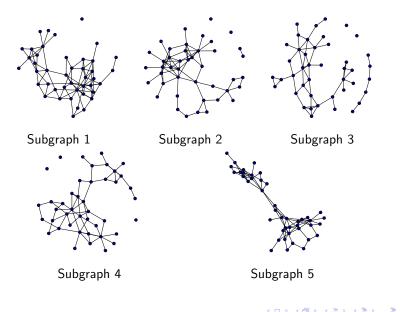
▲ □ ▶ ▲ □ ▶ ▲

Proposed Test

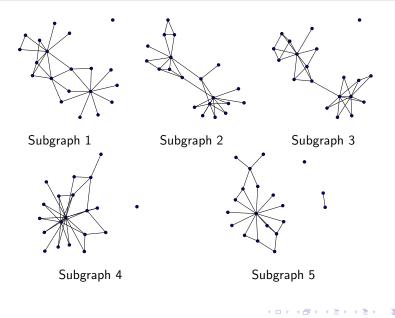
Part 2 (cont.): Matrix Permutation

Ompute the test statistic

$$T_{obs} = \frac{\text{mean(within-distances)}}{\text{mean(between-distances)}}$$

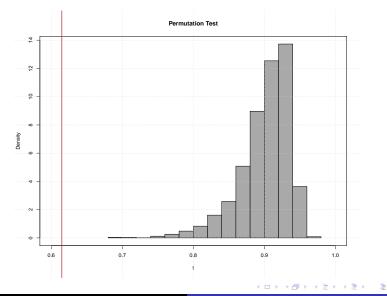

Permutation Step
For the k-th permutation, compute

$$T^{(k)} = \frac{\text{mean}(\text{within-distances}^{(k)})}{\text{mean}(\text{between-distances}^{(k)})}$$


Repeat the permutation step B times. We have

$$p$$
-value = $\frac{\# \text{ of } T^{(i)} \leq T_{obs}}{B}, 1 \leq i \leq B$

Example (Dolphins Network)



Example (Karate Network)

Example

We have: $T_{obs} = 0.6149$ and *p*-value = 0.

Ha Khanh Nguyen, OSU A Hypothesis Test for Network Comparison

Simulation Results (with Ideal Sampling Assumption)

Network Model	Test Statistic	Graph Metric	# of Samples (K)	# of Perms (B)	Type I Error
Barabasi-Albert	Ratio	KS-dist	10	5000	0.052
	Ratio	Var-Cov Matrix	10	5000	0.062
	Sum	KS-dist	10	5000	0.048
	Sum	Var-Cov Matrix	10	5000	0.042
Erdos-Renyi	Ratio	KS-dist	10	5000	0.064
	Ratio	Var-Cov Matrix	10	5000	0.054
	Sum	KS-dist	10	5000	0.044
	Sum	Var-Cov Matrix	10	5000	0.044
Geometric Random Graph	Ratio	KS-dist	10	5000	0.046
	Ratio	Var-Cov Matrix	10	5000	0.054
	Sum	KS-dist	10	5000	0.048
	Sum	Var-Cov Matrix	10	5000	0.034

A B + A B +

Simulation Results (with Ideal Sampling Assumption)

Network Model	Test Statistic	Graph Metric	# of Samples (K)	# of Perms (B)	Power
Barabasi-Albert vs. Erdos-Renyi	Ratio	KS-dist	10	5000	1
	Ratio	Var-Cov Matrix	10	5000	1
	Sum	KS-dist	10	5000	0.98
	Sum	Var-Cov Matrix	10	5000	0.98
Erdos-Renyi vs. Geometric	Ratio	KS-dist	10	5000	1
	Ratio	Var-Cov Matrix	10	5000	1
	Sum	KS-dist	10	5000	0.99
	Sum	Var-Cov Matrix	10	5000	0.98
Barabasi-Albert vs. Geometric	Ratio	KS-dist	10	5000	1
	Ratio	Var-Cov Matrix	10	5000	1
	Sum	KS-dist	10	5000	0.99
	Sum	Var-Cov Matrix	10	5000	0.99

A B + A B +

Network Model	Test Statistic	Graph Metric	# of Samples (K)	Sampling Rate	# of Perms (B)	Type I Error
Barabasi-Albert	Ratio	KS-dist	10	0.4	10000	0.09
	Ratio	Var-Cov Matrix	10	0.4	10000	0.07
	Sum	KS-dist	10	0.4	10000	0.05
	Sum	Var-Cov Matrix	10	0.4	10000	0.07
Erdos-Renyi	Ratio	KS-dist	10	0.4	10000	0.228
	Ratio	Var-Cov Matrix	10	0.4	10000	0.128
	Sum	KS-dist	10	0.4	10000	0.214
	Sum	Var-Cov Matrix	10	0.4	10000	0.106
Geometric Random Graph	Ratio	KS-dist	10	0.4	5000	0.18
	Ratio	Var-Cov Matrix	10	0.4	5000	0.18
	Sum	KS-dist	10	0.4	5000	0.22
	Sum	Var-Cov Matrix	10	0.4	5000	0.17

æ

<> E ► < E</td>

- More investigation on the effects of sampling method and sampling rate on the type 1 error and power of the test
- Try the test on other popular network models such as ERGM, Stochastic Block Models, etc.
- Apply the test to solve a real-world problem

- N. Ahmed, J. Neville, R. Kompella, *Network Sampling via Edge-based Node Selection with Graph Induction*, Purdue University e-Pubs (2011).
- D. Asta, C. Shalizi, *Geometric Network Comparisons*, Proceedings of the 31st Annual Conference on Uncertainty in AI (2015).
- P. Good, *Permutation Tests: A Practical Guide to Resampling Methods for Testing Hypotheses*, 2nd Ed, Springer (2000).
- S. Simpsons, R. Lyday, S. Hayasaka, A. Marsh, and P. Laurienti, A Permutation Test Framework to Compare Groups of Brain Networks, Frontiers in Computational Neuroscience (2013).

• • • • • • •