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A (too) big question 

	
	

How	does	the	rela-onship	between	
individual	elements	within	morphological	
systems	relate	to	‘global’	proper-es	of	

inflec-onal	organiza-on?	
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Irregularity as lawlessness? 

5 

The lexicon "... is incredibly boring by its very 
nature... Those objects that it does contain are 

there because they fail to conform to interesting 
laws. The lexicon is like a prison -- it contains only 
the lawless, and the only thing its inmates have in 

common is lawlessness."  
(Di Sciullo and Williams 1987:3)   
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Irregularity as lawlessness? 
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irregularity regularity 

WHAT IS THE PROBLEM OF IRREGULARITY? 



Irregularity as lawlessness? 
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lexicon morphology 
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Four-class description of Russian nouns 
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Class I 
ZAKAZ 

‘order’ 

Class IV 
BLJUDO 
‘dish’ 

Class II 
KNIGA 
‘book’ 

Class III 
TETRAD’ 

‘exercise book’ 

NOM SG zakáz bljúd-o kníg-a tetrád’ 
ACC SG zakáz bljúd-o kníg-u tetrád’ 
GEN SG zakáz-a bljúd-a kníg-i tetrád-i 
DAT SG zakáz-u bljúd-u kníg-e tetrád-i 
LOC SG zakáz-e bljúd-e kníg-e tetrád-i 
INST SG zakáz-om bljúd-om kníg-oj tetrád’-ju 
NOM PL zakáz-y bljúd-a kníg-i tetrád-i 
ACC PL zakáz-y bljúd-a kníg-i tetrád-i 
GEN PL zakáz-ov bljúd kníg tetrád-ej 
DAT PL zakáz-am bljúd-am kníg-am tetrádj-am 
LOC PL zakáz-ax bljúd-ax kníg-ax tetrádj-ax 
INST PL zakáz-ami bljúd-ami kníg-ami tetrádj-ami 

WHAT IS THE PROBLEM OF IRREGULARITY? 



Distribution of Russian noun classes 
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Class Index 

‘regular’ ‘irregular’ 

Dimensions	of	Russian	noun	exponence:	suffixes,	
stem	changes,	stress	alterna-ons,	defec-veness	

WHAT IS THE PROBLEM OF IRREGULARITY? 

Source: Sims and Parker (2016) 



The problem of irregularity 

§  Type	frequency	=	1	

10 

gospodin 
‘lord/sir’ 

NOM SG gospod-ín 
ACC SG gospod-ín-a 
GEN SG gospod-ín-a 
DAT SG gospod-ín-u 
LOC SG gospod-ín-e 
INST SG gospod-ín-om 
NOM PL gospod-á 
ACC PL gospód 
GEN PL gospód 
DAT PL gospod-ám 
LOC PL gospod-áx 
INST PL gospod-ámi 

WHAT IS THE PROBLEM OF IRREGULARITY? 



The problem of irregularity 

§  Type	frequency	=	1	

§  Most	of	the	inflec-onal	
exponents	are	regular	
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gospodin 
‘lord/sir’ 

NOM SG gospod-ín 
ACC SG gospod-ín-a 
GEN SG gospod-ín-a 
DAT SG gospod-ín-u 
LOC SG gospod-ín-e 
INST SG gospod-ín-om 
NOM PL gospod     -á 
ACC PL gospód 
GEN PL gospód 
DAT PL gospod     -ám 
LOC PL gospod     -áx 
INST PL gospod     -ámi 
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The problem of irregularity 
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gospodin 
‘lord/sir’ 

NOM SG gospod-ín 
ACC SG gospod-ín-a 
GEN SG gospod-ín-a 
DAT SG gospod-ín-u 
LOC SG gospod-ín-e 
INST SG gospod-ín-om 
NOM PL gospod     -á 
ACC PL gospód 
GEN PL gospód 
DAT PL gospod     -ám 
LOC PL gospod     -áx 
INST PL gospod     -ámi 

krest’janin 
‘peasant’ 

krest’ján-in 
krest’ján-in-a 
krest’ján-in-a 
krest’ján-in-u 
krest’ján-in-e 
krest’ján-in-om 
krest’ján     -e 
krest’ján 
krest’ján 
krest’ján     -am 
krest’ján     -ax 
krest’ján     -ami 

professor 
‘professor’ 

proféssor 
proféssor-a 
proféssor-a 
proféssor-u 
proféssor-e 
proféssor-om 
professor-á 
professor-óv 
professor-óv 
professor-ám 
professor-áx 
professor-ámi 
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The problem of irregularity 

§  None	of	the	exponents	are	
idiosyncra-c	
§  All	occur	in	class	paKerns	

§  Only	the	combina(on	of	
exponents	is	unique	
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gospodin 
‘lord/sir’ 

NOM SG gospod-ín 
ACC SG gospod-ín-a 
GEN SG gospod-ín-a 
DAT SG gospod-ín-u 
LOC SG gospod-ín-e 
INST SG gospod-ín-om 
NOM PL gospod     -á 
ACC PL gospód 
GEN PL gospód 
DAT PL gospod     -ám 
LOC PL gospod     -áx 
INST PL gospod     -ámi 
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Irregularity as network embedding 

§  Irregularity	is	not	fundamentally	different	from	
regularity	
§  It’s	about	the	distribu-on	of	informa-on,	not	the	

informa-on	itself	

§  ‘Irregularity’	=	a	ques-on	of	how	words	are	
embedded	in	lexical	networks,	and	the	rela-onship	
between	words	in	a	network	
§  Brown	and	Hippisley	2012,	Dressler	et	al.	2006	
§  Albright	and	Hayes	2002,	Bybee	and	Slobin	1982,	Bybee	

1985,	Pierrehumbert	2012	
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Sources and collaborators 

Daland,	Robert,	Andrea	D.	Sims,	and	Janet	Pierrehumbert.	2007.	Much	ado	
about	nothing:	A	social	network	model	of	Russian	paradigma-c	gaps.	
Associa(on	for	Computa(onal	Linguis(cs	Proceedings	45:	936-943.	

Sims,	Andrea	D.	2015.	Inflec(onal	defec(veness.	Cambridge:	Cambridge	
University	Press.	
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Robert Daland Janet Pierrehumbert 
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Paradigmatic gaps in Russian 1SG 

missing	inflected	form	=	paradigma-c	gap	
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SINGULAR PLURAL SINGULAR PLURAL 

1ST sprošu	 sprosim	 1ST	 --	 ubedim	
2ND sprosiš'	 sprosite	 2ND	 ubediš'	 ubedite	
3RD sprosit	 sprosjat	 3RD	 ubedit	 ubedjat	
SPROSIT’ – ‘ask’ UBEDIT’ – ‘convince’ 

HOW DOES MORPHOLOGICAL CONNECTIVITY SHAPE IRREGULARITY?  



More examples of Russian 1SG gaps 

bdet' 	‘keep	watch’	 	pobedit'	 	‘conquer’	
buzit' 	‘protest’	 	rysit'	 	‘trot’	
galdet' 	‘make	a	hubbub’	 	sosedit'	 	‘be	a	neighbor’	
derzit' 	‘be	imprudent’	 	pobedit' 	‘conquer’	
dudet' 	‘play	the	pipe’	 	umiloserdit' 	‘take	pity	on’	
erundit' 	‘do	funny	things’	 	čudesit'	 	‘do	magic’	
čudit' 	‘to	behave	oddly’ 	očutit'sja		 	‘find	o.s.	to	be’	
oščutit' 	‘to	feel’ 	škodit' 	‘misbehave’	

18 

Stem-
final C /dj/ /tj/ /zj/ /sj/ /stj/ 

gaps / 
all 2nd 
conj 

13.3% 
(19/143) 

12.4% 
(14/118) 

11.9% 
(5/42) 

4.8% 
(3/62) 

4.3% 
(2/47) 

HOW DOES MORPHOLOGICAL CONNECTIVITY SHAPE IRREGULARITY?  



A short history 

§  In	mid-19th	c.,	compe-ng	alterna-ons	in	1SG		
§  Na-ve	East	Slavic	(and	modern	standard)	alterna-on	

(e.g.	dj	~	ž)	
§  Church	Slavonic	(CS)	alterna-on	(e.g.	dj	~	ždj)	
§  Non-alterna-on	(e.g.	dj	~	dj)		

§  Baerman	(2008)	
§  As	CS	alterna-on	and	non-alterna-on	fell	out	of	

developing	standard,	some	lexemes	were	‘stranded’		
§  Gaps	in	1SG	first	noted	by	Pavskij	(1841)	
§  Gaps	synchronically	(mostly)	remnants	

19 HOW DOES MORPHOLOGICAL CONNECTIVITY SHAPE IRREGULARITY?  



The learning problem 

High Token 
Frequency 

Low Token 
Frequency 

High Type 
Frequency 

✔ ✔
(Hare & Elman 1995) 

 

Low Type 
Frequency 

✔
(Bybee & Slobin 1982, 

Hare et al. 1995)

1SG gaps in 
Russian 
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Bayesian inference: It’s about observations 
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UBEDIT’ 
‘convince’ 

Raw  
# 

Relative 
Freq 

1SG 1 0.2% 
2SG 53 11.7% 
3SG 210 46.4% 
1PL 27 6.0% 
2PL 71 15.7% 
3PL 91 20.1% 

Observa-ons	given	rela-vely	greater	weight	in	inferences	
about	high	frequency	verbs	(à	word-specific	learning)	

Neighbors 
 

12% 
7% 

39% 
11% 
10% 
21% 

HOW DOES MORPHOLOGICAL CONNECTIVITY SHAPE IRREGULARITY?  



Neighbors 
 

12% 
7% 

39% 
11% 
10% 
21% 

Bayesian inference: It’s about expectations 

22 

PROROČIT’ 
‘prophesize’ 

Raw  
# 

Relative 
Freq 

1SG 0 0% 
2SG 2 13.3% 
3SG 6 40.0% 
1PL 3 20.0% 
2PL 0 0% 
3PL 4 26.7% 

Expecta-ons	given	rela-vely	greater	weight	in	inferences	
about	low	frequency	verbs	(à	analogical	learning)	

HOW DOES MORPHOLOGICAL CONNECTIVITY SHAPE IRREGULARITY?  



Bayesian inference: It’s about expectations 

23 

Prior probability distribution  
=  

Expectations 

Neighbors 
 

12% 
7% 

39% 
11% 
10% 
21% 

HOW DOES MORPHOLOGICAL CONNECTIVITY SHAPE IRREGULARITY?  

Neighbors 
based on  

stem-final C 



Remember the distributional facts… 
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bdet' 	‘keep	watch’	 	pobedit'	 	‘conquer’	
buzit' 	‘protest’	 	rysit'	 	‘trot’	
galdet' 	‘make	a	hubbub’	 	sosedit'	 	‘be	a	neighbor’	
derzit' 	‘be	imprudent’	 	pobedit' 	‘conquer’	
dudet' 	‘play	the	pipe’	 	umiloserdit' 	‘take	pity	on’	
erundit' 	‘do	funny	things’	 	čudesit'	 	‘do	magic’	
čudit' 	‘to	behave	oddly’ 	očutit'sja		 	‘find	o.s.	to	be’	
oščutit' 	‘to	feel’ 	škodit' 	‘misbehave’	

Stem-
final C /dj/ /tj/ /zj/ /sj/ /stj/ 

gaps / 
all 2nd 
conj 

13.3% 
(19/143) 

12.4% 
(14/118) 

11.9% 
(5/42) 

4.8% 
(3/62) 

4.3% 
(2/47) 
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Bayesian inference: It’s about expectations 
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Higher	
expecta-on	
of	1SG	gap	
for	GALDET’	
than	for	
PROROČIT’	

Neighbors 
(PROROČIT’) 

12% 
7% 

39% 
11% 
10% 
21% 

Neighbors 
(GALDET’) 

9% 
7% 

43% 
9% 
9% 

23% 

HOW DOES MORPHOLOGICAL CONNECTIVITY SHAPE IRREGULARITY?  



A computational test 
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§  "Adult"	agents	talk,	"child"	
agents	listen	

§  Bayesian	inference	to	
determine	frequency	if	use	
of	all	cells	of	all	verbs	

§  Child	agents	mature;	new	
children	introduced	

§  Speech	of	new	adults	based	
on	sampling	from	the	
grammar	that	they	learned	

HOW DOES MORPHOLOGICAL CONNECTIVITY SHAPE IRREGULARITY?  



A computational test 

27 

§  Eight	condi-ons	

§  4	strength	of	analogy	
levels	

§  “beta”	

§  2	neighborhood	levels	

§  Weighted	by	similarity	
of	stem-final	consonant	

§  Unweighted	

HOW DOES MORPHOLOGICAL CONNECTIVITY SHAPE IRREGULARITY?  



A computational test 

28 

§  Seeded	based	on	sampling	of	
Russian	Na-onal	Corpus	

§  At	end	of	each	genera-on,	
verbs	with	1SG	gaps	counted	
based	on	confidence	
algorithm	

HOW DOES MORPHOLOGICAL CONNECTIVITY SHAPE IRREGULARITY?  



‘Lifetime’ of gaps 
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x-axis = gap  
‘lifetime’ 
 
y-axis =  
number of 
verbs 
 
solid line = 
weighted 
neighbors 
 
dashed = 
unweighted 
neighbors 
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Distribution of gaps by frequency 
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Neighbors weighted by 
 morphophonological similarity 

Neighbors unweighted 

x-axis = log 
verb 
frequency 
 
solid line = 
verbs w/  
1SG gaps 
 
dashed = 
verbs w/o 
1SG gaps 
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Morphological connectivity and the 1SG gaps 

§  Morphophonological	neighborhood	density	is	
crucial	to	the	learnability	and	persistence	of	the	
Russian	1SG	gaps	
§  Effect	strongest	in	mid-frequency	verbs	
§  A	lexical	gang	effect	

§  Defec-ve	and	non-defec-ve	paKerns	directly	
compete	in	the	hypothesis	space	
§  Defec-veness	as	a	produc-ve	paKern	

§  Russian	1SG	gaps	as	a	self-reinforcing	paKern	that	
emerges	from	how	verbs	are	embedded	in	the	
lexical	network,	in	the	context	of	analogical	
learning	

31 HOW DOES MORPHOLOGICAL CONNECTIVITY SHAPE IRREGULARITY?  
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d,f 

f 
f 

Nodes 

Edges 

  Word 
Type 
Freq. 

MSPS 
X 

MSPS 
Y 

MSPS 
Z 

Class I 6 a d f 
Class II 3 b d f 
Class III 1 c e f 

Node size 

Inflection class systems as networks 

IS MORPHOLOGICAL CONNECTIVITY SIMILAR CROSS-LINGUISTICALLY?  33 



What real languages look like 

High	node	clustering	=	closely	related	microclasses	
that	group	into	macroclasses	

34 IS MORPHOLOGICAL CONNECTIVITY SIMILAR CROSS-LINGUISTICALLY?  

Russian		
nouns	

Kadiwéu		
verbs	

Palantla	
Chinantec		
verbs	

Data sources: Baerman et al. (2015), Griffiths (2002), Merrifield &  
Anderson (2007), Zaliznjak (1977)  



What real languages look like 
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Weak	connec-vity	=	inflec-on	classes	are	more	
dis-nct	(good	for	predictability)	

IS MORPHOLOGICAL CONNECTIVITY SIMILAR CROSS-LINGUISTICALLY?  

French		
verbs	

Modern	Greek		
nouns	

Icelandic		
verbs	

Data sources: Stump & Finkel (2013), Triantafillidis Institute (1998) 



What real languages look like 
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Heavy	inflec-on	class	overlap	=	inflected	forms	are	
bad	predictors	of	inflec-on	class	

IS MORPHOLOGICAL CONNECTIVITY SIMILAR CROSS-LINGUISTICALLY?  

Seri		
verbs	

Võro		
verbs	

Nuer		
nouns	

Data sources: Baerman (2012, 2014, 2016), Frank (1999), Iva (2007), 
 Moser & Marlett (2010) 



Cross-linguistic differences in connectivity 

§  Languages	differ	in	how	classes	are	embedded	
within	inflec-on	class	networks	

§  Are	there	consequences	of	the	different	
connec-vity	profiles	for	the	rela-onship	between	
elements	within	a	given	system?	
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Do cross-linguistic differences in the 
relationship between regulars and 
irregulars derive from connectivity 
profiles? 



Sources and collaborators 

Sims,	Andrea	D.	and	Jeff	Parker	(2016).	How	inflec-on	class	systems	work:	On	the	informa-vity	of	
implica-ve	structure.	Word	Structure	9(2):	215-239.	

Parker,	Jeff	and	Andrea	D.	Sims	(submiKed).	Irregularity,	paradigma-c	layers,	and	the	complexity	of	
inflec-on	class	systems:	A	study	of	Russian	nouns.	

Parker,	Jeff,	Robert	Reynolds	and	Andrea	D.	Sims	(in	prep).	Network	proper-es	of	inflec-on	class	systems.		

39 

Jeff Parker 

EMERGENCE OF MARGINAL DETRACTION 

Robert Reynolds 



§  A	classic	story:	Irregulars	persist	because	have	high	
token	frequency	and	this	allows	them	to	resist	the	
forces	of	analogy	
§  I.e.,	we	tend	to	think	about	irregulars	in	

fundamentally	individualis-c	terms	

§  But	analogical	pressure	is	about	the	distribu-onal	
proper-es	of	the	system	

40 

Analogy Word-specific 
learning Item Analogy Word-specific 
learning 

EMERGENCE OF MARGINAL DETRACTION 



Marginal Detraction Hypothesis 

“Marginal	I[nflec-on]	C[lasses]	tend	to	
detract	most	strongly	from	the	IC	

predictability	of	other	ICs.”		

(Stump	and	Finkel	2013:225)	

EMERGENCE OF MARGINAL DETRACTION 41 

marginal	=	low	type	frequency	



Information and inference 

42 

Class I Class IV Class II Class III 

NOM SG /-Ø/ /-o/ /-a/ /-Ø/ 

ACC SG /-Ø/ /-o/ /-u/ /-Ø/ 

GEN SG /-a/ /-a/ /-i/ /-i/ 

DAT SG /-u/ /-u/ /-e/ /-i/ 

LOC SG /-e/ /-e/ /-e/ /-i/ 

INST SG /-om/ /-om/ /-oj/ /-ju/ 

NOM PL /-i/ /-a/ /-i/ /-i/ 

ACC PL /-i/ /-a/ /-i/ /-i/ 

GEN PL /-ov/ /-Ø/ /-Ø/ /-ej/ 

DAT PL /-am/ /-am/ /-am/ /-am/ 

LOC PL /-ax/ /-ax/ /-ax/ /-ax/ 

INST PL /-amji/ /-amji/ /-amji/ /-amji/ 

Russian	noun	inflec-on	classes		

Really informative! 
Must be class II. 

Somewhat  
informative. 
Must be I or IV. 

Not at all  
informative. 
Could be 
any class! 

EMERGENCE OF MARGINAL DETRACTION 



Class I Class IV Class II Class III 

NOM SG /-Ø/ /-o/ /-a/ /-Ø/ 

ACC SG /-Ø/ /-o/ /-u/ /-Ø/ 

GEN SG /-a/ /-a/ /-i/ /-i/ 

DAT SG /-u/ /-u/ /-e/ /-i/ 

LOC SG /-e/ /-e/ /-e/ /-i/ 

INST SG /-om/ /-om/ /-oj/ /-ju/ 

NOM PL /-i/ /-a/ /-i/ /-i/ 

ACC PL /-i/ /-a/ /-i/ /-i/ 

GEN PL /-ov/ /-Ø/ /-Ø/ /-ej/ 

DAT PL /-am/ /-am/ /-am/ /-am/ 

LOC PL /-ax/ /-ax/ /-ax/ /-ax/ 

INST PL /-amji/ /-amji/ /-amji/ /-amji/ 

Information and inference 

43 

Condi-onal	Entropy	
	
	
	

EMERGENCE OF MARGINAL DETRACTION 



Evidence for marginal detraction 

§  Nega-ve	slope	=	
marginal	detrac-on	

§  7	of	9	with	nega-ve	
slopes	(5	significant)	

§  Confirms	and	
extends	evidence	for	
marginal	detrac-on	

§  Also	suggests	
marginal	detrac-on	
may	not	hold	for	all	
languages	

EMERGENCE OF MARGINAL DETRACTION 44 



What real languages look like 

45 

Weak	connec-vity	=	inflec-on	classes	are	more	
dis-nct	(good	for	predictability)	

EMERGENCE OF MARGINAL DETRACTION 

French		
verbs	

Modern	Greek		
nouns	

Icelandic		
verbs	



A computational test 

46 

§  "Adult"	agents	talk,	"child"	
agents	listen	

§  Bayesian	inference	to	
determine	all	forms	of	all	
lexemes	

§  Child	agents	mature;	new	
children	introduced	

§  Speech	of	new	adults	based	
on	sampling	from	the	
grammar	that	they	learned	

EMERGENCE OF MARGINAL DETRACTION 



A computational test 

47 

§  Lexemes	distributed	Zipfianly	
across	classes	

§  All	lexemes	produced	with	
equal	probability	
§  MSPS	also	equally	

probable	

EMERGENCE OF MARGINAL DETRACTION 



d,f 

f 
f 

Edge weight = # 
of overlapping 
cells 

Degree = # of 
node’s edges 

  Word 
Type 
Freq. 

MSPS 
X 

MSPS 
Y 

MSPS 
Z 

Class I 6 a d f 
Class II 3 b d f 
Class III 1 c e f 

(Node size) 

Node properties 

EMERGENCE OF MARGINAL DETRACTION 48 



A computational test 

49 EMERGENCE OF MARGINAL DETRACTION 

§  10	input	data	sets	
§  Connected	graphs	
§  24	classes	and	6	morpho-
syntac-c	property	sets	

§  In	a	given	input,	each	node	
has	same	degree	and	
average	edge	weight	

§  Degree	and	average	edge	
weight	varied	across	inputs	



Degree	=	2	

	

Edge	weight	=	2	

MSPS 
Class A B C D E 

I a	 ppp	 x	 ff	 mmmm	

II a	 i	 xxx	 ff	 nn	

III aaa	 i	 q	 ffff	 nn	

IV b	 iii	 q	 y	 nnnn	

V b	 j	 qqq	 y	 gg	

VI bbb	 j	 r	 yyy	 gg	

VII c	 jjj	 r	 z	 gggg	

VIII c	 k	 rrr	 z	 hh	

Subset of Input Set 2 

Sample input 

EMERGENCE OF MARGINAL DETRACTION 50 



Bayesian inference: It’s about observations 

51 EMERGENCE OF MARGINAL DETRACTION 

A|B = i Lexeme 
Observations 

a 15% 
aaa 85% 

b 0% 
bbb 0% 

c 0% 

Productions 
heard by child 

agents 
=  

Observations 

Distribution of 
observations matters, 

but number of 
observations constant 



Bayesian inference: It’s about expectations 
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Prior probability 
of hypotheses 

=  
Expectations 

A|B = i Mean Neighbor 
Behavior 

a 75% 
aaa 25% 

b 0% 
bbb 0% 

c 0% 

EMERGENCE OF MARGINAL DETRACTION 

Neighbors based on 
shared conditioning 

cell exponent 



Distribution of input 
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collapsed  
class structure 

rearranged  
class structure 

Input	Data	Distribu-on	



Modeling Marginal Detraction 

As	input	node	
degree	increases,	
slope	increases	
	
Low	degree	à	
Marginal	Detrac-on	
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MSPS 

Class A B C D E 

I aa	 b	 c	 d	 e	

II a	 bb	 c	 d	 e	

III a	 b	 cc	 d	 e	

IV a	 b	 c	 dd	 e	

V a	 b	 c	 d	 ee	

VI a	 b	 c	 d	 e	

VII gg	 b	 c	 d	 e	

VIII a	 hh	 c	 d	 e	

Subset of Input Data 10 

Why marginal detraction? 

More	neighbors	
exer-ng	
analogical	
pressure	

	

à	less	likely	to	
maintain	unique	
exponents	
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Low	degree	+	low	
type	frequency	
à	few	neighbors	
exer-ng	
analogical	
pressure	
à	more	likely	to	
maintain	unique	
exponents	
à	detract	from	
the	predictability	
of	other	classes	

MSPS 
Class A B C D E 

I a	 ppp	 x	 ff	 mmmm	

II a	 i	 xxx	 ff	 nn	

III aaa	 i	 q	 ffff	 nn	

IV b	 iii	 q	 y	 nnnn	

V b	 j	 qqq	 y	 gg	

VI bbb	 j	 r	 yyy	 gg	

VII c	 jjj	 r	 z	 gggg	

VIII c	 k	 rrr	 z	 hh	

Subset of Input Set 2 

Why marginal detraction? 
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§  In	low	degree	systems,	low	type	frequency	classes	
are	more	likely	to	maintain	unique	exponents	
(‘irregularity’)	and	thus	detract	dispropor-onately	
from	the	predictability	of	inflected	forms	(‘marginal	
detrac-on’)	

§  Irregularity	modeled	without	reference	to	token	
frequency	
	

Relationship between regulars and irregulars 
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Hmmm… 
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Log Type Frequency 

In	the	model,	low	degree		
à	marginal	detrac-on	

In	real	languages,	high	degree	
à	marginal	detrac-on	
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Ongoing work… 

§  Cue	strength?	(specula-on	in	Sims	&	Parker	2016)	
§  The	real-world	inflec-onal	systems	differ	in	how	

much	‘work’	implica-ve	structure	does	

§  Token	frequency?	
§  Of	lexemes	and/or	inflected	forms	

§  Clustering?	
§  High	marginal	detrac-on	languages	are	also	high	

marginal	detrac-on	

§  ??	
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Conclusions 

  



The problem of irregularity, redux 

§  Data	dovetail	with	other	work	on	role	of	morphological	
connec-vity	(lexical	neighborhoods)	in	reinforcing	
irregular	inflec-onal	morphology	

§  A	systems-oriented	perspec-ve	also	raises	new	
ques-ons	about	the	emergence	of	the	organiza-onal	
proper-es	of	inflec-onal	systems	
§  Cross-linguis-c	similari-es	and	differences	
§  System-internal	differen-a-on	of	connec-vity	profiles	

§  We	should	ask	how	words	are	connected	(embedded)	
in	lexical	networks	and	how	the	interac-on	among	
elements	may	differ	depending	on	network	structures,	
and	in	the	context	of	environmental	factors	(e.g.	
learning	principles)	
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Thank you! 
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