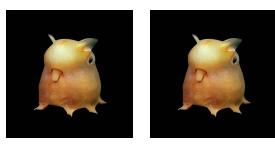
1st International Quantitative Morphology Meeting Belgrade, Serbia July 11-12, 2015

On the interaction of implicative structure and type frequency in inflectional systems

Jeff Parker and Andrea D. Sims The Ohio State University {parker.642, sims.120}@osu.edu


Some big(gish) questions for today

- How do sources of information minimize the uncertainty associated with predicting unknown inflected forms?
 - Paradigm Cell Filling Problem, PCFP (Ackerman, Blevins, and Malouf 2009)
 - This is a 'lankus'

What are these?

'lanki'?

Typological question: To what extent are languages similar in how sources of information interact?

PCFP and implicative structure

- Low Entropy Conjecture
 - "...enumerative morphological complexity is effectively unrestricted, as long as the average conditional entropy, a measure of integrative complexity, is low" (Ackerman and Malouf 2013:436)

$$H(A|B) = \sum_{b \in B, a \in A} p(b,a) \log_2 \frac{p(b)}{p(b,a)}$$

SINGULAR (A)	virus	syllabus	corpus	
PLURAL (B)	viruses	syllabi	corpora	

PCFP and implicative structure

- Implicative paradigmatic structure is ...
 - Not the only kind of information that can do work towards solving the PCFP
 - Not necessarily independent of other info
 - Low entropy can exist in the absence of implicative structure doing any work

Sources of information

Implicative paradigmatic structure

- inflected forms vary in how much they are predictive of and/or predictable from other inflected forms
- Inflectional class type frequency
 - inflection classes differ in the number of lexemes they represent

(Wurzel 1989; Ackerman and Malouf 2013; Baerman and Corbett 2012; Sims 2015; Stump and Finkel 2013)

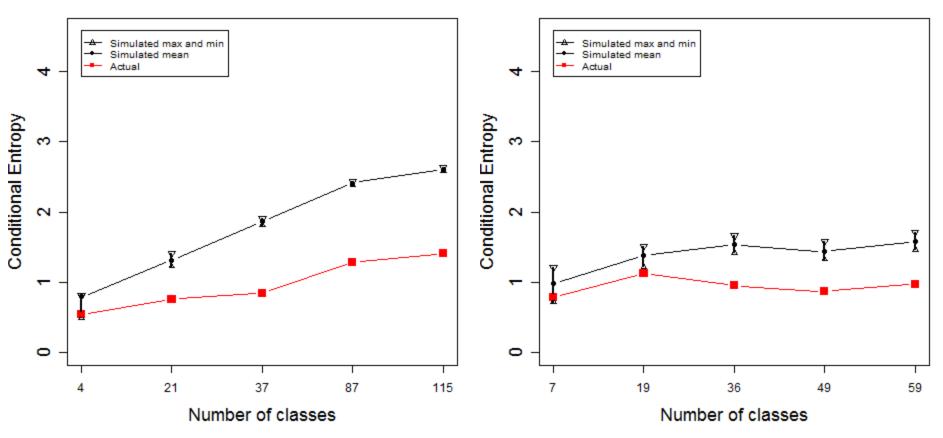
Starting point: describing the systems

- The description of the system can strongly influence analysis of system's complexity (Bonami 2013)
- An assumption that some/many 'irregular' lexemes fall outside of the morphological system risks underestimating the actual complexity speakers deal with
- Rather than assume a particular analysis of the system, we empirically explore the extent to which granularity of inflectional information affects the results

More complex descriptions

- Russian (43,486 nouns):
 - □ 6 cases x 2 numbers = 12 paradigm cells
 - morphological class info and type frequencies from Grammatičeskij slovar' russkogo jazyka (Zaliznjak 1977)
- Greek (27,270 nouns):
 - \square 3 cases x 2 numbers = 6 paradigm cells
 - morphological class info from Lexikó tīs koinī́s neoellīnikī́s (Triantafillidis Institute 1998)
 - type frequencies from Hellenic National Corpus (hnc.ilsp.gr/en/)

Granularity of inflection class info


Russian nouns								
Number of classes		Suffixes	Animacy	Stem changes	Stress	Defectiveness		
4		(+)						
21		+	+					
37		+	+	+				
87		+	+	+	+			
115		+	+	+	+	+		

Greek nouns								
Number of classes		Suffixes	Inflectional stress	Stem changes	Lexical stress	Defectiveness		
7		+						
19		+	+					
36		+	+	+				
49		+	+	+	+			
59		+	+	+	+	+		

Conditional entropy

Russian

Greek

- In both languages, average uncertainty is less than by chance at all granularities; consistent with Low Entropy Conjecture
- Mostly, difference from chance increases as granularity increases

Implicative work

- Our (re)definition of work: the reduction in the entropy of a system due to a given information source
- Implicative work difference between entropy and conditional entropy

• Entropy:
$$H(A) = -\sum_{p(a)} p(a) \log_2 p(a)$$

Conditional entropy:

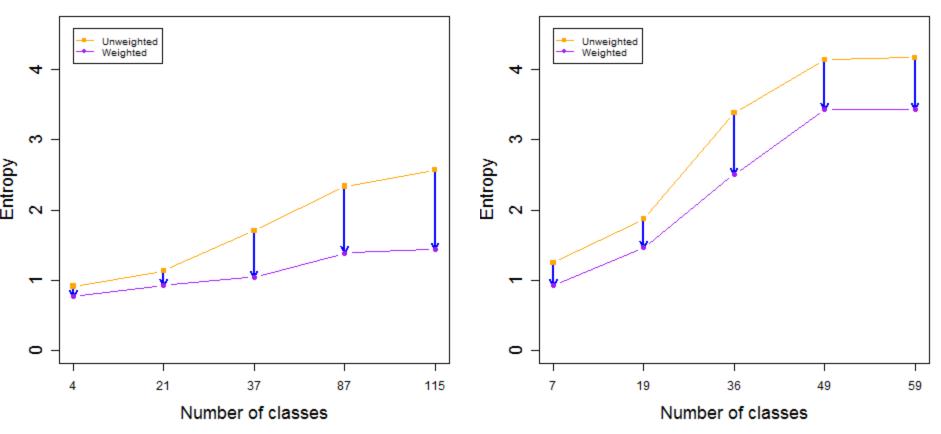
$$I(A) = -\sum_{\alpha \in A} p(\alpha) \log_2 p(\alpha)$$

$$H(A|B) = \sum_{b \in B, a \in A} p(b,a) \log_2 \frac{p(b)}{p(b,a)}$$

Implicative work: (Mutual information) I(A:B) = H(A) - H(A|B)

Implicative work

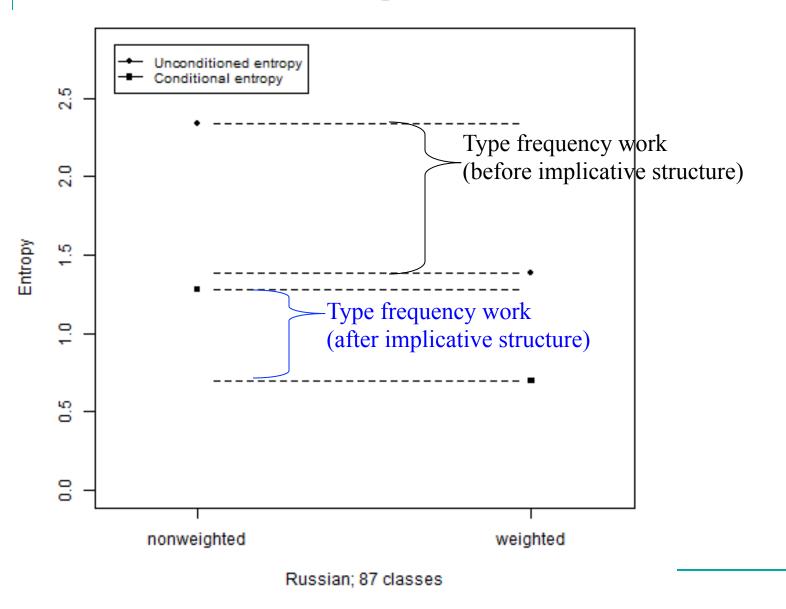
Russian Greek Unconditioned entropy Unconditioned entropy Conditional entropy Conditional entropy 4 4 **က** . ŝ Entropy Entropy 2 2 0 0 21 37 87 115 19 36 49 7 59 Number of classes Number of classes

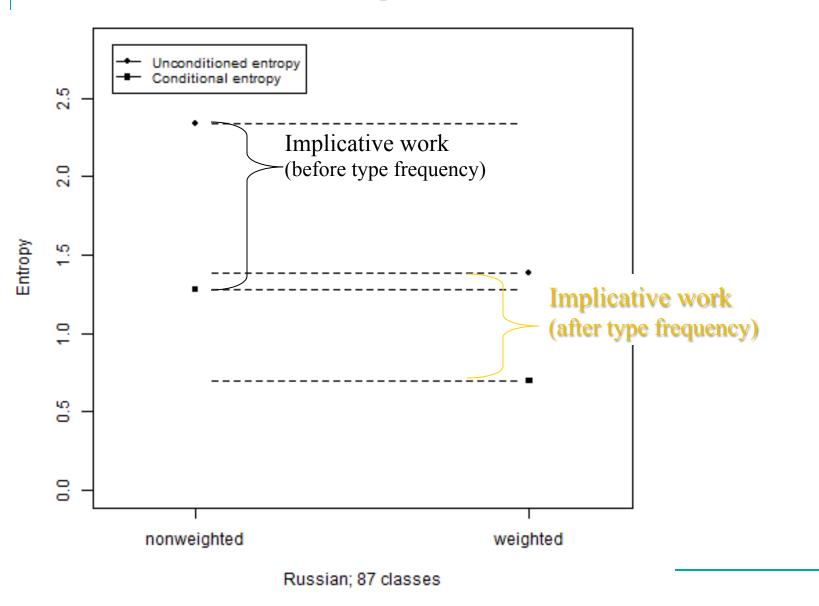

 Overall, implicative work increases as granularity increases Type frequency work

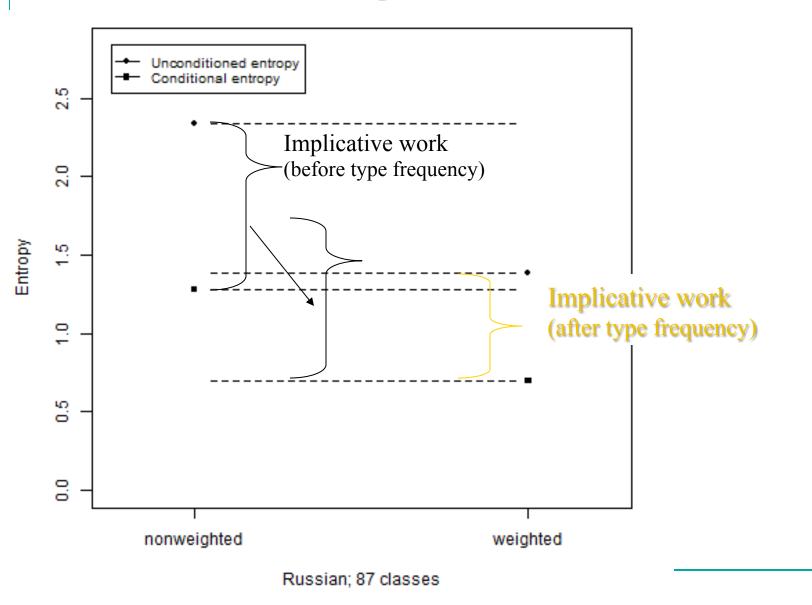
- Some classes contain thousands of lexemes, others have only one
- Type frequency work: Difference between entropy when calculated based on evenly weighted (U) and type frequency weighted (W) data structures
 - □ Type frequency work = $H(A)_U H(A)_W$

Type frequency work

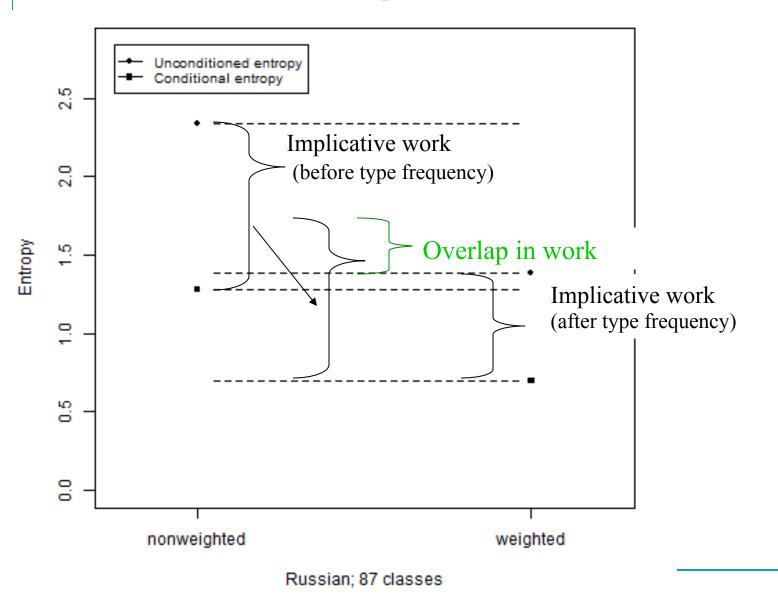
Russian

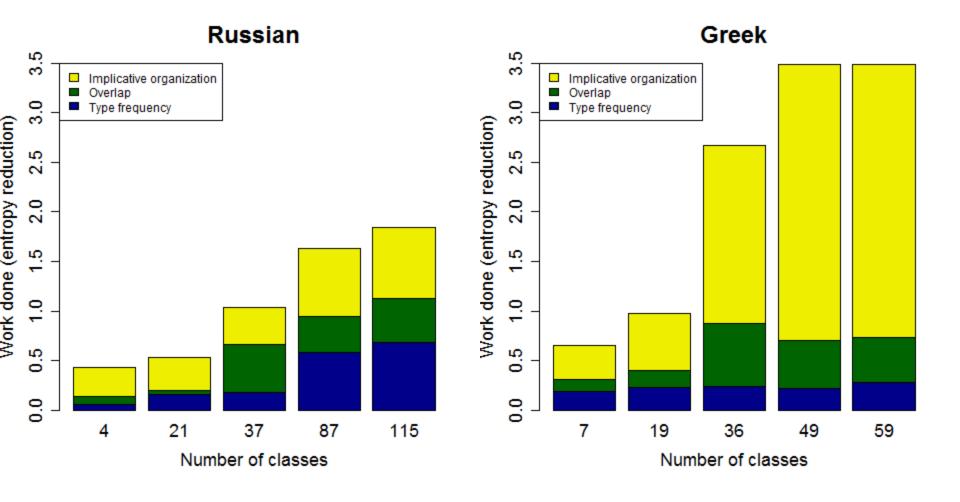

Greek




 Weighting by type frequency lowers entropy, more so in finer granularities

What's really doing the work?


- Both implicational structure and type frequency have the capacity to do work by lowering the entropy of the system (and do so in Russian and Greek)
- To what extent are their contributions independent and/or overlapping?



17

Proportion of work done in Russian and Greek

Conclusions

- Both Russian and Greek exhibit lower conditional entropy than expected from chance, regardless of inflection class granularity and type frequency weighting
 - consistent with Low Entropy Conjecture
- However, the extent to which type frequency and implicative structure do work differs
 - Implicative structure plays a greater role in Greek (regardless of granularity), despite Greek having fewer paradigm cells
 - The extent to which implicative structure and type frequency are redundant sources of information differs

Ongoing work...

- Expanding this type of analysis to more languages
- Testing of the cognitive reality of implicative structure for speakers

This work was supported by...

- Presidential Fellowship, OSU (Parker)
- Research start-up funds, OSU (Sims)
- Andrew W. Mellon Foundation, through the John E. Sawyer Seminar on the Comparative Study of Cultures program (grant 21200638, Co-PI Sims)
- Kenneth E. Naylor Professorship in South Slavic Linguistics, OSU

References

- Ackerman, Farrell, James P. Blevins, and Robert Malouf. 2009. "Parts and Wholes: Implicative Patterns in Inflectional Paradigms." In *Analogy in Grammar: Form and Acquisition*, edited by James P. Blevins and Juliette Blevins, 54–82. New York: Oxford University Press.
- Ackerman, Farrell, and Robert Malouf. 2013. "Morphological Organization: The Low Entropy Conjecture." Language 89 (3): 429–64.
- Baerman, Matthew, and Greville G. Corbett. 2012. "Stem Alternations and Multiple Exponence." Word Structure 5 (1): 52–68.
- Bonami, Olivier. 2013. "Towards a Robust Assessment of Implicative Relations in Inflectional Systems". presented at the Workshop on Computational Approaches to Morphological Complexity, Paris.
- Corbett, Greville G. 1982. "Gender in Russian: An Account of Gender Specification and Its Relationship to Declension." *Russian Linguistics* 6 (2): 197–232.
- Sims, Andrea D. 2015. Inflectional Defectiveness. Cambridge: Cambridge University Press.
- Stump, Gregory T., and Raphael A. Finkel. 2013. *Morphological Typology: From Word to Paradigm*. Cambridge University Press.
- Wurzel, Wolfgang. 1989. Inflectional Morphology and Naturalness. Studies in Natural Language and Linguistic Theory.
- Zaliznjak, Andrei A. 1977. Grammatičeskij Slovar' Russkogo Jazyka. Moskva: Russkij jazyk.