Publications

Below is a bibliography of papers that are representative of the work carried out in my Computational Geosciences Group (students and postdocs identified with asterisk*), as well as my earlier work in astrophysics. The key ideas presented in some of these papers are highlighted and expanded upon in the Research section.

    In review


    2021

  1. Gao, F., Wang C., Song Y., Hu Q., Wan C., Xiong* F., Li Z, Moortgat, J., “Organic pore heterogeneity and its formation mechanisms: Insights from the Lower Cretaceous lacustrine Shahezi shale in the Songliao Basin, NE China”, Energy Exploration & Exploitation, 40 (1), 112-131. doi:10.1177/01445987211044831.
    [html]
  2. Xiong* F., Hwang, B., Jiang, Z., James*, D., Lu, H., Moortgat, J., “Kinetic Emission of Shale Gas in Saline Water: Insights from Experimental Observation of Gas Shale in Canister Desorption Testing”, Fuel, 300 , 121006. doi:10.1016/j.fuel.2021.121006.
    [html]
  3. Eymold*, W.K., Walsh, T.B., Moortgat, J., Grove, B. S., Darrah, T. H., “Constraining fault architecture and fluid flow using crustal noble gases”, Applied Geochemistry, 129, 104954. doi:10.1016/j.apgeochem.2021.104954
    [html]
  4. Gao, F., Wang, C., Song, Y., Wan, C., Xiong*, F., Li, Z., Moortgat, J., “Quantitative characterization of organic matter pore structure in Lower Cretaceous lacustrine shales in the Songliao Basin, NE China.”, Lithosphere, Special 1. doi:10.2113/2021/6644430
    [html]
  5. Xiong* F., Rother, G., Gong, Y., Moortgat, J., “Reexamining Supercritical Gas Adsorption Theories in Nano-Porous Shales under Geological Conditions”, Fuel, 287 (1), 119454. doi:10.1016/j.fuel.2020.119454.
    [html]

    2020

  6. Xiong* F., Rother, G., Tomasko, D., Pang, W., Moortgat, J., “On the Pressure and Temperature Dependence of Adsorption Densities and Other Thermodynamic Properties in Gas Shales”, Chemical Engineering Journal, 395 (2), 124989. doi:10.1016/j.cej.2020.124989.
    [html]
  7. Moortgat, J., Li*, M., Amooie*, M.A., Zhu*, D., “A Higher-Order Finite Element Reactive Transport Model for Unstructured and Fractured Grids”, Scientific Reports, 10 , 15572. doi:10.1038/s41598-020-72354-3.
    [html]
  8. Li*, M., Moortgat, J., and Bolotnov, I.A., “Nucleate Boiling Simulation using Interface Tracking Method”, Nuclear Engineering and Design, 369 , 110813. doi:10.1016/j.nucengdes.2020.110813.
    [html]
  9. Xu, J., Dutta, S., He, Wenbin, Moortgat, J., and Shen, H.-W., “Geometry-Driven Detection, Tracking and Visual Analysis of Viscous and Gravitational Fingers”, IEEE Transactions on Visualization and Computer Graphics, doi:10.1109/TVCG.2020.3017568.
    [html]

    2019

  10. Xiong* F., Jiang, Z., Huang, H., Wen, M., and Moortgat, J., “Mineralogy and Gas Content of Upper Paleozoic Shanxi and Benxi Shale Formations in the Ordos Basin”, Energy and Fuels. 33 (2), 1061–1068. doi:10.1021/acs.energyfuels.8b04059.
    [html]

    2018

  11. Amooie*, M.A., Soltanian*, M.R., and Moortgat, J., “Solutal Convection in Porous Media: Comparison Between Boundary Conditions of Constant Concentration and Constant Flux”, Physical Review E. 98(3), 033118. doi:10.1103/PhysRevE.98.033118.
    [html] [pdf]
  12. Gao, F.L., Song, Y., Li, Z., Xiong*, F.Y., Chen, L., Zhang, Y.H., Liang, Z.K., Zhang, X.X., Chen, Z.Y., and Moortgat, J., “Lithofacies and reservoir characteristics of the Lower Cretaceous continental Shahezi SHale in the Changling Fault Depression of Songliao Basin, NE China”, Marine and Petroleum Geology (2018), 98(4), 401–421. doi:10.1016/j.marpetgeo.2018.08.035.
    [html]
  13. Soltanian*, M.R., Amooie*, M.A., Cole, D.R., Graham, D., Pfiffner, S., Phelps, T., and Moortgat, J., “Transport of Perfluorocarbon Tracers in the Cranfield Geological Carbon Sequestration Project”, Greenhouse Gases, Science and Technology (2018), 8(4), 650–671. doi:10.1002/ghg.1786.
    [html]
  14. Dai, Z., Zhang, Y, Stauffer, P.H., Bielicki, J.M., Amooie*, M.A., Zhang, M. Yang, C., Zou, Y., Ampomah, W., Xiao, T., Jia, W., Middleton, R.S., Zhang, W., Sun, Y., Moortgat, J., and Soltanian*, M.R., “Heterogeneity-assisted carbon dioxide storage in marine sediments”, Applied Energy (2018), 225, 876–883. doi:10.1016/j.apenergy.2018.05.038.
    [html] [pdf]
  15. Amooie*, M.A. and Moortgat, J., “Higher-Order Black-Oil and Compositional Modeling of Multiphase Compressible Flow in Porous Media”, International Journal of Multiphase Flow (2018), 105, 45–59. doi:10.1016/j.ijmultiphaseflow.2018.03.016
    [html]
  16. Moortgat, J., “Reservoir Simulation with the Cubic Plus (Cross-) Association Equation of State for Water, CO2, Hydrocarbons, and Tracers”, Advances in Water Resources (2018), 114(C), 29-44. doi:10.1016/j.advwatres.2018.02.004
    [html]
  17. Li, C., Moortgat, J, and Shen, H.-W., “An Automatic Deformation Approach for Occlusion Free Egocentric Data Exploration”, IEEE Pacific Visualization Symposium (PacificVis) (2018), Kobe, 2018, 215–224.. doi:10.1109/PacificVis.2018.00035.
    [html]
  18. Eymold*, W.K., Miller, J.A., Swana, K., Murray, R., Moore, M.T., Whyte, C.J., Harkness, J.S., Moortgat, J., Vengosh, A., Darrah, T.H., “The Water and Gas Geochemistry of Hydrocarbon-rich Seeps from the Karoo Basin”, Groundwater (2018), 56(2). doi:10.1111/gwat.12637
    [pdf] [html]
  19. Gao, F., Song, Y., Li, Z., Xiong*, F., Chen, L., Zhang, X., Chen, Z., and Moortgat, J., “Quantitative characterization of pore connectivity using NMR and MIP: A case study of the Wangyinpu and Guanyintang Shales in the Xiuwu Basin, Southern China”, International Journal of Coal Geology (2018), 197, 53–65. doi:10.1016/j.coal.2018.07.007.
    [html]
  20. Soltanian*, M.R., Dai, Z., Yang, C., Amooie*, M.A., Moortgat, J., “Multicomponent Competitive Monovalent Cation Exchange in Hierarchical Porous Media with Multimodal Reactive Mineral Facies”. Stochastic Environmental Research and Risk Assessment (2018), 32(1), 295–310. doi:10.1007/s00477-017-1379-y.
    [pdf] [html]
  21. Moortgat, J., Schwartz, F., and Darrah, T.H., “Numerical Modeling of Methane Leakage in Fractured Tight Formations”, Groundwater (2018), 56(2). doi:10.1111/gwat.12630.
    [pdf] [html]
  22. Soltanian*, M.R., Amooie*, M.A., Cole, D.R., Darrah, T.H., Graham, D., Pfiffner, S., Phelps, T., and Moortgat, J., “Impacts of Methane on Carbon Dioxide Storage in Brine Formations”, Groundwater (2018), 56(2). doi:10.1111/gwat.12633.
    [pdf] [html]

    2017

  23. Amooie*, M.A., Soltanian*, M.R., Xiong*, F., Dai, Z., Moortgat, J., “Mixing and Spreading of Multiphase Fluids in Heterogeneous Bimodal Porous Media”, Geomechanics and Geophysics for Geo-Energy and Geo-Resources (2017), 3(3), 225–244. doi:10.1007/s40948-017-0060-8.
    [pdf] [html]
  24. Xiong*, F. Wang, X., Jiang, Z., Amooie*, M.A., Soltanian*, M.R., and Moortgat, J., “The Shale Gas Sorption Capacity of Transitional Shales in the Ordos Basin, NW China”, Fuel (2017), 208, 236–246. doi:10.1016/j.fuel.2017.07.030.
    [html]
  25. Soltanian*, M.R., Amooie*, M.A., Gershenzon, N., Dai, Z., Ritzi, R., Xiong* F., Cole, D.R., and Moortgat, J., “Dissolution Trapping of Carbon Dioxide in Heterogeneous Aquifers”, Environmental Science and Technology (2017), 51(13), 7732–7741. doi:10.1021/acs.est.7b01540.
    [pdf] [html]
  26. Xiong*, F., Li, P, Wang, X, Bi, H, Li, Y, Wang, Z., Amooie*, M.A., Soltanian*, M.R., Moortgat, J., “Pore Structure of Transitional Shales in the Ordos Basin, NW China: Effects of Composition on Gas Storage Capacity”, Fuel (2017), 206, 504–515. doi:10.1016/j.fuel.2017.05.083.
    [html]

  27. Amooie*, M.A., Soltanian*, M.R., Moortgat, J., “Hydro-Thermodynamic Mixing of Fluids Across Phases in Porous Media”. Geophysical Research Letters (2017), 44(8), 3624-3634. doi:10.1002/2016GL072491. (cover article)
    [pdf poster] [html]
  28. Moortgat, J., “Adaptive Implicit Finite Element Methods for Multicomponent Compressible Flow in Heterogeneous and Fractured Porous Media”, Water Resources Research, (2017), 53(1), 73-92, doi:10.1002/2016WR019644.
    [pdf] [html]
  29. Moortgat, J. and Firoozabadi, A.: “Water Coning, Water and CO2 Injection in Heavy Oil Fractured Reservoirs,” Society of Petroleum Engineering, Reservoir Evaluation & Engineering – Formation Evaluation (2017), SPE-183648-PA, 20(1), 168-183. doi:10.2118/183648-PA.
    [pdf] [html]

    2016

  30. Soltanian* M.R., Amooie*, M.A., Dai, Z., Cole, D., and Moortgat, J., “Critical Dynamics of Gravito-Convective Mixing in Geological Carbon Sequestration”. Scientific Reports (2016), 6, 35921.
    [pdf] [html]
  31. Soltanian* M.R., Amooie*, M.A., Cole, D.R., Graham, D.E., Hosseini, S.A., Hovorka, S., Pfiffner, S.M., Phelps, T.J., Moortgat, J., “Simulating the Cranfield Geological Carbon Sequestration Project with High-Resolution Static Models and an Accurate Equation of State” International Journal of Greenhouse Gas Control (2016), 54, Part 1, 282–296, doi:10.1016/j.ijggc.2016.10.002.
    [pdf] [bibtex] [endnote] [html]

  32. Moortgat, J., Amooie*, M.A. and Soltanian* M.R.: “Implicit Finite Volume and Discontinuous Galerkin Methods for Multicomponent Flow in Unstructured 3D Fractured Porous Media,” Advances in Water Resources (2016), 96, 389–404, doi:10.1016/j.advwatres.2016.08.007.
    [pdf] [bibtex] [endnote] [html]

  33. Moortgat, J. and Firoozabadi, A.: “Mixed-Hybrid and Vertex-Discontinuous-Galerkin Finite Element Modeling of Multiphase Compositional Flow on 3D Unstructured Grids,” Journal of Computational Physics (2016), 315, 476–500, doi:10.1016/j.jcp.2016.03.054.
    [pdf] [bibtex] [endnote] [html]

  34. Moortgat, J.: “Viscous and Gravitational Fingering in Multiphase Compositional and Compressible Flow,” Advances Water Resources (2016), 89, 53-66, doi:10.1016/j.advwatres.2016.01.002
    [pdf] [bibtex] [endnote] [html]

  35. Nasrabadi, H., Moortgat, J., and Firoozabadi, A.: “A New Three-Phase Multicomponent Compositional Model for Asphaltene Precipitation during CO2 Injection Using CPA-EOS,” Energy & Fuels (2016), 30(4), 3306–3319, doi:10.1021/acs.energyfuels.5b02944.
    [pdf] [bibtex] [endnote] [html]


    2015

  36. Shahraeeni, E., Moortgat, J., and Firoozabadi, A.: “High Resolution Finite Element Methods for 3D Simulation of Compositionally Triggered Instabilities in Porous Media,” Computational Geosciences (2015), 19(4), 899-920, dio:10.1007/s10596-015-9501-z.
    [pdf] [bibtex] [endnote] [html]


    2013

  37. Moortgat, J., and Firoozabadi, A.: “Fickian Diffusion in Discrete-Fractured Media from Chemical Potential Gradients and Comparison to Experiment,” Energy & Fuels (2013), 27(10), 5793–5805, doi:10.1021/ef401141q.
    [pdf] [bibtex] [endnote] [html]

  38. Moortgat, J., and Firoozabadi, A.: “Higher-Order Compositional Modeling of Three-phase Flow in Fractured Porous Media Based on Cross-flow Equilibrium,” Journal of Computational Physics (2013), 250, 425-445, doi:10.1016/j.jcp.2013.05.009.
    [pdf] [bibtex] [endnote] [html]

  39. Moortgat, J., and Firoozabadi, A.: “Three-Phase Compositional Modeling with Capillarity in Heterogeneous and Fractured Media,” Society of Petroleum Engineering Journal (2013), 18(6), 1150-1168, doi:10.2118/159777-PA.
    [pdf] [bibtex] [endnote] [html]

  40. Moortgat, J., Firoozabadi, A., Li, Z. and Esposito, R.: “CO2 Injection in Vertical and Horizontal Cores: Measurements and Numerical Simulation,” Society of Petroleum Engineering Journal (2013), 18(2), 331-344, doi:10.2118/135563-PA.
    Awarded SPE’s 2014 Cedric K. Ferguson Medal.
    [pdf] [bibtex] [endnote] [html]


    2012

  41. Moortgat, J., Li, Z., and Firoozabadi, A.: “Three-Phase Compositional Modeling of CO2 Injection by Higher-Order Finite Element Methods with CPA Equation of State for Aqueous Phase,” Water Resources Research (2012) 48, W12511, doi:10.1029/2011WR011736.
    [pdf] [bibtex] [endnote] [html]

  42. Laitin, D., Moortgat, J., and Robinson, AL: “Geographic Axes and the Persistence of Cultural Diversity,” Proceedings of the National Academy of Sciences (2012) 109, 10263-10268.
    [pdf] [bibtex] [endnote] [html]


    2011

  43. Moortgat, J., Sun, S., and Firoozabadi, A.: “Compositional Modeling of Three-Phase Flow with Gravity using Higher-Order Finite Element Methods,” Water Resources Research (2011) 47, W05511, doi:10.1029/2010WR009801.
    [pdf] [bibtex] [endnote] [html]


    2010

  44. Moortgat, J., and Firoozabadi, A.: “Higher-Order Compositional Modeling with Fickian Diffusion in Unstructured and Anisotropic Media,” Advances in Water Resources (2010) 33, 951-968, doi:10.1016/j.advwatres.2010.04.012.
    [pdf] [bibtex] [endnote] [html]


    2006

  45. Forsberg, M., Brodin, G., Marklund, M., Shukla, PK, and Moortgat, J.: “Nonlinear Interactions between Gravitational Radiation and Modified Alfven Modes in Astrophysical Dusty Plasmas,” Physical Review D (2006) 74, 064014.
    [pdf] [bibtex] [endnote] [html]

  46. Moortgat, J. and Marklund, M.: “Scalar Perturbations in Two-Temperature Cosmological Plasmas,” Monthly Notices of the Royal Astronomical Society (2006) 369(4), 1813–1821, doi:10.1111/j.1365-2966.2006.10419.x
    [pdf] [bibtex] [endnote] [html]

  47. Moortgat, J. and Kuijpers, J.: “Scattering of Magnetosonic Waves in a Relativistic and Anisotropic Magnetized Plasma,” Monthly Notices of the Royal Astronomical Society (2006) 368(3), 1110–1122, doi:10.1111/j.1365-2966.2006.10189.x
    [pdf] [bibtex] [endnote] [html]

  48. Moortgat, J.: “General Relativistic Plasma Dynamics,” PhD Thesis (2006).
    [pdf] [bibtex] [endnote] [html]


    2006

  49. Moortgat J., Kuijpers J.: “Gravitational Wave Interactions with Magnetized Plasmas” (2005). In: Baykal A., Yerli S.K., Inam S.C., Grebenev S. (eds) The Electromagnetic Spectrum of Neutron Stars. NATO Science Series II. Mathematics, Physics and Chemistry, vol 210. Springer, Dordrecht. doi:10.1007/1-4020-3861-5_10.

    2004

  50. Moortgat, J. and Kuijpers, J.: “Gravitational Waves in Magnetized Relativistic Plasmas,” Physical Review D (2004) 70(2), 023001, doi:10.1103/PhysRevD.70.023001
    [pdf] [bibtex] [endnote] [html]


    2003

  51. Moortgat, J. and Kuijpers, J.: “Gravitational and Magnetosonic Waves in Gamma-Ray Bursts,” Astronomy and Astrophysics (2003) 402(3), 905-911, doi:10.1051/0004-6361:20030271
    [pdf] [bibtex] [endnote] [html]

    You can also have a look at google scholar and (less comprehensive) Research ID.