True and False Unicorns: Simulated Rates of Dark Massive Companions to Bright Stars

Andrew Miller

Ohio State University Spring Undergraduate Research Festival 2023

Advisors: Alexander Stephan and David Martin

What do we mean by a "unicorn?"

- ▶ V723 Monocerotis
- Black hole discovered: Jayasinghe et al. (2021)
- ▶ Black hole disproven: El-Badry et al. (2022)

Building the Model

Kroupa et al. (1993)

Hosek et al. (2019)

COSMIC: Breivik et al. (2020)

Image: NASA/ESA HST

Limiting Criteria

- Dark companion
 - > 1.45 M_{sun}
- ► Bright star
 - < 10.0 M_{sun}
- ▶ Period:
 - 5 < p < 100 days

True Unicorns	False Positives
Neutron Star/Main	Red Giant/Main
Sequence	Sequence
Neutron Star/Red	Red Giant/Red
Giant	Giant
Neutron	Naked Helium
Star/Naked	Star/Main
Helium Star	Sequence
Black Hole/Main	Naked Helium
Sequence	Star/Red Giant
Black Hole/Red Giant	
Black Hole/Naked Helium Star	

Results: Kroupa IMF (Kroupa et al. 1993)

Criteria #1 (Dark object more massive)

Criteria #2 (Dark object more or less massive)

Conclusions:

- Our models help show the likelihood that the dark object in a binary pair is a black hole or neutron star
- Compact objects are more likely if:
 - ▶ Bright star is older than 2 billion years (Gyrs)
 - ▶ Bright star is on the main sequence
 - ► Stars are formed under a top-heavy IMF (metallicity may affect this)