

The Science

- Roche Lobe Overflow: Tight orbits (<10 au).
 Gas accretes onto the smaller star
- Common Envelope: Very tight orbits (<1 au).
 Smaller star orbits inside atmosphere of the larger star
- Two Outcomes:
 - Merger between smaller star and red giant core
 - **2. Envelope ejected.** Two stellar remnants remain.

Image: https://scienceatyourdoorstep.files.wordpress.com/2020/12/image-37.jpeg?w=277

The Model

- 1. Model Probability Density Functions for primary mass, mass ratio, period, and eccentricity (Duquennoy & Mayor, 1991; Hurley et al. 2002)
- 2. Draw random samples to create a population
- 3. Evolve the population with COSMIC

The Target

The Arches Cluster has a "top-heavy" initial mass function (Hosek et al. 2019)

Can compare to standard Kroupa IMF

Image: NASA/ESA HST

- Quenching: Stellar winds drive away gas around high-mass stars (Wang et al. 2021).
- Results in fewer tightly-orbiting binaries.

Image: NASA/ESA/CSA JWST

The Results

- Arches cluster shows a higher number of stellar remnant pairs than the Kroupa initial mass function.
- Need to increase sample size to find remnant mergers
- Next Steps: Build larger models, find locations that generate lots of gravitational wave detections

Stellar Remanant Pairs at 13 Gyr: Kroupa IMF

Stellar Remanant Pairs at 13 Gyr: Arches IMF

