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Abstract

This paper derives the limit distribution of the rescaled sum of the reciprocal of the
positive part of a random walk with continuously distributed innovations, and of the
rescaled sum of the reciprocal of the absolute value of a random walk with continuously
distributed innovations. It also considers this statistic for the case of a simple random
walk, and shows that the limit distribution is different for this case.

1 Introduction

This paper establishes the asymptotic distribution for the rescaled sum of the reciprocal of
the positive part and of the absolute value of the random walk. More precisely, it establishes
under regularity conditions for a random walk process xt with i.i.d. increments εt starting
at x0 = 0 the limit distribution for

An = σn−1/2(log(n))−1
n∑
t=1

x−1t I(xt > 0)

and

Bn = σn−1/2(log(n))−1
n∑
t=1

|xt|−1I(xt 6= 0)
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where Eεt = 0 and σ2 = Eε2t ∈ (0,∞). Throughout this paper, we assume that n ≥ 2 in
order to make divisions by log(n) be well-defined. This result is related to various results
in the literature. First, it is well-known that the continuous mapping theorem ensures con-
vergence in distribution of objects of the form n−1

∑n
t=1 f(n−1/2xt) for integrated processes

xt such that n−1/2x[rn] satisfies an invariance principle and functions f : R → R that are
continuous on R. Results of this type can be extended to classes of functions that are not
continuous, such as functions with a finite number of discontinuities; this is undertaken in
for example Park and Phillips (1999). For functions f(.) that are locally integrable, de Jong
(2004) and Pötscher (2004) show that this type of asymptotics is also still valid. However,
the pole at 0 in the reciprocal poses issues that cannot be resolved along these lines.

The results of this paper are also related to convergence in distribution results for objects
of the form an

∑n
t=1 f(xt), where no rescaling of xt with n−1/2 has taken place. Results for ob-

jects of this form can be found in Borodin and Ibragimov (1995) and Park and Phillips (1999)
for asymptotically homogeneous, periodic and integrable functions, and de Jong (2010) for
the exponential function. Qu and de Jong (2012) consider the exponential of the random
walk with drift. De Jong and Wang (2005) considered negative powers smaller than -1 of
the unit root process and a “clipping device”, viz., the values of the unit root process in a
neighborhood of zero is removed from the statistic.

The main inspiration however for this paper is Pötscher (2013), who established the order
of magnitude Op(n

α/2) for objects of the form
∑n

t=1 |xt|−α and
∑n

t=1 x
−α
t I(xt > 0) for α > 1,

and the order of magnitude Op(n
1/2 log(n)) for

∑n
t=1 x

−1
t I(xt > 0) and

∑n
t=1 |xt|−1I(xt > 0).

This paper seeks to establish the limit distribution for the last two statistics for the random
walk case.

One important limitation of our result is that for analytical reasons, it can only deal with
the case of i.i.d. increments ∆xt, and therefore (unlike the results of Pötscher (2013)) it does
not address the more general case of a unit root process with weakly dependent increments
∆xt. However, since our computer simulations indicate that extremely large sample sizes
are needed to approximate the limit distributions found in Theorem 1 and 2 (below), such
a result would likely not be of much practical value anyway.

2 Assumptions and main results

The maintained assumption in this paper is the following:

Assumption 1. x0 = 0, and ∆xt = εt, t = 1, 2, ..., where εt, t = 1, 2, ... is an i.i.d. sequence
of random variables such that σ2 = Eε2t > 0 and E|εt|p < ∞ for some p > 2. There exists
a β > 1 such that the characteristic function φ(r) = E exp(irεt) satisfies limr→∞ r

βφ(r) =
0. The density h(.) of εt possesses a derivative h′(.) that is continuous on R and satifies
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∫∞
−∞ supz∈[0,η] |h′(z− x)|dx <∞ for some η > 0. In addition, h(.) ≤ R(x) for some function
R(.) that is integrable, continuous on R, and monotone on (0,∞) and (−∞, 0).

The condition limr→∞ r
βφ(r) = 0 for some β > 1 is not uncommon in the literature. It

implies that the density ft(.) of t−1/2xt satisfies F = supt≥1,y∈R ft(y) <∞; see the discussion
in Pötscher (2013). It may be possible to obtain results under the condition β > 0 rather
than β > 1, which implies that t−1/2xt has a bounded density uniformly over t ≥ M , for
some M > 0 following the approach outlined in Pötscher (2013); however, we will not pursue
that here. The condition

∫∞
−∞ supz∈[0,η] |h′(z − x)|dx < ∞ is nonstandard. This condition

on h′(.) will be satisfied if for some nonincreasing function Q : [0,∞)→ R, |h′(x)| ≤ Q(|x|)
and

∫∞
0
Q(x)dx < ∞. For the standard normal density function, this condition holds for

Q(x) = φ(1)I(0 ≤ x ≤ 1) + xφ(x)I(x > 1). Under Assumption 1, the conditions of Lemma
1 of page 64 of Akonom (1993) and the conditions of the strong approximation result of
Lemma 2.3(b) of page 271 of Park and Phillips (1999) are satisfied, and both results will be
used in the proof.

The main result of this note is the following.

Theorem 1. Under Assumption 1, An
d−→ |Z| and Bn

d−→ 2|Z|, where Z ∼ N(0, 1).

The proofs of the results of this paper are gathered in the Mathematical Appendix. The
strategy of the proof of Theorem 1 is to write, setting σ = 1 for clarity of exposition,

An = n−1/2(log(n))−1
n∑
t=1

x−1t I(0 < xt < δn−1/2)

+n−1/2(log(n))−1
n∑
t=1

x−1t I(δn−1/2 ≤ xt ≤ η)

+n−1/2(log(n))−1
n∑
t=1

x−1t I(η < xt ≤ η[nφ])

+n−1/2(log(n))−1
n∑
t=1

x−1t I(η[nφ] < xt), (1)

where η is the positive constant of Assumption 1, δ is chosen arbitrarily small, and φ is
a constant inside the (1/p, 1/2) interval. For Bn, a similar reasoning applies by writing
out the summation into 8 instead of 4 terms. Here and below, we define the indicator
function of an empty set to equal 0. Under Assumption 1, the first term is asymptotically
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unimportant, while the other three terms converge in distribution; the second term converges
in distribution to (1/2)|Z|, the third to φ|Z|, and the fourth to (1/2 − φ)|Z|. The result
then follows by observing that the convergence of the three terms is joint and towards
((1/2)|Z|, φ|Z|, (1/2− φ)|Z|). Also note that the i.i.d. assumption is needed in the proof of
convergence in distribution for the second term only.

Remark. The line of proof used here in its current form does not seem to be capable
of generating a result for scaled versions of

∑n
t=1 |xt|−α or

∑n
t=1 x

−α
t I(xt > 0) for α > 1.

For the case α = 2 for example, the result of Lemma 2 can be replaced by the inequality
Ex−4t I(δn−1/2 ≤ xt) ≤ Cδt

−1/2n3/2, implying that proof of Lemma 3 will lead, mutatis
mutandis, to the observation that

E(
n∑
t=2

ynt)
2 = O(n2).

Therefore, an analogue of the result of Lemma 3 can only possibly go through if we are
seeking to show convergence in distribution for an object rn

∑n
t=1 x

−2
t if nrn → 0. However,

such an object necessarily converges to 0 in probability, since Pötscher (2013) shows that
n−1

∑n
t=1 x

−2
t = Op(1).

The continuity of the distribution of εt is among the maintained assumptions in Assumption
1. The case of discrete distributions of εt requires an alternative proof, for simplicity we
consider only the case of a simple random walk.

Theorem 2. Assume that x0 = 0, ∆xt = εt, and εt, t = 1, ..., is an i.i.d. sequence of

random variables such that P (εt = 1) = P (εt = −1) = 1/2. Then An
d−→ (1/2)|Z| and

Bn
d−→ |Z|, where Z ∼ N(0, 1).

A surprising aspect of Theorem 2 is that the limit distribution is (1/2)|Z| instead of |Z|,
as was the case of a continuous distribution for εt. This appears to happen because the
second term in Equation (1) equals 0 a.s. for the simple random walk case, while for the
continuous case, this term contributed (1/2)|Z| to the limit distribution.

For the case of simple random walks and integrable functions f(·) the general case is well

understood in the literature, see Dobrushin (1955). There it is shown that n−1/2
∑n

t=1 f(xt)
d→∑

k∈Z f(k)|Z|. This result, again, contrasts with the case where εt has a continuous distri-
bution since, as in the earlier remark, the limit distribution for

∑n
t=1 |xt|−α with α > 1 is

unknown.
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Lemma 1. If F = supt≥1,y∈R ft(y) <∞, then

lim
δ↓0

lim sup
n→∞

P (n−1/2(log(n))−1
n∑
t=1

x−1t I(0 < xt < δn−1/2) 6= 0) = 0.

Proof. This result follows because

lim
δ↓0

lim sup
n→∞

P (n−1/2(log(n))−1
n∑
t=1

x−1t I(0 < xt < δn−1/2) 6= 0)

≤ lim
δ↓0

lim sup
n→∞

P (∃t ∈ {1, ..., n} : 0 < xtt
−1/2 ≤ δn−1/2t−1/2)

≤ lim
δ↓0

lim sup
n→∞

n∑
t=1

P (0 < xtt
−1/2 ≤ δn−1/2t−1/2)

≤ lim
δ↓0

lim sup
n→∞

n∑
t=1

∫ δn−1/2t−1/2

0

ft(y)dy

≤ lim
δ↓0

lim sup
n→∞

F
n∑
t=1

δn−1/2t−1/2 = 0.

Lemma 2. If F <∞, then there exists a constant Cδ > 0 such that

E|xt|−2I(δn−1/2 ≤ xt) ≤ Cδt
−1/2n1/2.

Proof. This follows because

E|xt|−2I(δn−1/2 ≤ xt) = t−1E|t−1/2xt|−2I(δn−1/2t−1/2 ≤ t−1/2xt)

= t−1
∫ ∞
δn−1/2t−1/2

y−2ft(y)dy

≤ t−1F

∫ ∞
δn−1/2t−1/2

y−2dy

= t−1(δn−1/2t−1/2)−1F

≤ Cδt
−1/2n1/2.
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Lemma 3. Let Ωt = σ({ε1, ε2, . . . , εt}). Then if F <∞,

n−1/2(log(n))−1
n∑
t=1

x−1t I(δn−1/2 ≤ xt ≤ η)

= op(1) + n−1/2(log(n))−1
n∑
t=2

E(x−1t I(δn−1/2 ≤ xt ≤ η)|Ωt−1).

Proof. The difference between both statistics equals

n−1/2(log(n))−1x−11 I(δn−1/2 ≤ x1 ≤ η) + n−1/2(log(n))−1
n∑
t=2

ynt

where

ynt = x−1t I(δn−1/2 ≤ xt ≤ η)− E(x−1t I(δn−1/2 ≤ xt ≤ η)|Ωt−1),

and this ynt is a martingale difference array. Obviously n−1/2(log(n))−1x−11 I(δn−1/2 ≤ x1 ≤
η) = op(1), while by Lemma 2,

E(
n∑
t=2

ynt)
2 =

n∑
t=2

Ey2nt ≤
n∑
t=2

E|xt|−2I(δn−1/2 ≤ xt)

≤ Cδ

n∑
t=1

t−1/2n1/2 = O(n).

The above implies that

E(n−1/2(log(n))−1
n∑
t=2

ynt)
2 = O((log(n))−2) = o(1),

which establishes the result.

Lemma 4. If F < ∞, h′(.) is continuous on R, and
∫∞
−∞ supz∈[0,η] |h′(z − x)|dx < ∞, we

have

n−1/2(log(n))−1
n∑
t=2

∫ η

δn−1/2

z−1h(z − xt−1)dz = op(1) + (1/2)n−1/2
n∑
t=2

h(−xt−1).
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Proof. We have, for all η > 0,

|
∫ η

δn−1/2

z−1(h(z − x)− h(−x))dz|

≤
∫ η

δn−1/2

z−1z sup
y∈[0,η]

|h′(y − x)|dz

≤ η sup
y∈[0,η]

|h′(y − x)|.

Therefore

E|n−1/2(log(n))−1
n∑
t=2

∫ η

δn−1/2

z−1h(z−xt−1)dz−(log(n))−1
∫ η

δn−1/2

z−1dzn−1/2
n∑
t=2

h(−xt−1)|

≤ ηn−1/2(log(n))−1
n∑
t=1

E sup
z∈[0,η]

|h′(z − xt)|

= ηn−1/2(log(n))−1
n∑
t=1

∫ ∞
−∞

sup
z∈[0,η]

|h′(z − t1/2x)|ft(x)dx

≤ ηn−1/2(log(n))−1
n∑
t=1

t−1/2F

∫ ∞
−∞

sup
z∈[0,η]

|h′(z − x)|dx

= O((log(n))−1)

by assumption. Also, (log(n))−1
∫ η
δn−1/2 z

−1dz → 1/2, and this observation completes the
proof of the lemma.

Lemma 5. Under Assumption 1,

n−1/2(log(n))−1
n∑
t=1

x−1t I(δn−1/2 ≤ xt ≤ η) = op(1) + (1/2)n−1/2
n∑
t=2

h(−xt−1)|.

Proof. By Lemma 3, we have

n−1/2(log(n))−1
n∑
t=1

x−1t I(δn−1/2 ≤ xt ≤ η)
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= op(1) + n−1/2(log(n))−1
n∑
t=2

E(x−1t I(δn−1/2 ≤ xt ≤ η)|Ωt−1).

Now using the i.i.d. property of εt, we have

n−1/2(log(n))−1
n∑
t=2

E(x−1t I(δn−1/2 ≤ xt ≤ η)|Ωt−1)

= n−1/2(log(n))−1
n∑
t=2

∫ ∞
−∞

(y + xt−1)
−1I(δn−1/2 ≤ y + xt−1 ≤ η)h(y)dy

= n−1/2(log(n))−1
n∑
t=2

∫ η

δn−1/2

z−1h(z − xt−1)dz.

Now by Lemma 4, the result follows.

Lemma 6. If F <∞,

n−1/2(log(n))−1
n∑
t=1

x−1t I(η ≤ xt ≤ η[nφ])

= op(1) + (log(n))−1
[nφ]∑
j=2

(jη)−1n−1/2
n∑
t=1

I((j − 1)η ≤ xt ≤ jη).

Proof. This follows because

n−1/2(log(n))−1
n∑
t=1

x−1t I(η ≤ xt ≤ η[nφ]) ≥ (log(n))−1
[nφ]∑
j=2

(jη)−1n−1/2
n∑
t=1

I((j−1)η ≤ xt ≤ jη)

and

n−1/2(log(n))−1
n∑
t=1

x−1t I(η ≤ xt ≤ η[nφ]) ≤ (log(n))−1
[nφ]∑
j=2

((j−1)η)−1n−1/2
n∑
t=1

I((j−1)η ≤ xt ≤ jη)
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and the expectation of the absolute value of the difference between the upper and lower
bound is bounded by

(log(n))−1
[nφ]∑
j=2

η−1(j(j − 1))−1n−1/2
n∑
t=1

EI((j − 1)η ≤ xt ≤ jη)

≤ (log(n))−1
[nφ]∑
j=2

η−1(j(j − 1))−1n−1/2
n∑
t=1

ηt−1/2F = O((log(n))−1).

Lemma 7. For 0 < φ < 1/2, under the conditions of Akonom’s (1993) Lemma 1 of page 64
(which are fulfilled under assumption 1),

(log(n))−1
[nφ]∑
j=2

(jη)−1n−1/2
n∑
t=1

I((j − 1)η ≤ xt ≤ jη)

= op(1) + (log(n))−1
[nφ]∑
j=2

(jη)−1n−1/2
n∑
t=1

I(0 ≤ xt ≤ η).

Proof. Note that, by the norm inequality,

αn ≡ E|(log(n))−1
[nφ]∑
j=2

(jη)−1n−1/2
n∑
t=1

I((j − 1)η ≤ xt ≤ jη)

−(log(n))−1
[nφ]∑
j=2

(jη)−1n−1/2
n∑
t=1

I(0 ≤ xt ≤ η)|

≤ (log(n))−1
[nφ]∑
j=2

(jη)−1n−1/2(E|
n∑
t=1

I((j − 1)η ≤ xt ≤ jη)− I(0 ≤ xt ≤ η)|2)1/2

and by applying Lemma 1 on page 64 of Akonom (1993), it follows by setting Akonom’s
(r, a, δ, k) to (1, 0, η, j − 1) that for η ≥ n−1/2 and j ≥ 2,

E|
n∑
t=1

I((j − 1)η ≤ xt ≤ jη)− I(0 ≤ xt ≤ η)|2 ≤ Cηn1/2(1 + (j − 1)η2 log(n)),
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and therefore

αn ≤ (log(n))−1
[nφ]∑
j=2

(jη)−1n−1/2(Cηn1/2(1 + (j − 1)η2 log(n)))1/2

= O(n−1/4) +O((log(n))−1/2nφ/2−1/4) = o(1).

Collecting results and observing that for all η > 0,

(log(n))−1
[nφ]∑
j=2

(jη)−1 → φη−1,

we now have

Lemma 8. Under Assumption 1, for any φ ∈ (0, 1/2),

n−1/2(log(n))−1
n∑
t=1

x−1t I(η ≤ xt ≤ η[nφ]) = op(1) + φη−1n−1/2
n∑
t=1

I(0 ≤ xt ≤ η).

Proof. This now follows directly from Lemma 6 and 7.

Proof of Theorem 1. It suffices to show the result forAn. We first note that if limδ↓0 lim supn→∞ P (Yn 6=
Xnδ) = 0 and Xnδ

d−→ Y for all δ > 0, then Yn
d−→ Y . This is because

lim sup
n→∞

|E exp(irYn)− E exp(irY )|

= lim sup
δ↓0

lim sup
n→∞

|E exp(irYn)− E exp(irY )|

≤ lim sup
δ↓0

lim sup
n→∞

|E exp(irYn)−E exp(irXnδ)|+lim sup
δ↓0

lim sup
n→∞

|E exp(irY )−E exp(irXnδ)|.

The second term is 0 because Xnδ
d−→ Y by assumption, while

lim
δ↓0

lim sup
n→∞

|E exp(irYn)− E exp(irXnδ)|

≤ lim
δ↓0

lim sup
n→∞

P (Yn 6= Xnδ) = 0
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by assumption. Write

Yn = n−1/2(log(n))−1
n∑
t=1

x−1t I(xt > 0)

= n−1/2(log(n))−1
n∑
t=1

x−1t I(0 < xt < δn−1/2)

+n−1/2(log(n))−1
n∑
t=1

x−1t I(δn−1/2 ≤ xt ≤ η)

+n−1/2(log(n))−1
n∑
t=1

x−1t I(η < xt ≤ η[nφ])

+n−1/2(log(n))−1
n∑
t=1

x−1t I(η[nφ] < xt),

and set

Xnδ = Yn − n−1/2(log(n))−1
n∑
t=1

x−1t I(0 < xt < δn−1/2).

Then from Lemma 1 it follows that

lim
δ↓0

lim sup
n→∞

P (Yn 6= Xnδ) = 0,

implying that it now suffices to show that for all δ > 0, Xnδ
d−→ Y . To show this, note that

from Lemma 5 and 8, it follows that

Xnδ = op(1) + (1/2)n−1/2
n∑
t=2

h(−xt−1)

+φη−1n−1/2
n∑
t=1

I(0 ≤ xt ≤ η) + n−1/2(log(n))−1
n∑
t=1

x−1t I(η[nφ] < xt).

Since h(·) and η−1I(0 ≤ · ≤ η) integrate to 1, it now follows from Theorem 2 of de Jong and
Wang (2005) that under Assumption 1, letting L(t, s) denote the Brownian local time as in
Park and Phillips (1999),

(1/2)n−1/2
n∑
t=2

h(−xt−1)
d−→ (1/2)L(1, 0) (2)
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and

φη−1n−1/2
n∑
t=1

I(0 ≤ xt ≤ η)
d−→ φL(1, 0). (3)

Note that the second result does not formally follow directly from Theorem 2 of de Jong
and Wang (2005) because I(0 ≤ x ≤ η) is not continuous; however, the result can be
easily shown to follow by using continuous upper and lower approximations to this function.
Defining W 0

n(r) = n−1/2x[rn] for r ∈ [0, 1] it follows from Park and Phillips (1999, Lemma

2.3b) that under Assumption 1, there exist processes Wn(.) and W (.) such that W 0
n

d
= Wn and

supr∈[0,1] |Wn(r) −W (r)| = op(n
−(p−2)/2p). Therefore, noting that for any Borel measurable

function f(.) we have∫ 1

0

f(W 0
n(r + 1/n))dr =

n∑
t=1

∫ t/n

(t−1)/n
f(W 0

n(r + 1/n))dr

= n−1
n∑
t=1

f(W 0
n(t/n)) = n−1

n∑
t=1

f(n−1/2xt),

we have

n−1/2(log(n))−1
n∑
t=1

x−1t I(η[nφ] < xt)

= (log(n))−1n−1
n∑
t=1

(n−1/2xt)
−1I(η[nφ]n−1/2 < n−1/2xt)

= (log(n))−1
∫ 1

0

W 0
n(r + 1/n)−1I(η[nφ]n−1/2 < W 0

n(r + 1/n))dr

d
= (log(n))−1

∫ 1

0

Wn(r + 1/n)−1I(η[nφ]n−1/2 < Wn(r + 1/n))dr. (4)

Also, since supr∈[0,1] |Wn(r)−W (r)| = op(n
−(p−2)/2p) and limn→∞ n

(p−2)/2p supr∈[0,1−1/n] |W (r)−
W (r + 1/n)| = 0 a.s. by Lévy’s global modulus of continuity for Brownian motion (see for
example Karatzas and Shreve (1991), p. 114, Theorem 9.25), with probability approaching
1 as n→∞ we have for every r ∈ [0, 1− 1/n]

lim
n→∞

P (W (r)− n−(p−2)/(2p) ≤ Wn(r+ 1/n) ≤ W (r) + n−(p−2)/(2p) ∀r ∈ [0, 1− 1/n]) = 1.
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Furthermore, note that for all η > 0, setting ψn = (log(n))−1 and choosing φ ∈ (1/p, 1/2),

(log(n))−1
∫ ψn

η[nφ]n−1/2−n−(p−2)/(2p)

(s− n−(p−2)/(2p))−1ds

= (log(n))−1[log(s− n−(p−2)/(2p))]ψnη[nφ]n−1/2−n−(p−2)/(2p) −→ 1/2− φ,

implying that

(log(n))−1
∫ ψn

η[nφ]n−1/2−n−(p−2)/(2p)

(s− n−(p−2)/(2p))−1(L(1, s)− L(1, 0))ds

≤ sup
0≤s≤ψn

|L(1, s)− L(1, 0)|(1/2− φ+ op(1)) = op(1)

and

(log(n))−1
∫ ∞
ψn

(s− n−(p−2)/(2p))−1L(1, s)ds

≤ sup
s∈R

L(1, s)(log(n))−1
∫ supr∈[0,1]W (r)

ψn

(s− n−(p−2)/(2p))−1ds

≤ sup
s∈R

L(1, s)(log(n))−1[log(s− n−(p−2)/(2p))]supr∈[0,1]W (r)

ψn
= op(1).

Therefore, with probability approaching 1, the term from Equation (4) is bounded from
above by

(log(n))−1
∫ 1

0

(W (r)− n−(p−2)/(2p))−1I(η[nφ]n−1/2 < W (r) + n−(p−2)/(2p))dr

= (log(n))−1
∫ ∞
η[nφ]n−1/2−n−(p−2)/(2p)

(s− n−(p−2)/(2p))−1L(1, s)ds

= (log(n))−1L(1, 0)

∫ ψn

η[nφ]n−1/2−n−(p−2)/(2p)

(s− n−(p−2)/(2p))−1ds

+(log(n))−1
∫ ψn

η[nφ]n−1/2−n−(p−2)/(2p)

(s− n−(p−2)/(2p))−1(L(1, s)− L(1, 0))ds

+(log(n))−1
∫ ∞
ψn

(s− n−(p−2)/(2p))−1L(1, s)ds
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= op(1) + (1/2− φ)L(1, 0),

and the same limit result can be obtained for the lower upper bound. Since the proofs of
the results of Equation (2) and (3) rest on an application of a strong approximation similar
to that used for the above proof (see the proof of Theorem 2 of de Jong and Wang (2005)),
the convergence in distribution of the three terms is joint, and to the same random variable

L(1, 0). Therefore, summing up, we now have Xnδ
d−→ L(1, 0), and therefore

Yn = n−1/2(log(n))−1
n∑
t=1

x−1t I(xt > 0)
d−→ L(1, 0).

To conclude the proof, it only remains to show that L(1, 0)
d
= |Z|. According to Akonom

(1993, page 58), for every t and s, the distribution function of L(t, s) is given by

P (L(t, s) ≤ x) = (2Φ(
|s|+ x√

t
)− 1)I(x > 0),

where Φ(.) denotes the standardnormal distribution function. This implies that

P (L(1, 0) ≤ x) = (2Φ(x)− 1)I(x > 0),

implying that L(1, 0)
d
= |Z| where Z is N(0, 1) distributed.

Proof of Theorem 2. We show the result for An; the result for Bn then follows by symmetry.

By Proposition 1 of Revész (1981), there exists x′t and W (r) such that x′t
d
= xt, W (r) is

standard Brownian motion, and supk∈Z |n−1/2
∑n

t=1 I(x′t = k) − L(1, k/
√
n)| a.s.−→ 0, where

L(t, s) is the local time of W (r). We note that

An
d
= A′n = log(n)−1n−1/2

n∑
t=1

x′−1t I(x′t > 0) = log(n)−1n−1/2
∞∑
k=1

k−1
n∑
t=1

I(x′t = k). (5)

We let A′n,δ ≡ log(n)−1n−1/2
∑δ
√
n

k=1 k
−1∑n

t=1 I(x′t = k). We observe that

P (A′n 6= A′n,δ) ≤ P ( max
1≤t≤n

x′t > δ
√
n)→ P ( max

r∈[0,1]
W (r) > δ) as n→∞. (6)

Therefore,

lim
δ→∞

lim sup
n→∞

P (A′n 6= A′n,δ) = 0. (7)
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We will now show that A′n,δ
d−→ (1/2)|Z|, for all δ > 0, which will then imply that A′n

d−→
(1/2)|Z| and therefore An

d−→ (1/2)|Z|. To show this, note that

| log(n)−1
δ
√
n∑

k=1

k−1(n−1/2
n∑
t=1

I(x′t = k)− L(1, k/
√
n))| (8)

≤ log(n)−1
δ
√
n∑

k=1

k−1 sup
k≥1
|n−1/2

n∑
t=1

I(x′t = k)− L(1, k/
√
n)| = op(1). (9)

Therefore,

A′n,δ = log(n)−1
δ
√
n∑

k=1

k−1L(1, k/
√
n) + op(1). (10)

By the dominated convergence theorem we have that

A′n,δ
d−→ L(1, 0) lim

n→∞
log(n)−1

δ
√
n∑

k=1

k−1 = (1/2)L(1, 0)
d
= (1/2)|Z|. (11)

Therefore, the result for An follows.
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