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Abstract

We consider the integer valued GARCH(1,1) process of Rydberg

and Shephard (1999) defined by the two equation system Yn
d∼ Poisson(λn)

and λn+1 = ω + αYn + βλn. When α + β < 1 this process has a sta-
tionary solution and properties are well understood. In this paper we
find the limiting distribution of λn and Yn for the case of α + β = 1.
Using this result, we show some implications for maximum likelihood
estimation and nonstationarity testing.

1 Introduction

The integer-valued GARCH (INGARCH) was first introduced by Rydberg
and Shephard (1999) as a model of count data to study the number of finan-
cial transactions occurring during a small time interval. It was motivated
as a discrete approximation to a continuous time model. The model was
later generalized by Ferland, Latour, and Oraichi (2006). There stationar-
ity properties of the model were shown. In addition, the name INGARCH
was first introduced there and this was motivated by the algebraic simi-
larity between the INGARCH model and the GARCH model of Bollerslev
(1986). Properties of this model, and nonlinear variations, were also studied
in Fokianos, Rahbek, and Tjøstheim (2009). Stationarity and mixing prop-
erties for nonlinear versions were shown in Neumann (2011). Additionally,
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numerous extensions to this model have been studied, a few examples be-
ing Zhu (2011), Wang, Liu, Yao, Davis, and Li (2014), and Fokianos and
Tjøstheim (2009). Further references to this model can also be found in the
review paper Fokianos (2015).

In this paper we only consider the INGARCH(1,1) case, this model is
defined by letting λ0 = ω1 and for n ≥ 0

Yn
d∼ Poisson(λn) (1)

and

λn+1 = ω + αYn + βλn, (2)

for ω, α, and β > 0. In all of the previous literature only the case of α+β < 1
has been considered. In that setting there exists a stationary solution which
is β-mixing (see Neumann (2011) for this most general conditions). We
will consider the case of α + β = 1, here we will show that the process
is nonstationary and we will show that the process (Y[rN ]/N, λ[rN ]/N) ⇒
(V (r), V (r)), where V (r) is a stochastic process which satisfies the stochastic
differential equation dV (t) = ωdt + α

√
V (t)dW (t). To our knowledge, this

stochastic process has not appeared elsewhere in the literature.
This result is in sharp contrast with the integrated GARCH (IGARCH)

model of Engle and Bollerslev (1986) for which it has been shown (see Nel-
son (1990)) that for the case of α + β = 1 the GARCH(1,1) model can
have a stationary solution. This shows that while the GARCH(1,1) and IN-
GARCH(1,1) are similarly behaved when α+ β < 1, they have very distinct
behavior when α + β = 1. The behavior is more akin to that of an AR(1)
process where the model is stationary when the autoregressive parameter
is less than 1 in absolute value, but nonstationary of order

√
N when the

autoregressive parameter is 1 (see, for example, Hamilton (1994) for details).
The techniques used in our proof, to our knowledge, have not appeared

in the econometrics literature. We make use of semigroup methods, such as
those found in Ethier and Kurtz (2009). Analysis of Markov processes by
semigroups was introduced in the seminal papers of Feller (1939), (1951).
These methods are mostly used in the analysis of Markov processes com-
ing from stochastic population dynamics, such as problems relating to the

1Other conventions for λ1 are sometimes chosen. Often λ0 is instead selected so that
the process (Yn, λn) is stationary. For our results we only require that λ1 = OP (1), and
so we will set it to ω for clarity of exposition.
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spread of epidemics or the genetic drift of a population; see Dawson (2017),
for example. Other applications of these techniques have been to Markov
processes that arise from chemical reactions; as an example, the introduc-
tory chapter of Ethier and Kurtz (2009) has an analysis for the Schlögl model
of Schlögl (1972). Numerous other applications exist as well, see Ethier and
Kurtz (2009) for examples.

Of these various applications, the critical Galton-Watson process, in par-
ticular, is most similar to our study of the nonstationary INGARCH(1,1).
The critical Galton-Watson process behaves similarly to an INGARCH(1,0),
or INARCH(1), model with ω = 0. A Galton-Watson process is defined by
the equation

Nn+1 =
Nn∑
j=1

zj,n+1,

where zj,n are i.i.d. integer-valued random variables. The process is described
as “critical” when Ezj,n = 1. In the critical case it can be shown (see Dawson
(2017) or Ethier and Kurtz (2009)) that if N0 = [Nx], for some x > 0 then
N[rN ]/N ⇒ N(r), whereN(0) = x andN(r) satsifies the stochatic differential

equation dN(t) =
√
V ar(zj,n)

√
N(t)dW (t).

Additionally, using our weak convergence result we will consider some
implications for the maximum likelihood estimation of the nonstationary
integer-valued GARCH, nonstationarity testing for count data, and an ap-
plication to count data coming from measles infections. Somewhat surpris-
ingly, we find that the weak convergence result is not sufficient on its own to
characterize the distribution of the maximum likelihood estimator. This is in
contrast to other nonstationary settings, such as the unit root model, where
the limit distribution is the main tool used when analyzing estimation.

2 Limit Distribution

We let (Yn, λn) satisfy equations (1) and (2) with α + β = 1. We then have
the following results. The proof can be found in the appendix.

Theorem 2.1. We let VN(r) = λ[rN ]/N . Then,

VN(r)⇒ V (r),
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where V (0) = 0 and V (r) satisfies the stochastic differential equation dV (r) =
ωdt+ α

√
V (r)dW (r).

This stochastic process is similar to that of the stochastic differential
equation for the Galton-Watson process, except that there is now the addi-
tional drift term ωdt.

In addition, since λn+1 = ω + αYn + βλn we have that

Y[rN ] = α−1(λ[rN ]+1 − βλ[rN ] − ω).

Therefore, Theorem 2.1 along with the fact that α + β = 1 implies the
followng result.

Corollary 2.2. We have that

(Y[rN ]/N, λ[rN ]/N)⇒ (V (r), V (r)),

with V (r) is as in Theorem 2.1.

These results are proven rigorously in the appendix; however, we will
present the following heuristic for them here. We observe that

λn+1 = ω + αYn + βλn = ω + λn + α(Yn − λn)

= ω + (α + β)λn + α
√
λn
Yn − λn√

λn
= ω + λn + α

√
λn
Yn − λn√

λn
.

We let zn = Yn−λn√
λn

, we observe that this is a martingale difference sequence

with conditional variance 1. This implies that 1√
N

∑[rN ]
j=1 zj ⇒ W (r), where

W (r) is a standard Brownian Motion. Therefore,

VN(
n+ 1

N
)− VN(

n

N
) =

ω

N
+ α

√
VN(

n

N
)
zn√
N
.

If we divide by 1/N and take limits this suggests that

dV (t) ≈ ω dt+ α
√
V (t)dW (t).
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A sample path of the process is plotted below using (ω, α, β) = (1, .3, .7)
and N = 500.

3 Estimation

3.1 Maximum Likelihood Estimation

In this section we discuss implications that Theorem 2.1 has upon maxi-
mum likelihood estimation. Throughout we will let θ0 = (ω0, α0, β0) denote
the true parameters and θ = (ω, α, β) denote arbitrary parameters. In the
stationary setting the likelihood function is given by

QN(θ) =
N∑
n=0

[Yn log λn(θ)− λn(θ)− log(Yn!)],

where λn(θ) is such that λ0(θ) = ω and for n ≥ 0 λn+1(θ) = ω+αYn+βλn(θ).
In the stationary setting the maximum likelihood estimator can be shown to
be asymptotically normal with rate

√
N , see Ferland, Latour, and Oraichi

(2006).
In contrast, when α + β = 1 and the model is non-stationary the maxi-

mum likelihood estimation is less straightforward. The main complication is
highlighted in the following Lemma.

Lemma 3.1. For all θ such that θ is in a compact set with α, β ∈ (0, 1) and
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ω > 0 we have that

λ[rN ](θ)/N ⇒
α

1− β
V (r),

where V (r) is as in Theorem 2.1.

This result is surprising for two reasons. First, the value of ω does not
enter into the distribution, Second, for any α + β = 1 we will have that
λ[rN ](θ)/N ⇒ V (r), even if (α, β) 6= (α0, β0). This suggests the conjecture
that maximum likelihood estimation will be able to correctly estimate α+β,
but not each term individually.

We can use Lemma 3.1 to study the behavior of the likelihood function.
We first recall Stirling’s approximation that for k ∈ N we have

log(k!) = k log(k)− k +O(log(k)).

Therefore,

QN(θ) =
N∑
n=0

[Yn log(λn(θ))− λn(θ)− Yn log(Yn) + Yn +O(log(Yn))]

=
N∑
n=0

[Yn log(
λn(θ)

Yn
)− λn(θ) + Yn +O(log(Yn))].

Therefore, Theorem 2.1 and Lemma 3.1 suggest that

N−2QN(θ)⇒ [log(
α

1− β
)− α

1− β
− 1]

∫ 1

0

V (r)dr. (3)

We note that this argument is not fully rigorous as the function log(x/y)
has a pole at x = 0 and is undefined at y = 0. However a proof that fully
addresses this issue is outside the scope of this paper.

Since V (r) ≥ 0 we can see that the above process will be maximized at
α + β = 1. This implies that the maximum likelihood estimate will be such

that α̂ + β̂
P→ 1. This analysis alone does not address the convergence of θ̂

to θ0 or a possible rate. Motivated by later sections the authors conjecture
that α̂+ β̂ will converge to 1 with rate N , however this has not been shown.

We note that the previous Theorem still leaves open the possibility that
the maximum likelihood estimate will still be consistent, since it is possible
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that the scale factor of N−2 hides other higher order behavior of the objective
function.

In addition, we note that this type of behavior is not simply an artifact
of considering the likelihood function instead of the score function. Define
the score function as

SN(θ) =
N∑
n=0

(
Yn
λn(θ)

− 1)∇λn(θ).

Similar to Lemma 3.1 we can show that

N−1∇λ[rN ](θ) = N−1(
∂

∂ω
,
∂

∂α
,
∂

∂β
)λ[rN ](θ)⇒ (0,

1

1− β
V (r),

−α
(1− β)2

V (r)),

and therefore

N−1SN(θ)⇒ (0,

∫ 1

0

(
1− β
α
−1)

1

1− β
V (r)dr,

∫ 1

0

(
1− β
α
−1)

−α
(1− β)2

V (r)dr).

We observe that this process equals 0 for any θ such that α + β = 1.
Further work is needed to find the statistical properties of the maximum

likelihood estimator for the non-stationary integer-valued GARCH process.
This is outside of the scope of our paper and so we do not pursue it. Simula-
tion results suggest that the maximum likelihood estimator is still consistent
for each parameter, however the rate and limit distributions are unclear.

3.2 Least Squares Estimation

As noted by Ferland, Latour, and Oraichi (2006), Yn has the ARMA(1,1)
representation given by

Yn = ω0 + (α0 + β0)Yn−1 + (Yn − λn)− β0(Yn−1 − λn−1)

= ω0 + (α0 + β0)Yn−1 +
√
λnzn − β0

√
λn−1zn−1,

where zi = Yi−λi√
λi

is a martingale difference sequence with conditional variance
1. This representation suggests that the least squares regression of Yn−1 on
Yn may be fruitful for estimating α0 + β0.

We let Ȳ = N−1
∑N

n=0 Yn and define

ρ̂ =

∑N
n=1(Yn − Ȳ )(Yn−1 − Ȳ )∑N

n=1(Yn−1 − Ȳ )2
. (4)
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Then, by Theorem 2.1 we observe that ρ̂
P→

∫ 1
0 (V (r)−

∫ 1
0 V (s)ds)2dr∫ 1

0 (V (r)−
∫ 1
0 V (s)ds)2dr

= 1 = α0+β0.

Additionally, we observe that

ρ̂− 1 =

∑N
n=1(Yn − Yn−1)(Yn−1 − Ȳ )∑N

n=1(Yn−1 − Ȳ )2

=

∑N
n=1(ω0 +

√
λnzn − β0

√
λn−1zn−1)(Yn−1 − Ȳ )∑N

n=1(Yn−1 − Ȳ )2
.

Therefore, using standard techniques analagous to Chan and Wei (1988) one
can show that

N(ρ̂− 1)
d→

(1− β0)
∫ 1

0
(V (r)−

∫ 1

0
V (s)ds)

√
V (r)dW (r)∫ 1

0
(V (r)−

∫ 1

0
V (s)ds)2dr

= α0

∫ 1

0
(V (r)−

∫ 1

0
V (s)ds)

√
V (r)dW (r)∫ 1

0
(V (r)−

∫ 1

0
V (s)ds)2dr

, (5)

where W (r) is the Brownian motion obtained from N−1/2
∑[rN ]

n=0 zn ⇒ W (r).
We note that V (s) and W (s) are, in general, not independent. We however
do not characterize their exact dependence.

This contrasts with the stationary setting where one can see that ρ̂ con-
verges to α0 + β0 with rate

√
N . This is similar to what occurs with the

AR(1) process, where the rate is either
√
N or N depending upon whether

or not the process is stationary.

4 A test of non-stationarity with an applica-

tion

In this section we highlight the use of Theorem 2.1 in determining whether or
not an integer-valued GARCH process is stationary. Our main observation
is that Theorem 2.1 implies that a KPSS test (see Kwiatkowski et al (1992))
will have power against the alternative that α0 + β0 = 1.

In this section we will consider

H0 : α + β < 1
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and

HA : α + β = 1.

We define Ȳ = N−1
∑N

n=0 Yn, Sj =
∑j

n=0(Yn − Ȳ ), and K =
∑N

n=0 S
2
n.

The KPSS test is based off the dichotomous behavior K has under H0 versus
HA.

Under H0 the behavior of this test is standard since it can be seen that
N−1/2

∑[rN ]
n=0 Yn ⇒ σW (r), where W (r) is a standard Brownian motion and σ

is the long-run variance of Yn. This result holds since under H0 Yn was shown
to be strictly stationary and β-mixing by Neumann (2011). Therefore,

N−1S[rN ] ⇒ σ(W (r)− rW (1)),

and so

σ−2N−2K d→
∫ 1

0

(W (r)− r(W (1))2dr.

The critical values for this test statistic can be found in Kwiatkowski et al
(1992). An HAC estimator (see Newey and West (1987)) for σ2 will need to
be used in practice, since the true σ2 is unknown.

Under HA we can use Theorem 2.1 to show that

N−2S[rN ] ⇒
∫ r

0

V (s)ds− rV (1).

Therefore,

N−5K d→
∫ 1

0

(

∫ r

0

V (s)ds− rV (1))2dr.

In addition, Theorem 2.1 also implies that for any HAC estimator of the
long-run variance we will have that σ̂2 = OP (N2) under standard assump-
tions regarding the kernel function and bandwidth. Together these properties
imply that the asymptotic power of a KPSS test against HA will go to 1.

4.1 Application

In this section we look at count data coming from the weekly number of re-
ported measles infections in North Rhine-Westphalia from January 2001 to
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May 2013 (N=646), this data is found in the R package “tscount”, for more
details see Liboschik, Fokianos, and Fried (2015). A graph of the data and
its autocorrelation function is given below.

For this data set the maximum likelihood estimation results in

(ω̂, α̂, β̂) = (.19, .39, .58),

and so α̂ + β̂ = .97. As such, it is unclear apriori whether or not this data
should be thought of as stationary or nonstationary. Computing the KPSS
test gives a test statistic of 1.67. Comparison with the critical values in
Kwiatkowski et al (1992) shows that we will reject H0 even at the 1% level.

We note that this test does not suggest any evidence that the data set
behaves like the diffusion process found in Theorem 2.1, but just that it has
non-stationarity of some form. In addition, we emphasize that the distri-
bution obtained under H0 will still hold so long as Yn is a sequence which
satisfies a functional central limit theorem. In this sense the null is only
indirectly using the Poisson functional form assumption so as to guarantee a
stationary sequence with the necessary properties.

In addition, we note that an alternative test for stationarity based off the
null H0 : α0+β0 = 1 could be constructed using the least squares estimator ρ̂
from Equation (4). A test along these lines would be analagous to a Dickey-
Fuller test (see Dickey and Fuller (1979)). We will not fully develop this test
here since the limiting distribution depends upon α0, which we currently can
not estimate. We do note, however, for this data set we have ρ̂ = .908. Given
that N is quite large for this data it is likely that this test would reject the
null of α0 + β0 = 1 for reasonable values of α0.
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In fact, treating α̂ as α0 and conducting simulations for the distribution
of ρ̂ given by Equation (5) we have that the value ρ̂ = .908 has a p-value
of approximately .014. However, we do note that for a N = 646 it appears
as though the asymptotic distribution is still quite different from the small
sample distribution. The small sample distribution is shown below. This
distribution gives ρ̂ a p-value of .0612.

Overall, this analysis suggests that the process is nonstationary, but likely
does not follow the distribution of a nonstationary INGARCH.

5 Conclusion

In this paper we find the limit distribution of the integer-valued GARCH
model when α + β = 1. In contrast with the standard GARCH model we
find that the process will be non-stationary given these parameters. As such,
the distinct between α+ β < 1 and α+ β = 1 should be thought of as being
closer to the difference between a stationary autoregressive process and a
unit root process. Additional work is still needed to fully understand the
asymptotic behavior of the maximum likelihood estimator in this setting.

In addition, it may be of interest to study if the nonstationary INGARCH
has implications for more time series. In practice, integer valued time series
with large values are often rounded and treated as real valued processes. It
is possible that this behavior confuses processes following a nonstationary
INGARCH with other models.
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6 Mathematical appendix

The proof of Theorem 2.1 is based on the semigroup characterization of a
Markov process (see, Ethier and Kurtz (2009), for example). Our argument
will be similar to the argument used in Theorem 1.3 of Chapter 9 of Ethier
and Kurtz (2009) where a weak convergence result for the critical Galton-
Watson process is shown.

To begin we first recall some properties of Markov processes. The semi-
group characterization of a Markov process, say X(t), is based off the obser-
vation that the operators T (t) defined by

T (t)f(x) = E[f(X(t))|X(0) = x]

generate a one-parameter family of linear operators which forms a semi-
group.2 The fact that this is a semigroup can be seen from the fact that
T (0) = I and T (t + s) = T (s)T (t), where the second equation holds by the
Markov property.

Given sufficient regularity conditions, we can also define an “infinitesimal
generator”, or generator, Gf defined by

Gf(x) = lim
t→0

t−1(T (t)f(x)− f(x)).

This object can, under certain assumptions, give a complete description of
the semigroup T (t), and is often more tractable. If our process X(t) satisfies
the stochastic differential equation dX(t) = b(x)dt + σ(x)dW (t) then the
generator is given by Gf(x) = b(x)f ′(x) + 1

2
σ(x)2f ′′(x). This can be seen

through a Taylor series expansion.
The benefit of this semigroup approach is that showing the weak conver-

gence Xn ⇒ X, for Xn a sequence of Markov processes, can often be trans-
lated into statements about the semigroups T (t) and Tn(t) or even about the
generator A and a “discrete approximation” An = n(Tn( 1

n
)− I). Numerous

results of this form can be found in Ethier and Kurtz (2009) and the many
references found within.

2We note that the notation T (t)f(x) is meant to be read as (T (t)f)(x), with the
parentheses being implicit. Here T (t) is an operator on the space of functions and T (t)f
is therefore a function, which can be evaluated at x.
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Proof of Theorem 2.1:

We first note that VN(0) = λ0
N

= ω
N

d→ 0 . We let T (t) denote V (r)’s
associated semigroup and we note that T (t) has the generator Gf(x) =
ωf ′(x) + α2

2
xf ′′(x).

We define TN(t)f(x) = E[f(VN(t))|VN(0) = x] andGNf(x) = N(TN( 1
N

)f(x)−
f(x)). GN corresponds to the discrete approximation of TN(t)’s generator.

By Corollary 8.9(i) of Chapter 4 of Ethier and Kurtz (2009), showing
that VN(r)⇒ V (r) reduces to showing the following condition:

For every bounded f : [0,∞)→ R and t ∈ [0, 1] we have that

lim
N→∞

sup
x∈[0,∞)

|TN(t)f(x)− T (t)f(x)| = 0. (6)

This is, by Theorem 2.1 of Chapter 8 and Theorem 6.5 of Chapter 1 of Ethier
and Kurtz (2009), equivalent to showing that

For every f ∈ C∞c [0,∞), the space of infinitely differentiable function on
[0,∞) with compact support, we have the that

lim
N→∞

sup
x∈[0,∞)

|GNf(x)−Gf(x)| = 0. (7)

Alternatively, we show that limN→∞ supx∈[0,∞) |εNf(x)| converges to 0 for
each f ∈ C∞c [0,∞), where εNf(x) = GNf(x)−Gf(x).

We first note that for the case of x = 0 this is trivial, we therefore consider
the case of x > 0. We first observe that

TN(
1

N
)f(x) = E[f(

λ1
N

)|λ0
N

= x] = E[f(
ω + αY0 + βλ0

N
)|λ0 = xN ].

Motivated by the fact that E[λ1
N
|λ0 = Nx] = ω

N
+ x we will take the Taylor

expansion of f(·) around x. Therefore, TNf(x) is equal to

E[f(x) + f ′(x)(
λ1
N
− x) +

f ′′(x)

2
(
λ1
N
− x)2 +

f ′′′(x̃)

6
(
λ1
N
− x)3|λ0 = Nx],

for some x̃ between x and λ1/N .
We observe that

λ1 = ω + αY0 + βλ0 = ω + (α + β)λ0 + α
√
λ0
Y0 − λ0√

λ0
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= ω + λ0 + α
√
λ0z0,

where z0 = Y0−λ0√
λ0

is a martingale difference sequence with mean 0, conditional

variance 1, E[z30 |λ0 = Nx] = 1
Nx

, and E[z40 |λ0 = Nx] = 1+3Nx
Nx

.

Therefore, given that λ0 = Nx we have that λ1
N
−x = ω

N
+α

√
x
N
z0. Using

this information we can see that

GNf(x) = ωf ′(x)+
α2

2
xf ′′(x)+

ω2

N
f ′′(x)+NE[

f ′′′(x̃)

6
(
ω

N
+α

√
x

N
z0)

3|λ0 = Nx].

We note that it does not immediately follow that supx∈[0,∞) |εN(x)| → 0 since
we must still show that the higher order terms go to 0 uniformly.

To handle this we first note that since f ∈ C∞c [0,∞) there exists some
Cf such that for all s ≥ Cf we have that f(s) = 0. In addition, since Y0 is
a positive random variable it follows that P (λ1

N
≥ C|λ0

N
= C

β
) = 1, for all C

and as such P (f(λ1
N

) = 0|λ0
N
≥ Cf

β
) = 1. Therefore,

sup
x∈[0,∞)

|εNf(x)| = sup
x∈[0,Cf/β]

|εNf(x)|

= sup
x∈[0,Cf/β]

|ω
2

N
f ′′(x) +NE[

f ′′′(x̃)

6
(
ω

N
+ α

√
x

N
z0)

3|λ0 = Nx]|

≤ sup
x∈[0,Cf/β]

(
ω2

N
||f ′′||∞ +N

||f ′′′||∞
6

E[| ω
N

+ α

√
x

N
z0|3|λ0 = Nx]),

where ||f ′′||∞ and ||f ′′′||∞ are both finite since f ∈ C∞c [0,∞). By Jensen’s
inequality this is bounded from above by

sup
x∈[0,Cf/β]

(
ω2

N
||f ′′||∞ +N

||f ′′′||∞
6

E[(
ω

N
+ α

√
x

N
z0)

4|λ0 = Nx]3/4)

= sup
x∈[0,Cf/β]

(
ω2

N
||f ′′||∞+N

||f ′′′||∞
6

(
ω4

N4
+6

ω2α2x

N3
+4

ωα3x

N3
+
α4x(1 + 3Nx)

N3
)3/4)

Therefore, for all f ∈ C∞c [0,∞) we have that

lim
N→∞

sup
x∈[0,∞)

|εNf(x)| = 0.

This completes our proof.
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Proof of Lemma 3.1:

We observe that

λn+1(θ) = ω
n∑
j=0

βj + α

n∑
j=0

βjYn−j.

Therefore,

λ[rN ](θ)/N = N−1(ω

[rN ]∑
j=0

βj + α

[rN ]∑
j=0

βjYn−j).

Using Theorem 2.1 we observe that

λ[rN ](θ)/N ⇒
α

1− β
V (r).

This completes our proof.
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