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Abstract

A class of conditional heteroskedasticity models is introduced and analyzed. This
class of models is motivated by the desire to allow the level of a GARCH process to
influence the volatility. We show the existence of a unique strictly stationary solu-
tion which is β-mixing. The analysis of this model does not rely upon Markov chain
methods.
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1 Introduction

Since the seminal papers of Engle (1982) and Bollerslev (1986), GARCH models have played
a prominent role in the analysis of volatility of financial time series. In the standard
GARCH(1,1) model the stock returns or log stock returns ∆Yt are of the form

∆Yt = σtzt, (1)

where zt is an i.i.d. sequence with mean 0 and variance 1, while σt follows the specification

σ2
t+1 = ω + αz2

t σ
2
t + βσ2

t . (2)

Numerous extensions of this model have been proposed. Many of these extensions are moti-
vated by a desire for σt+1 to respond asymmetrically to positive and negative ∆Yt, which cor-
responds to the leverage effect pointed out by Black (1976). See, for example, the EGARCH
model of Nelson (1991), the TGARCH model of Zaköıan (1994), and the QGARCH of Sen-
tana (1995).

This paper considers a new model for conditional heteroskedasticity. We propose to let the
volatility σ2

t+1 depend upon the “level” Yt =
∑t

j=1 ∆Yj, which in applications often stands
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for stock price. Therefore, in such an application, we make volatility depend on whether
stock price is relatively high. In the model studied here the volatility will be completely
determined by the level and as such our model does not nest the GARCH model. We later
discuss a more general model that nests both our model and the GARCH(1,1); however,
analysis of this model is quite difficult and outside the scope of this paper.

While, as mentioned, the literature has considered asymmetric responses to large ∆Yt, it
is possible that such an analysis confounds the effect of relatively large levels of Yt with such
an asymmetric response. After all, the threat to investors of possibly not being able to meet
obligations while the stock price level Yt is relatively low might increase volatility. Similarly,
when stock price nears historic highs, risk aversion and profit taking might affect volatility.

In the option pricing literature, models that account for such an effect have been in-
troduced; see for example the Hobson and Rogers model introduced in Hobson and Rogers
(1998). Discussions of this effect can also be found in the popular press. For example, in a
July 2017 articled published on Bloomberg.com (https://www.bloomberg.com/view/articles/2017-
07-03/what-history-says-about-low-volatility), the author discusses the combination of low
volatility and historically high levels in the stock market in the first half of 2017. He notes
that historically, the combination of high volatility when stock prices are at high levels is
much more prevalent. Additionally, in the next subsection we will provide more empirical
motivation through an analysis of recent bitcoin prices.

However, in the GARCH literature, no models appear to exist that allow volatility to
depend on level. Given that the dynamics of volatility of stock price levels is given con-
siderable attention in the option pricing literature and the popular press, we feel that the
GARCH literature would benefit substantially from the introduction of models that capture
this effect.

While this suggestion is intuitively appealing, constructing a model that captures this
effect is complicated by the unit root properties of Yt. We address this issue by introducing
a latent bound Pt, which represents a relatively high level for Yt. We then show that our
model can be rewritten in a form that is reminiscent of the Lindley equation. In order to
show weak dependence and mixing properties of our model we develop techniques that differ
from the now standard techniques of Bougerol and Picard (1992a) and (1992b) or Markov
chain methods such as in Meyn and Tweedie (2009). The techniques developed here can,
with slight modification, be applied to other stochastic processes where a single value is
revisited sufficiently often. An example of this type of model is the nonlinear ARCH model
of Säıdi and Zaköıan (2006). We will assume i.i.d. errors throughout, however with slight
modifications the techniques used here can be easily extended to weakly dependent errors.

While the analysis of our model requires novel and relatively sophisticated arguments,
the idea of allowing volatility to depend on level in a GARCH setting in our opinion deserves
to be taken up and developed further, given its obvious empirical relevance. In particular, we
feel that a GARCH model that allows volatility to depend on level and nests the GARCH(1,1)
would be important. However, given the analytical complexity of such an endeavor, we leave
this to future work.

The proofs for all results can be found in our appendix.
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1.1 Bitcoin volatility

In this section we consider the volatility of Bitcoin daily prices from 8/20/2017 to 8/20/2018;
this data is obtained from the Federal Reserve Bank of St. Louis
(https://fred.stlouisfed.org/series/CBBTCUSD). We let (Yt)

T
t=1 denote the time series of

Bitcoin prices. In order to test, in a somewhat ad hoc manner, whether the volatility of
Bitcoin prices is influenced by the level of the price we conduct the following analysis.

We let K be a positive integer and for t ∈ {K + 1, ..., T} we define NK
t = I(Yt =

maxj∈{t−K,...,t} Yj). We calculate the ratio∑T−K
t=K+1N

K
t s.d.((Yt+1, ..., Yt+K))2∑T−K

t=K+1N
K
t

/ 1

T −K

T−K∑
t=1

s.d.((Yt+1, ..., Yt+K))2, (3)

where s.d.(·) of a sequence represents the sample standard deviation of the sequence.
The idea behind this ratio is that it compares the realized volatility in time periods after

a “high” level of price with the overall realized volatility in time periods after any level.
We note that a value greater than 1 implies higher volatility in the time periods following a
“high” level.

Table 1 calculates the statistic of equation (3) for various values of K. The choices for K
are representing a time span from one to four weeks. This table suggests that bitcoin prices
are more volatile following recent maximums, since the values are all larger than 1.

Table 1: Bitcoin Realized Volatility Post Relative High
K 7 14 21 28
Realized Volatility Ratio 1.38 1.59 1.70 1.81

Additionally, we plot the level of Bitcoin price below. The time series visually appears
to have higher volatility near maximums.
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2 Model equations

To model a process where volatility is induced by the level we will introduce a latent process
Pt, which will represent a threshold for a high versus low level of Yt. The idea of using
a latent process to represent a high or low level has been used elsewhere in the setting of
unit root processes and cointegration; see Michel and de Jong (2018a). The conditional
heteroskedasticity setting presents different analytical challenges, since exceeding the latent
bound now affects volatility, instead of the level.

Let (zt)t∈Z be an i.i.d. sequence of random variables with mean 0 and variance 1, and set
Y0 = 0 and P0 = 0. Our model equations are

Yt =
t∑

j=1

σjzj (4)

where

σ2
t+1 = σ2 + cI(Yt ≥ Pt) (5)

and

Pt+1 = (Pt − a)I(Yt < Pt) + (Yt+1 + η)I(Yt ≥ Pt). (6)

Here η ≥ 0, a > 0, σ2 > 0, and σ2 + c > 0. We note that ∆Yt = σtzt = (σ2 + cI(Yt−1 ≥
Pt−1))zt, and so σ2

t is the conditional variance of ∆Yt at time t.
Through Equation (5) the level Yt is allowed to affect the volatility σt of the process. A

“high” level of Yt induces a change in volatility in the next time period. The notion of a
“high” level is made precise by introducing a latent upper bound Pt. Levels above Pt are
considered high; levels below Pt are considered low. In addition, the bound Pt falls by a
every time period that Yt does not cross Pt. This causes our notion of high and low levels
to be relative to nearby time periods. We note here that the process σ2

t only takes on two
distinct values, this is motivated by our desire to study a model where volatility is only
induced by high/low levels while remaining tractable.

We note that the bound Pt could instead be placed below Yt. The analysis of this situation
is analogous to the situation considered here.

2.1 Properties of the model

In order to study the above system of equations we first define Dt = Pt − Yt. We observe
that Equation (5) can be written in terms of only σt and Dt since by Equation (5),

σ2
t+1 = σ2 + cI(Dt ≤ 0), (7)

and by Equations (4) and (6), Dt follows the recurrence relation

Dt+1 = (Dt − a− σt+1zt+1)I(Dt > 0) + ηI(Dt ≤ 0). (8)
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Therefore, (σt+1, Dt) can be studied without reference to Yt or Pt. In addition, we note that
after substitution of Equation (7), Equation (8) is equivalent to

Dt+1 = (Dt − a− σzt+1)I(Dt > 0) + ηI(Dt ≤ 0). (9)

This is nearly the Lindley equation Dt+1 = max(0, Dt−a−σzt+1) from Queueing Theory;
see, for example, Baccelli and Brémaud (1994).

To start our analysis, we will first give a stochastic bound for Dt.

Lemma 2.1. For some m ∈ Z, and sequence (D̃t)t≥m satisfying the equation D̃t+1 = (D̃t −
a− σzt+1)I(D̃t > 0) + ηI(D̃t ≤ 0) and D̃m = 0, we have that

D̃t ≤ Wt, (10)

where we define Wt = maxk≥0[η − ak − σ
∑k−1

j=0 zt−j], using the convention that summation
over a null set is 0. In addition, Wt is almost surely finite.

Wt is the maximum of a random walk with negative drift. The random walk with drift
has been well studied in other contexts; see Janson (1986) and Kiefer and Wolfowitz (1956),
for example. Lemma 2.1 allows us to show the following result, which states that for m large
enough, σt “almost” depends only on (zt−m, ..., zt).

Theorem 2.2. Let F tt−m be the sigma algebra generated by (zt−m, ..., zt). If zt has full support
over R, then for t ≥ 1 there exists σ̃mt ∈ F tt−m such that

sup
t≥1

P (σt 6= σ̃mt ) = ν(m) (11)

and ν(m) = O(m−r+ε) for any ε > 0 and any r > 0 such that E|min(0, zj)|r+1 <∞.

We note that since zt was earlier assumed to have a finite variance the above moment
condition holds with r = 1, however additional moments give a faster rate.

Theorem 2.2 and the fact that σt is bounded imply a form of weak dependence known
in the econometrics literature as near epoch dependence; see Andrews (1988) and Pötscher
and Prucha (1997), for example. This property implies a law of large numbers, and with
sufficient rate for ν(m) implies a central limit theorem. Therefore, σt and hence ∆Yt satisfies
a central limit theorem under moment conditions on zt.

We can use Theorem 2.2 to show that there exists a unique strictly stationary (σ∗t+1, D
∗
t )

when the process is extended to t ∈ Z.

Theorem 2.3. If zt has full support over R and there exists some r > 0 such that E|min(0, zt)|r+1 <
∞, then there exists a unique strictly stationary solution (σ∗t+1, D

∗
t ) to Equations (7) and (9)

for t ∈ Z.

It now follows that ∆Y ∗t = σ∗t zt, t ∈ Z, is a strictly stationary sequence. In addition, we
can show that ∆Y ∗t is β-mixing:

Theorem 2.4. If zt has full support over R and there exists some r > 0 such that E|min(0, zt)|r+1 <
∞, then ∆Y ∗t is β-mixing with mixing coefficient βm = O(m−r+ε) for any ε > 0.

This implies that there exists a unique stationary solution for Pt − Yt and ∆Yt which is
β-mixing.
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3 Extensions

The model can easily be extended to include multiple lags. The model equations are then

Yt =
t∑

j=1

σjzj,

σ2
t+1 = σ2 +

K∑
k=1

ckI(Yt+1−k ≥ Pt+1−k),

and

Pt+1 = (Pt − a)I(Yt < Pt) + (Yt+1 + η)I(Yt ≥ Pt).

All of the result of the previous section apply to this model with only minor modifications in
the proofs. We note that while the σ2

t process is modified, the Pt process is unchanged from
the model introduced in Section 2. This is done in order to keep the definition of “high” and
“low” level unchanged while still allowing the volatility to react differently to the history.

A more general extension would be a model that nests the GARCH(1,1) model. A
possible specification for this would be

σ2
t+1 = ω + ασ2

t z
2
t + βσ2

t + cI(Yt ≥ Pt), (12)

with ω > 0, α, β ∈ (0, 1) and α + β ≤ 1.
This model cannot be analyzed using the techniques of Theorem 2.2 because σt will no

longer have a mass point. Therefore, the general analysis of this model is outside the scope
of this paper. Further study of this model would be important for assessing the impact of
the level on volatility in a GARCH setting.

4 Conclusion

In this paper, we introduced a new model of conditional heteroskedasticity which accounts
for the level of process possibly impacting volatility. This model was then shown to have
weak dependence properties and a unique stationary solution which is β-mixing.

5 Mathematical Appendix

Proof of Lemma 2.1:

We recall that

Dt+1 = (Dt − a− σzt+1)I(Dt > 0) + ηI(Dt ≤ 0)

from Equation (8). We now define τ t to be

τ t = max{j ∈ {m, .., t} : Dj ≤ 0}
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and we note that τ t is well-defined since Dm = 0. From this definition, we can see that

Dt+1 = η − a(t− τ t)−
t+1∑

j=τ t+2

σzj.

Here we again use the convention that a sum over an empty index is 0. Since τ t ∈ {m, ...t},
Dt+1 is bounded from above by

max
k∈{m,...,t}

[η − a(t− k)− σ
t+1∑

j=k+2

zj] = max
k∈{0,...,t−m}

[η − ak − σ
k−1∑
j=0

zt+1−j].

Extending the set from k ∈ {0, ..., t−m} to N then gives us that Dt+1 ≤ Wt+1. The fact that
Wt is almost surely finite follows from the strong law of large numbers, the i.i.d. property
of zj, Ezj = 0, and E|zj| <∞.

Lemma 5.1. If Dt satisfies Equation (9) and a+ σzt−1 ≤ 0, then Dt = Dt−1 − a− σzt.

Proof. We will show that a+σzi−1 ≤ 0 implies that Di−1 > 0 and hence Di = Di−1−a−σzi
by Equation (9). This will then imply our result. In the case Di−2 > 0, we will necessarily
have Di−1 = Di−2 − (a + σzi−1) > 0 since both Di−2 > 0 and a + σzi−1 ≤ 0. In the case
where Di−2 ≤ 0, we have Di−1 = η > 0. This completes our proof.

Proof of Theorem 2.2:

We fix a t and m ∈ N+. We will construct an approximation Ĩmt to I(Dt ≤ 0). We observe

that when letting σ̃mt =
√
ω + cĨmt , it then follows that

P (σt 6= σ̃mt ) = P (I(Dt ≤ 0) 6= Ĩmt ). (13)

Therefore, we will focus our attention on approximating I(Dt ≤ 0).
We construct Ĩmt as follows. Let D̃m

t−m−1 = 0 and for j ∈ {t−m, ..., t} let

D̃m
j = (D̃m

j−1 − a− σzj)I(D̃m
j−1 > 0) + ηI(D̃m

j−1 ≤ 0). (14)

Now define Ĩmt = I(D̃m
t ≤ 0). We observe that if there is some t̃ ∈ {t−m− 1, ..., t− 1} such

that Dt̃ ≤ 0 and D̃m
t̃
≤ 0, then Dt̃+1 = D̃m

t̃+1
= η, and then for all j ∈ {t̃ + 1, ..., t} we have

Dj = D̃m
j , implying that I(Dt ≤ 0) = Ĩmt . Therefore,

P (I(Dt ≤ 0) 6= Ĩmt ) ≤ P (@t̃ ∈ {t−m, ...t− 1} s.t. Dt̃ ≤ 0 and D̃m
t̃ ≤ 0) (15)

= E
t−1∏

i=t−m

(1− I(Di ≤ 0)I(D̃m
i ≤ 0)) = E

t−1∏
i=t−m

I(Di > 0 or D̃m
i > 0). (16)

We observe that, by Lemma 5.1, if a + σzi−1 ≤ 0 then Di = Di−1 − a − σzi−1 and D̃i =
D̃m
i−1 − a− σzi−1. We therefore bound the expression of Equation (16) by

E
t−1∏

i=t−m

[I(Di−1 − a− σzi > 0 or D̃m
i−1 − a− σzi > 0; a+ σzi−1 ≤ 0) (17)
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+I(a+ σzi−1 > 0)].

Since Dj and D̃m
j both satisfy the same recurrence relationship of Equation (9) we observe

that the proof of Lemma 2.1 also applies to D̃m
j , and therefore we have that both Dj ≤ Wj

and D̃m
j ≤ Wj. An upper bound for the above expression is then

E
t−1∏

i=t−m

[I(Wi−1 − a− σzi > 0; a+ σzi−1 ≤ 0) + I(a+ σzi−1 > 0)]. (18)

The terms in the product are not independent of each other, and so we will introduce a
separation between them by introducing a sequence bm such that bm ≤ m and bm → ∞ as
m→∞. Since all product terms in Equation (18) equal 0 or 1, we can bound the expression
by

E

[m/bm]∏
j=0

[I(Wt−m−1+jbm−a−σzt−m+jbm > 0; a+σzt−m−1+jbm ≤ 0)+I(a+σzt−m−1+jbm > 0)].

(19)

The motivation for this bound is that the product terms will be “nearly” independent for
large enough bm.

For l ≥ 1 we now define W l
n = maxk∈{0,...,l}[η − ak − σ

∑k−1
j=0 zn−j]. We observe that

W l
n ∈ Fnn−l+1 and that W∞

n = Wn a.s.. The motivation for introducing W l
n is that we can

approximate Wt−m−1+jbm by W bm
t−m−1+jbm

for large enough values of bm. We therefore bound
the previous expression by

E

[m/bm]∏
j=0

[I(W bm
t−m−1+jbm

−a−σzt−m+jbm > 0; a+σzt−m−1+jbm ≤ 0;W bm
t−m−1+jbm

= Wt−m−1+jbm)

(20)

+I(a+ σzt−m−1+jbm > 0)

+I(W bm
t−m−1+jbm

6= Wt−m−1+jbm ; a+ σzt−m−1+jbm ≤ 0)].

We note that at most only one of these indicator functions is ever non-zero, implying that
all product terms are 0 or 1. An upper bound for the above term is then

E

[m/bm]∏
j=0

[I(W bm
t−m−1+jbm

−a−σzt−m+jbm > 0; a+σzt−m−1+jbm ≤ 0;W bm
t−m−1+jbm

= Wt−m−1+jbm)

(21)

+I(a+σzt−m−1+jbm > 0)] +E

[m/bm]∑
j=0

I(W bm
t−m−1+jbm

6= Wt−m−1+jbm ; a+σzt−m−1+jbm ≤ 0).
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This comes from the fact that
∏

i∈S(I1i, + I2i + I3i) ≤
∏

i∈S(I1i + I2i) +
∑

i∈S I3i for indicator
functions Iji satisfying I1i + I2i + I3i ∈ {0, 1}. We bound the last term by

E

[m/bm]∏
j=0

[I(W bm
t−m−1+jbm

−a−σzt−m+jbm > 0; a+σzt−m−1+jbm ≤ 0)+I(a+σzt−m−1+jbm > 0)]

+E

[m/bm]∑
j=0

I(W bm
t−m−1+jbm

6= Wt−m−1+jbm).

By strict stationarity of the W l
k terms this equals

[E(I(W bm
t−m−1 − a− σzt−m > 0; a+ σzt−m−1+ ≤ 0) + I(a+ σzt−m−1 > 0))][m/bm]+1

+([m/bm] + 1)EI(W bm
t−m−1 6= Wt−m−1).

By the full support assumption on zt and the fact that W l
n ≤ Wn for any l ≥ 1 we have that

E(I(W bm
t−m−1− a− σzt−m > 0; a+ σzt−m−1 ≤ 0) + I(a+ σzt−m−1 > 0)) ≤ E(I(Wt−m−1− a−

σzt−m > 0; a + σzt−m−1 ≤ 0) + I(a + σzt−m−1 > 0)) = γ ∈ (0, 1). We note that γ does not
depend upon m or t due to the strict stationarity of the terms.

The term P (W bm
t−m−1 6= Wt−m−1) has been considered before in the study of random

walks with negative drift. Theorem 1 of Janson (1986) states that this term is O(b−rm ) if
E|min(0, zt)|r+1 <∞ for r > 0. Therefore, the above expectation is of order

γ[m/bm] + [m/bm]b−rm .

Letting bm = m1− ε
1+r for ε > 0 achieves our desired result.

Proof of Theorem 2.3:

We fix t ∈ N. For each m ≥ 1 we define the sequence D̃m
j for j ∈ {m−1,m, ...} as in the proof

of Theorem 2.2. Define the sequence σ̃mj for j ∈ {m,m+1, ...} by σ̃mj =
√
σ2 + cI(D̃m

j−1 ≤ 0).

We will now show that limm→∞ σ̃
m
t = σ̃t exists and that limm→∞ D̃

m
t = D̃t exists. These

will then be strictly stationary because σ̃t = f(zt, zt−1, ....) and D̃t = g(zt, zt−1, ....) for some
functions f and g.

We will show that the two sequences are Cauchy, i.e. that maxk≥m |σ̃kt − σ̃mt | and
maxk≥m |D̃k

t − D̃m
t | both converge in probability to 0, implying that σ̃mt and D̃m

t converge
a.s. as m→∞. We will first show this for the sequence σ̃mt .

We observe that

max
k≥m
|σ̃kt − σ̃mt | = max

k≥m

√
|c| |I(D̃k

t ≤ 0)− I(D̃m
t ≤ 0)|.

By the same argument as in Theorem 2.2, if there is some t̃ ∈ {t − m − 1, ..., t − 1} such
that D̃k

t̃
≤ 0 for all k ≥ m then we will have that D̃k

t = D̃m
t for all k ≥ m, and therefore
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maxk≥m |I(D̃k
t ≤ 0) − I(D̃m

t ≤ 0)| = 0. We also note that for all k we have D̃k
j ≤ Wj.

Therefore, by similar reasoning as in Theorem 2.2,

P (max
k≥m
|σ̃kt − σ̃mt | > 0) ≤ P (max

k≥m
D̃k
j > 0; for all j ∈ {t−m− 1, ..., t− 1})

≤ E

t−1∏
j=t−m

[I(Wj−1 − a− σzj > 0; a+ σzj−1 ≤ 0) + I(a+ σzj−1 > 0)].

As seen in Theorem 2.2, this term is O(m−r+ε). For the sequence D̃m
t we observe that the

same method applies, since maxk≥m |D̃k
t − D̃m

t | equals 0 whenever maxk≥m D̃
k
j < 0 for some

j ∈ {t−m− 1, ..., t− 1}.
The uniqueness now follows from the fact that for any two strictly stationary solutions

(σ∗t,1, D
∗
t,1) and (σ∗t,2, D

∗
t,2) we have that for any m ≥ 1

P (σ∗t,1 6= σ∗t,2) ≤ P (σ∗t,1 6= σ̃mt ) + P (σ∗t,2 6= σ̃mt ).

Letting m → ∞ shows that the above probability is 0. The same argument holds for
P (D∗t,1 6= D∗t,2).

Proof of Theorem 2.4:

The proof of this result is similar to Theorem 2.5 of Michel and de Jong (2018b), however
since we consider i.i.d. errors we can obtain a slightly sharper rate.

By suitably enlarging the probability space we let z′t be an independent sequence of
random variables havng the same distribution of zt. Define ẑt = ztI(t > 0) + z′tI(t ≤ 0); this
sequence has the same distribution as zt. Using the notation of Theorem 2.3 we define

σ̂t = f(ẑt, ẑt−1, ...)

and

∆̂Y t = σ̂tẑt.

We observe that σ̂t and ∆̂Y t are both strictly stationary solutions.
Let Grs = σ(∆Y ∗s , ...,∆Y

∗
r ). From the definition of ∆̂Y t it is clear that ∆̂Y t is independent

of G0
−∞ for all t ∈ Z.

For m ≥ 1 we define the event Em = {∆Y ∗j = ∆̂Y j, for all j ≥ m}. From the proof of
Theorem 2.2 we have that P (EC

m) = O(m−r+ε). We recall that the β-mixing coefficent is
defined as

βm = E sup
B∈G∞m

|P (B|G0
−∞)− P (B)|.

For each B = {(∆Y ∗m,∆Y ∗m+1, ...) ∈ S} ∈ G∞m we define B̂ = {(∆̂Y m, ∆̂Y m+1, ....) ∈ S}. We
then have the following two properties:

1. B ∩ Em = B̂ ∩ Em. This property follows from the definition of Em.
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2. P (B) = P (B̂). This follows from the fact that ∆Yt and ∆̂Y t have the same distribution
and from the definition of B and B̂.

We now observe that

|P (B|G0
−∞)− P (B)| = |P (B ∩ Em|G0

−∞) + P (B ∩ EC
m|G0

−∞)− P (B)|.

By our first property the above expression equals

|P (B̂ ∩ Em|G0
−∞) + P (B ∩ EC

m|G0
−∞)− P (B)|

= |P (B̂|G0
−∞)− P (B̂ ∩ EC

m|G0
−∞) + P (B ∩ EC

m|G0
−∞)− P (B)|

≤ |P (B̂|G0
−∞)− P (B)|+ 2P (EC

m|G0
−∞).

By our second property the above expression equals

|P (B̂|G0
−∞)− P (B̂)|+ 2P (EC

m|G0
−∞)|.

Therefore,

βm ≤ E sup
B̂∈σ(∆̂Ym,∆̂Ym+1,...)

|P (B̂|G0
−∞)− P (B̂)|+ 2EP (EC

m|G0
−∞)

= E sup
B̂∈σ(∆̂Ym,∆̂Ym+1,...)

|P (B̂|G0
−∞)− P (B̂)|+ 2P (EC

m).

Since σ(∆̂Y m, ∆̂Y m+1, ...) is independent of G0
−∞ and P (EC

m) = O(m−r+ε), the above expres-
sion is O(m−r+ε). This completes our claim.
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