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Abstract

This paper introduces what we will call the “anxious unit root process”; it adds a
constant to the standard unit root process whenever the unit root process exceeds a
latent bound. The latent bound adjusts whenever such a jump occurs. The process
can be viewed as one that generates endogenous structural changes, or as one that is
reluctant or eager to go up whenever the latent bound is exceeded. Therefore, this
model captures behavior that has been discussed in economic theory and casual eco-
nomics reporting. The anxious unit root process proposed in this paper is a random
sequence that does not depend on sample size. We prove that the anxious unit root
process satisfies an invariance principle. A nonstandard limit is obtained in the invari-
ance principle. Therefore, proceeding as if the series satisfies a unit root and using
techniques based on the unit root literature will be invalid. We develop a panel test
statistic that tests for the null hypothesis of a unit root process against the alternative
hypothesis of an anxious unit root process; we then show that we can reject for several
macroeconomic aggregates, including the log of GDP. Additionally, we show how cor-
rect inference can easily be performed in a cointegration setting when a regressor is an
anxious unit root process using a modification of Integrated Modified Ordinary Least
Squares.
JEL Classification: C22

1 Introduction

The literature on unit roots in economic time series is venerable and substantial. The
importance of unit roots in economic time series was first pointed out by Granger (see,
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for example, Granger and Newbold (1974) and Granger (1981)). Dickey and Fuller first
found the limit distribution of what came to be known as the Dickey-Fuller tests in Dickey
and Fuller (1979). Phillips (1986) considered spurious regressions in the case of weakly
dependent innovations; the Phillips-Perron test (Phillips and Perron (1988)) considered unit
root testing in the presence of such innovations. Cointegration was introduced in Engle
and Granger (1987). Techniques for analyzing cointegrating regressions in the presence of
correlated innovations were considered in Saikkonen (1991, “leads and lags” or “DOLS”),
Phillips and Hansen (1990, the “fully modified” estimator), and Vogelsang and Wagner
(2014, “Integrated Modified Ordinary Least Squares” or “IM-OLS”). These papers form the
core of the unit root literature; however, the unit root literature is by now enormous.

Throughout all this literature, the weak convergence of the partial sum process to a
multiple of Brownian motion is used. The unit root assumption in time series econometrics
has the advantage of analytical tractability and of being easy to grasp. Yet, both economic
theory and casual economics reporting suggest that situations where a time series inherently
is affected by its proximity to its historical maximum abound. Given this observation, it
may be more fruitful to think of such economic time series as behaving inherently differently
whenever a certain sufficiently high, endogenously determined level is exceeded.

Models of time series which have regime dependent behavior have been introduced in
Caner and Hansen (2001); there, however, the regimes are determined by comparing a sta-
tionary sequence’s value to a fixed level. A model of this type will be unable to capture
behavior which differs only near a historical maximum, as a historical maximum will be
non-stationary.

In this paper, we attempt to extend the unit root model in a simple way as to allow
different behavior of the time series once an endogenously determined bound has been ex-
ceeded, while at the same time retaining analytical tractability. A simple way to capture
this type of effect in a unit root type setting is to quantify the notion that Yt = Yt−1 + εt for
“historically low” values of Yt−1 and Yt = c + Yt−1 + εt for “historically high” values. The
jump c can take both positive and negative values, and for the case c = 0, the standard unit
root process is obtained as a special case. We introduce a process that follows this idea,
and show that it converges weakly to a limit that is not Brownian motion when c 6= 0. Our
“anxious unit root process” does not depend on sample size in any way, and therefore there
is no analogy to the literature on near unit root processes (see, for example, Phillips (1987)
and Phillips (1988)).

It is easy to envision that the type of behavior modeled by the anxious unit root process
can play a role in economic time series. For example, a house price time series may display
a certain “nervousness” once a historic height is reached. House prices may accelerate once
they reach a historic height. It is also conceivable that house prices instead tend to decrease
at such a time. These situations can be modeled by c > 0 and c < 0 respectively.
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The plan for this paper is as follows. Section 2 introduces the data-generating process
for the anxious unit root process and discusses its basic properties. In section 3 the weak
limit of this process is found. The presence of the jumps changes the invariance principle
and a limit process that does not equal standard Brownian motion is obtained. Instead
of weak convergence to Brownian motion, in our Theorem 3.2, we show weak convergence
to the sum of a scaled Brownian motion plus a multiple of the running maximum of the
scaled Brownian motion. In section 4 a panel test is constructed for the null hypothesis of a
unit root and the alternative hypothesis of an anxious unit root, we then apply this test to
a collection of macroeconomic aggregates. In section 5 we demonstrate how valid inference
can be obtained in a cointegration setting using a variant of IM-OLS. All proofs are gathered
in the Mathematical Appendix.

2 The model

2.1 Definition and basic ideas

Let εt be a weakly dependent sequence of random variables with mean 0 and variance σ2.
The idea of “anxiousness” of our process when it is relatively high is

Yt =

{
α + Yt−1 + εt if α + Yt−1 + εt low;

α + c+ Yt−1 + εt if α + Yt−1 + εt high.

This intuitive idea is formalized as follows. The “anxious unit root” model considered in
this paper is

Yt =

{
α + Yt−1 + εt if Yt−1 + εt ≤ Pt−1

α + c+ Yt−1 + εt if Yt−1 + εt > Pt−1
(1)

and

Pt =

{
Pt−1 + α if Yt−1 + εt ≤ Pt−1

α + Yt−1 + εt + c+ η if Yt−1 + εt > Pt−1
(2)

where we will assume that η ≥ 0, Y0 = 0, and P0 = η.
Here Pt is a latent bound on the Yt process that causes Yt to behave differently when it is
near this bound. Obviously, if c = 0, the latent bound Pt is of no consequence to Yt, and a
standard unit root process results.

As long as Yt−1 + εt is less than Pt−1, the process Yt will follow a unit root path by
Equation (1). In this situation, Equation (2) will leave Pt undisturbed, expect for the drift

3



of α. Whenever Yt−1 + εt exceeds Pt−1, a constant c is added to Yt in addition to εt. This
jump constant c causes the “anxiousness” of our process. This constant c can be zero,
positive, or negative, depending on whether the process is indifferent, eager, or reluctant to
enter new territory. Through Equation (2), in the case of a jump, Pt adjusts to the new
value for Yt plus a fixed amount η. The nonnegativity of η guarantees that the new bound
weakly exceeds the process after a jump. The fact that at any jump time, Pt exceeds Yt by
η motivated our definition of Y0 = 0 and P0 = η.

In this paper, we will not consider the situation where Pt and Yt have different drift
rates. This has been analyzed by the authors, however it leads to different asymptotics and
requires different methods of proof. We will also not analyze the case where a bound similar
to Pt is also present below Yt. We expect that this case can also be analyzed, however it will
also require different methods of proof.

2.2 A representation for Yt

Before embarking on a formal exposition of our results, we discuss some general ideas in order
to facilitate the exposition below. To gain insight into the nature of this data-generating
process, we start by recalling that, by Equation (1), for t ∈ N+,

∆Yt = α + εt + cI(Yt−1 + εt > Pt−1) (3)

implying that

Yt = Y0 + αt+
t∑

j=1

εj + c
t∑

j=1

I(Yj−1 + εj > Pj−1). (4)

Defining St =
∑t

j=1 εj and Nt =
∑t

j=1 I(Yj−1 + εj > Pj−1), and recalling that Y0 = 0 and
defining S0 = N0 = 0, we now find that

Yt = αt+ St + cNt. (5)

In the sequel, it will be shown that in general, both St and Nt contribute to the asymptotic
behavior of Yt − αt.

2.3 Properties of Nt and of the jump times

Since an investigation into the properties of Nt is key to determining the limit behavior of
Yt, we will define what we will refer to as jump times τj, as they will turn out to be useful
in the analysis of Nt. The jump times τj are defined, for j ∈ N+, as

τj = min{t ≥ 0 : Nt = j}, (6)
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and we define τ0 = 0.
Note that with this definition, the τj are not necessarily proper, that is, P (τj <∞) does

not necessarily equal 1. From this definition of Nt, it follows that Nt is a counting process.
We also note that for any m ≥ 0 and any t such that τm ≤ t < τm+1 we have that Nt = Nτm .
Therefore, Nt is flat between jump times. Furthermore, it follows from our definitions that
for m ≥ 0, m = Nτm . Given these definitions, it also follows that Nt = max{m ≥ 0 : τm ≤ t}.
Since I(Nt ≤ n) = I(max{m ≥ 0 : τm ≤ t} ≤ n) by definition, it also follows that

I(Nt ≤ n) = I(τn ≥ t). (7)

Furthermore, at any jump time τj, j ≥ 1, we have Yτj−1 + ετj > Pτj−1 and therefore

Yτj = α + Yτj−1 + ετj + c and Pτj = α + Yτj−1 + ετj + c+ η. (8)

Together, these two equations imply

Pτj − Yτj = η. (9)

Therefore, at any jump point τj , Pτj exceeds Yτj by η, and the next jump point after t = τj
occurs at the first time when Yt − Yτj = St − Sτj exceeds η. This implies that the τj are
proper random variables if St − Sτj will eventually exceed η with probability 1. If the εt are
i.i.d. and E|εt| <∞, this property holds because the random walk is recurrent.

The jump times are key to unlocking some of the properties of Nt. This is because the
τj are themselves a random walk in the case where εt is i.i.d.. Defining the time between
jumps ∆τj = τj − τj−1, the main feature of these random variables is that they are i.i.d.:

Lemma 2.1. Let εt be an i.i.d. sequence of random variables and assume that E|εt| < ∞.
Then ∆τj is a sequence of i.i.d. random variables and Eτ1 =∞.

3 The invariance principle

From this section onwards we will assume that the εt are i.i.d. with mean 0 and variance
σ2. We will later argue, in section 6, that the same weak limit, up to a different variance
term, can be obtained when the errors are assumed to be Markov. In this section we show
an invariance principle by showing that under regularity conditions, t−1/2Nt is Op(1) and
asymptotically equivalent to a multiple of t−1/2Mt, where Mt = max1≤j≤t Sj. In order to
derive this result, we introduce the following notation. We define the overshoots ej as

ej =

τj−1+∆τj∑
i=τj−1+1

εi − η. (10)
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In words, ej is the amount by which Yt attempted to go past the boundary at the time of the
jth jump. We will show that these overshoots are i.i.d. and positive in the following lemma.

Lemma 3.1. (ej)j≥1 is an i.i.d. sequence of positive random variables. If Var(εt) <∞ then
Eej <∞.

Using the previous lemmas we can show an invariance principle for
Y[rT ]−α[rT ]√

T
.

Theorem 3.2. If E|εt|p <∞ for some p > 4, then

Y[rT ] − [rT ]α√
T

⇒ σ(W (r) +
c

η + E(ej)
max
s∈[0,r]

W (s)) = σ(W (r) + c̃M(r), (11)

where c̃ = c
η+E(ej)

and M(r) = maxs∈[0,r] W (s).

The above limiting process is distinct from the standard Brownian motion found with
unit roots. In addition, this process is not found in the limiting distributions of any standard
time series models.
Careful inspection of the proof reveals that the i.i.d. assumption is only required to show a
strong law of large numbers for ej (Lemma 7.2) and tightness in D[0, 1] for N[rT ]/

√
T . As

such these could instead have been taken as the assumptions and these are likely to hold in
more general cases where the error terms are not assumed to be i.i.d.

4 Hypothesis testing in a panel setting

4.1 Testing

We now consider the issue of testing whether a time series follows a unit root or an anxious
unit root.

A pure time series test for the anxious unit root process is difficult to construct for this
model. Since intuitively the only information on c is obtained from the NT observations
for which the boundary is exceeded, and because estimators are typically estimated root-
n consistently and because NT = Op(

√
T ), we suspect that an estimator of c necessarily

converges no better than with rate T 1/4.
We will therefore consider testing in a panel setting. Below, we assume that Y i

t follows
an anxious unit root process with parameters ηi, αi, ci and Y i

0 = ωi, P i
0 = ωi+η. In addition,

assume that εit has cdf Fi which is assumed to be such that Eεit = 0 and Var(εit) = (σi)2.
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Let ci = c. For each i, this gives c̃i = c
ηi+E(eij)

. We therefore have , by Theorem 3.2 , that

for each i

Y i
[rT ] − αi[rT ]− Y i

0

σi
√
T

⇒ W i(r) + c̃iM i(r) as T →∞ (12)

where W i(·) is a standard Brownian motion and M i(r) = maxs∈[0,r] W
i(s). We assume

independence across i. We are interested in testing the null hypothesis H0 : ci = 0, ∀i.
We observe that sign(c̃i) = sign( c

η+E(eij)
) = sign(c), due to the fact that η + E(eij) > 0.

Therefore, we can instead consider the equivalent null hypothesis H0 : c̃i = 0, ∀i. In order
to construct a test for H0 we will first find consistent estimators for αi and σi. These will be
α̂i = T−1

∑T
t=1 ∆Y i

t and (σ̂i)2 = T−1
∑T

t=1(∆Y i
t − α̂i)2. These will be shown to be consistent

estimators in the following lemma.

Lemma 4.1. If E|εit|p <∞ for some p > 4, it follows that α̂i
P→ αi as T →∞ and σ̂i

P→ σi

as T →∞.

We propose the test statistic,

JN,T = N−1/2
√

12
N∑
i=1

(T−3/2(σ̂i)−1

T∑
t=1

(Y i
t − Y i

0 − α̂it)). (13)

The behavior of this test statistic is characterized in the following theorem.

Theorem 4.2. If Equation (12) holds for each i, E|εit|p < ∞ for some p > 4, and Y i
t are

independent across i, then

1. If H0 holds, then JN,T
d→ N(0, 1) as T→∞.

2. If H0 does not hold and limN→∞N
−1
∑N

i=1 c̃
i 6= 0, then

JN,T/
√
N

P→
√

(1/18π) limN→∞N
−1
∑N

i=1 c̃
i. as T →∞ followed by N →∞.

We note that we use the sequential asymptotics of Phillips and Moon (1999) for consid-
ering the behavior of JN,T under the alternative hypothesis.

Note that in the case where Y t
i is independent across i and a trend stationary process,

for a fixed N , JN,T = OP (T−1). Therefore, our test will not reject H0 in this situation.
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4.2 Testing for anxious unit roots in a panel of aggregate time
series

In this section we test several panels of aggregate time series for the presence of an anxious
unit root and we calculate the JN,T test statistic from Theorem (4.2). Each of the series we
test are macro aggregate time series that have previously been treated as time series with
unit roots in the literature. Table 1 gives test statistic values along with the data source.
We used two sources for our data

1. Macroeconomic aggregates from the Penn World Table;

2. Macroeconomic aggregates that were used in recent Journal of Applied Econometrics
articles on panel unit root testing or cointegration.

The data used was obtained from the Penn World Tables which can be found at http:

//cid.econ.ucdavis.edu/pwt.html. In order to limit the cross-sectional dependence, 24
countries were selected so as to decrease geographic proximity amongst the group. The
selected countries were Australia, Canada, Switzerland, China, Germany, Spain, Finland,
United Kingdom, Hungary, Iceland, Israel, Italy, Japan, Mexico, Malaysia, Nepal, Pakistan,
Peru, Philippines, Saudi Arabia, Singapore, Thailand, Turkey, and Venezuela. We used the
log of real GDP, the log of real consumption, exchange rate, and the log of the share of
government consumption. The Penn World table refers to these as rgdpna, rconna , xr, and
cshg. The time period used was 1970-2014 except for the exchange rate, for which 1990-2014
was used due to data availability. See Feenstra, Inklaar, and Timmer (2015) for information
on the Penn World Tables.
The data from the Journal of Applied Econometrics articles can be found at their data
archieve, http://qed.econ.queensu.ca/jae/.

Table 1: Panel testing for anxious unit roots

Time Series JN,T Data Source

Log Real GDP 5.64 Penn World Tables
Log Real Consumption 6.32 Penn World Tables
Real Exchange Rate 3.81 Penn World Tables
log Share of Government Consumption 1.90 Penn World Tables
Interest Rate -0.13 Westerlund 2008
CPI -0.27 Westerlund and Hess 2011
Inflation -2.08 Gengenbach et al 2016
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Table 1 suggests that endogenous changes in the drift a a feature of numerous macroeco-
nomic time series such as log(GDP), log(Consumption), Real Exchange Rates, and Inflation.
The small test statistic values for CPI and Inflation can be explained by either stationary-like
behavior or a situation where c is small of 0 (i.e., the unit root situation.) Given that JN,T
is roughly N(0, 1) under the null of a unit root, the very small values of JN,T for these two
series suggests that stationary-like behavior is likely the cause. It is unclear how to interpret
the value of 1.9 of JN,T for log Share of Government Consumption. The above result for log
GDP casts doubt on the widespread practice of using log GDP as a regressor in cointegration
analysis.

5 Cointegration

This section proposes a valid method of inference in a cointegration setting when a regressor
follows an anxious unit root process. The model of interest for this section is

Yt = βXt + u∗t , (14)

where Xt = St + cNt is an anxious unit root without drift, i.e. α = 0, and with ∆St =
εt. Note that u∗t is not assumed to be uncorrelated with εt. We will assume that c̃ >
−1. This guarantees that Y[rT ]/

√
T converges to a process that is not always negative. In

this cointegration setting there are three commonly used methods of estimating β: Fully
Modified (Phillips and Hansen 1990); Dynamic Ordinary Least Squares (Saikkonen 1991);
and Integrated Modified Ordinary Least Squares (Vogelsang and Wagner 2014). Additional
work can show that all three of these estimators are consistent in the anxious unit root
setting, however their standard errors will be invalid. While Fully Modified and Dynamic
Ordinary Least Squares can be adapted to this setting, this requires an estimate of c̃ and
therefore we instead consider Integrated Modified Ordinary Least Squares (IM-OLS). IM-
OLS proceeds by summing Equation (14), which gives

SYt = βSXt + Su
∗

t (15)

where SYt =
∑t

j=1 Yj and SXt and Su
∗

t are defined analogously. We will assume that

T−1/2(S[rT ], S
u∗

[sT ])⇒ W̃ (r, s), where W̃ is a two-dimensional scaled Brownian motion. As seen

in section 3 of Vogelsang and Wanger (2014), there is some γ such that if Sut = Su
∗

t − γSt
then T−1/2(S[rT ], S

u
[sT ]) ⇒ (σW (r), U(s)), where W (r) is Brownian motion and U(r) is a

scaled Brownian motion independent of W (r). We rewrite Equation (15) as

SYt = βSXt + γXt + (−γc)Nt + Sut . (16)
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IM-OLS is based on a regression of SXt and Xt on SYt in a setting where Nt is absent. If Nt

were observed in the data then it could simply be added to the regression equation; however,
Nt is not observed in the data. This issue is fixed by observing that asymptotically the
running maximum of Xt is a multiple of Nt. This is seen in the following lemma.

Lemma 5.1. Let MX
[rT ] = maxj≤[rT ] Xj. If E|εt|p <∞ for some p > 4 and c̃ > −1, then

MX
[rT ]/
√
T ⇒ (1 + c̃)M(r). (17)

In addition, for any r ∈ (0, 1]

N[rT ]/M
X
[rT ]

P→ c̃

c(1 + c̃)
. (18)

Therefore, we have that SYt = βSXt + γXt + θtMt + Sut , where θt = −γc Nt
MX
t
I(MX

t > 0).

By Lemma 5.1, θ[rT ] ⇒ θ := −γ c̃
1+c̃

on [δ, 1] for any δ > 0. Our estimator will then be to

regress SYt on SXt , Xt, and MX
t . This givesβ̂γ̂

θ̂

 =

 ∑T
t=1(SXt )2

∑T
t=1 S

X
t Xt

∑T
t=1 S

X
t M

X
t∑T

t=1XtS
X
t

∑T
t=1X

2
t

∑T
t=1XtM

X
t∑T

t=1 S
X
t M

X
t

∑T
t=1XtM

X
t

∑T
t=1(MX

t )2

−1∑T
t=1 S

X
t S

Y
t∑T

t=1XtS
Y
t∑T

t=1M
X
t S

Y
t

 . (19)

The fact that θt is random will cause complications in the analysis of this estimator, however
the asymptotics will behave as though θt = θ everywhere. We characterize the convergence
of this estimator in the following theorem.

Theorem 5.2. If (
S[rT ]

σ
√
T
,
SUt√
T

) ⇒ (W (r), U(r)), E|εt|p < ∞ for some p > 4, and c/η > −1,
then T (β̂ − β)

γ̂ − γ
θ̂ − θ

 d→ (20)


∫

[0,1]

∫
[0,s]

X(r)2drds
∫

[0,1]
(
∫

[0,s]
X(r)dr)X(s)ds (1 + c̃)

∫
[0,1]

(
∫

[0,s]
X(r)dr)MX(s)ds∫

[0,1]
(
∫

[0,s]
X(r)dr)X(s)ds

∫
[0,1]

X(r)2dr (1 + c̃)
∫

[0,1]
X(r)MX(r)dr

(1 + c̃)
∫

[0,1]
(
∫

[0,s]
X(r)dr)MX(s)ds (1 + c̃)

∫
[0,1]

X(r)MX(r)dr (1 + c̃)2
∫

[0,1]
MX(r)2dr


−1
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(21)

×


∫

[0,1]
(
∫

[0,s]
X(r)dr)U(s)ds∫

[0,1]
X(r)U(r)dr

(1 + c̃)
∫

[0,1]
MX(r)U(r)dr

 ,

where MX(r) = maxs∈[0,r] σW (s), X(r) = σ(W (r) + c̃M(r)), and U(r) is a scaled Brownian
motion independent of W (r).

Theorem 5.2 implies that standard asymptotic inference is valid for β̂ because the limit
distribution is a mixed normal. Note that the resulting estimation procedure does not require
an estimation of c̃. Theorem 5.2 illustrates that for series which may have an anxious unit
root, such as log GDP (as seen in section 4.2), a modified version of a cointegration analysis
is easy to implement. Additionally, the mixed asymptotic normality result continues to hold
in the pure unit root case of c = 0. In that case c̃ = 0 and θ = 0, yet inference on β using
Theorem 5.2 is unaffected.

6 Dependent errors

Throughout sections 3 through 5 we have assumed that the εt are i.i.d. In this section, we
will briefly discuss how this assumption could be relaxed. Without the i.i.d. assumption
Lemma 3.1 will no longer hold. However, if we assume that εt has the Markov property then
we can see that Ej ≡ (ej, ετj) is a Markov chain. This is due to the strong Markov property
that is obtained since ∆τj < ∞ a.s. Therefore, with a great deal of additional work and
some additional technical assumptions on εt it is likely that ej will still satisfy a strong law
of large numbers, as needed in the proof of Theorem 3.2.

Inspection of the proofs also reveals that the tightness proof in Theorem 3.2 used the
i.i.d. assumption, this, also, appears as though it will still hold under the assumption that
εt satisfies the Markov property. Additional work would be required to rigorously show this,
however. Given that the above holds, then Theorem 3.2 would be replaced by the following,

Y[rT ] − α[rT ]√
T

⇒ σ(W (r) + c̃M(r)), (22)

where σ2 = Var(εt) + 2
∑∞

t=1 cov(ε1, ε1+t). We note that this will not affect the cointegration
analysis of the previous section and as such adding the maximum will still be required for
valid cointegration inference.
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7 Conclusion

This paper introduces a new time series model that adds endogenous jumps to a standard
unit root process whenever the unit root process is near a historically high level, as one might
suspect to be present in series such as log GDP, house prices, inflation, exchange rate, and
unemployoment rate. While distinct from the unit root model, this model is still analytically
tractable, and gives rise to a novel limiting process. A simple panel testing procedure is
proposed and applied to panels of aggregate time series. Evidence for an anxious unit root is
found in several series, among which is log GDP. We show that cointegration analysis in the
presence of an anxious unit root can be conducted with a simple modification of Vogelsang
and Wagner’s (2014) IM-OLS procedure.
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Mathematical Appendix

Proof of Lemma 2.1:

We will first show that the ∆τj all have the same distribution. This is because

P (∆τj > t) = P (max
1≤s≤t

τj−1+s∑
i=τj−1+1

εi ≤ η) =
∞∑
l=1

P (max
1≤s≤t

τj−1+s∑
i=τj−1+1

εi ≤ η, τj−1 = l)

=
∞∑
l=1

P (max
1≤s≤t

l+s∑
i=l+1

εi ≤ η, τj−1 = l), (23)

and the two events in the last probability are independent. Therefore, the last probability
can be written as

∞∑
l=1

P (max
1≤s≤t

l+s∑
i=l+1

εi ≤ η)P (τj−1 = l) =
∞∑
l=1

P (max
1≤s≤t

s∑
i=1

εi ≤ η)P (τj−1 = l)

= P (max
1≤s≤t

s∑
i=1

εi ≤ η), (24)

which shows that the ∆τj all have the same distribution. We will now show that they are
pairwise independent, joint independence follows by a similar argument. Let j < k, j, k ∈ N
and s, t ∈ N. Then

P (∆τj > t,∆τk > s) = P (∆τj > t, max
1≤s≤t

τk−1+s∑
i=τk−1+1

εi ≤ η)

=
∞∑
l=1

P (∆τj > t, τk−1 = l, max
1≤s≤t

l+s∑
i=l+1

εi ≤ η) =
∞∑
l=1

P (∆τj > t, τk−1 = l)P (max
1≤s≤t

l+s∑
i=l+1

εi ≤ η)

=
∞∑
l=1

P (∆τj > t, τk−1 = l)P (max
1≤s≤t

s∑
i=1

εi ≤ η)

= P (∆τj > t)P (max
1≤s≤t

s∑
i=1

εi ≤ η) = P (∆τj > t)P (∆τk > s).
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Therefore, it follows that the ∆τj are i.i.d.
For Eτ1 we note that

Eτ1 =
∞∑
n=1

P (τ1 ≥ n) =
∞∑
n=1

P (Mn−1 ≤ η) ≥
∞∑
n=1

P (Mn−1 ≤ 0), (25)

and the last expression is infinite by Theorem 1a of section XII in Feller (1971), found on
page 415 of volume II.

Proof of Lemma 3.1:

The fact that ej ≥ 0 follows from the definition of τj. To show the i.i.d. property we first
show identical distributions of ej. This holds because

P (ej ≥ x− η) = P (

τj−1+∆τj∑
t=τj−1+1

εt ≥ x) =
∞∑
k=1

P (

τj−1+∆τj∑
t=τj−1+1

εt ≥ x, τj−1 = k) (26)

=
∞∑
k=1

P (

k+∆τj∑
t=k+1

εt ≥ x, τj−1 = k). (27)

By independence and Lemma (2.1) this is equal to

,
∞∑
k=1

P (

∆τj∑
t=1

εt ≥ x)P (τj−1 = k) = P (

∆τ1∑
t=1

εt ≥ x). (28)

We now show pairwise independence of the ej, joint independence follows by a similar argu-
ment. Let j > m. Then

P (em ≥ y − η, ej ≥ x− η) = P (
τm∑

t=τm−1+1

εt ≥ y,

τj∑
s=τj−1+1

εs ≥ x) (29)

=
∞∑
k=1

P (
τm∑

t=τm−1+1

εt ≥ y,

τj∑
s=τj−1+1

εs ≥ x, τj−1 = k) (30)

=
∞∑
k=1

P (
τm∑

t=τm−1+1

εt ≥ y,

k+∆τj∑
s=k+1

εs ≥ x, τj−1 = k). (31)

14



By independence and Lemma (2.1), it follows that the previous line equals

∞∑
k=1

P (
τm∑

t=τm−1+1

εt ≥ y, τj−1 = k)P (

k+∆τj∑
s=k+1

εs ≥ x) (32)

= P (

∆τ1∑
s=1

εs ≥ x)
∞∑
k=1

P (
τm∑

t=τm−1+1

εt ≥ y, τj−1 = k) = P (e1 ≥ x− η)P (em ≥ y − η) (33)

= P (em ≥ y − η)P (ej ≥ x− η). (34)

Therefore, the ej are independent.
We now show that Eej < ∞ if Var(εt) < ∞. We first define, for j ∈ N+, τ̃j = inf{t >
τ̃j−1 : St > Sτ̃j−1

}, ẽj = Sτ̃j − Sτ̃j−1
, and Ñ = inf{n ≥ 1 :

∑n
j=1 ẽj > η} along with τ̃0 = 0.

By a similar argument as Lemma 3.1 we can show that ẽj are a sequence of i.i.d. random
variables. In addition, is well known (see page 249 of Doney (1980), for example) that if
Var(εt) < ∞ then Eẽj < ∞. Ñ is a stopping time with respect to the natural filtration
generated by ẽj, and therefore if EÑ <∞, by Wald’s first identity, it follows that

ESτ1 = η + Ee1 = E
Ñ∑
j=1

ẽj = EÑEẽj <∞. (35)

We now will show that EÑ <∞ to complete the argument. We first note that

Eẽ1 ≥ Eε1I(τ̃1 = 1) = Eε1I(ε1 > 0) > 0. (36)

Therefore, there exists some K > 0 such that P (ẽ1 > K) = p > 0. We now can use this
property, Markov’s inequality, and the property that ẽj ≥ 0 to observe that

P (Ñ > n) = P (
n∑
j=1

ẽj ≤ η) ≤ P (
n∑
j=1

ẽjI(ẽj > K) ≤ η) (37)

≤ P (
n∑
j=1

KI(ẽj > K) ≤ η) = P (exp(−
n∑
j=1

I(ẽj > K)) > exp(−η/K)) (38)
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≤ E(exp(−
n∑
j=1

I(ẽj > K)))/ exp(−η/K) = (p exp(−1) + (1− p))n exp(η/K). (39)

Since p ∈ (0, 1] we have that |p exp(−1) + (1− p)| < 1 and therefore P (Ñ > n) = O(γn) for
some γ such that |γ| < 1. Therefore, EÑ =

∑∞
j=1 P (Ñ ≥ j) <∞.

The following lemma is crucial for relating t−1/2Nt to t−1/2Mt:

Lemma 7.1. Define

Rt = Mt −Ntη −
Nt∑
j=1

ej. (40)

Then 0 ≤ Rt ≤ η for every t.

Proof of Lemma 7.1:

From Equations (10) and (40), it follows that

Rt = Mt −Ntη −
Nt∑
j=1

(

τj∑
i=τj−1+1

εi − η) (41)

= Mt −Ntη −
Nt∑
j=1

τj∑
i=τj−1+1

εi +Ntη = Mt − SτNt . (42)

We will now show that this is bounded between 0 and η.
First we show that for every j ≥ 1 we have that Sτj = Mτj . We then proceed by induction.
For j = 1, Sτ1 = Mτ1 is due to the fact that τ1 is the smallest value of t for which St > η,
and as such it must be the maximum of {S1, ..., Sτ1}.
Now assume that Sτj = Mτj is true for some j ≥ 1. Then τj+1 is the smallest value of t for

which
∑t

i=τj+1 εi > η, and therefore Sτj+1
− Sτj = Sτj+1

−Mτj > η. In addition, since τj+1 is
the first time that St − Sτj exceeds η, we have Sτj+1

− Sτj = Mτj+1
− Sτj . This then gives us

that Sτj+1
= Mτj+1

.
We now return to Mt − SτNt . Since Sτj = Mτj by the above argument, it follows that
SτNt = MτNt

, and therefore Mt − SτNt = Mt −MτNt
.
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Now,

Mt −MτNt
=

K∑
i=τNt+1

εi (43)

for some K ∈ {τNt + 1, ..., t}. Yet, if there existed a value of t for which St − SτNt > η, we
would have had an additional jump between τNt and t, which would contradict the definition
of τNt . Thus, 0 ≤ Rt < η as claimed.

We now characterize the behavior of
∑Nt

j=1 ej in the following lemma.

Lemma 7.2. If Eej <∞ then,

1

Nt

Nt∑
j=1

ej
as−→ E(ej). (44)

Proof of Lemma 7.2:

We first show that Nt
p−→∞. Fix k ∈ N. We have that

P (Nt ≥ k) = P (τk ≤ t) = P (
k∑
i=1

∆τi ≤ t). (45)

Thus if we take the limit at t→∞ we find

lim
t→∞

P (Nt ≥ k) = lim
t→∞

P (
k∑
i=1

∆τi ≤ t) = 1 (46)

because ∆τi is proper and i.i.d. by Lemma 2.1. In addition, Nt is nondecreasing in t, and
therefore Nt

as−→∞. In addition, note that

1

n

n∑
j=1

ej
as−→ E(ej) (47)

by Kolmogorov’s strong law of large numbers because ej is i.i.d. and E|ej| <∞ by assump-

tion. Therefore, since 1
n

∑n
i=1 ei

as−→ E(ej) and Nt
as−→∞, it follows that

1

Nt

Nt∑
j=1

ej
as−→ E(ej). (48)

This completes the proof.
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Proof of Theorem 3.2:

For this result we need to show convergence of finite dimensional distributions and tightness
in D[0, 1]. We first show convergence of finite dimensional distributions. That is, for every
finite collection r1, .., rn ∈ (0, 1] we will show that

(
Y[r1T ] − α[r1T ]√

T
, ...,

Y[rnT ] − α[rnT ]√
T

)
d−→

σ(W (r1) +
c

η + E(ej)
max
s∈[0,r1]

W (s), ...,W (rn) +
c

η + E(ej)
max
s∈[0,rn]

W (s)).

By definition,

Rt = Mt −Ntη −
Nt∑
j=1

ej, (49)

and therefore

R[rT ] = M[rT ] −N[rT ]η −N[rT ](N
−1
[rT ]

N[rT ]∑
j=1

ej), (50)

which gives us

N[rT ] =
M[rT ] −R[rT ]

η + 1
N[rT ]

∑N[rT ]

j=1 ej
. (51)

Since Y[rT ] = α[rT ] + S[rT ] + cN[rT ], it follows that

Y[rT ] = α[rT ] + S[rT ] + c(
M[rT ] −R[rT ]

η + 1
N[rT ]

∑N[rT ]

j=1 ej
). (52)

Therefore,

Y[rT ] − α[rT ]√
T

=
S[rT ]√
T

+
c

η + 1
N[rT ]

∑N[rT ]

j=1 ej

M[rT ]√
T
− c

η + 1
N[rT ]

∑N[rT ]

j=1 ej

R[rT ]√
T
. (53)

By Lemma 7.1, T−1/2 supr∈[0,1] |R[rT ]| ≤ T−1/2η. Also, because ej ≥ 0, | c

η+ 1
N[rT ]

∑N[rT ]
j=1 ej

| ≤

|c|/η, and therefore, the last term in Equation (53) is asymptotically uniformly small.
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Now, by Slutsky’s theorem, the functional central limit theorem for T−1/2S[rT ] and the Con-
tinuous Mapping Theorem we have that

Y[rT ] − α[rT ]√
T

⇒ σ(W (r) +
c

η + E(ej)
max
s≤r

W (s)). (54)

Since this argument extends to any r1, .., rn ∈ (0, 1], the result now follows. Note that for
r = 0, the finite dimensional convergence holds trivially.

We now show tightness. Since
Y[rT ]−α[rT ]√

T
=

S[rT ]√
T

+ c
N[rT ]√
T

, and because it is well known that
S[rT ]√
T

is tight under our assumptions (see e.g. Davidson (1994)), we will only need to show

tightness for N[rT ]/
√
T . We define NT (r) = N[rT ]. By Theorem 28.12 of Davidson (1994),

this entails showing that for all η > 0,

lim
δ→0

lim sup
T→∞

P (inf
Πδ

max
1≤i≤k

max
r,s∈[ti,ti+1)

|NT (r)−NT (s)| ≥ η/
√
T ) = 0 (55)

where Πδ is the set of all partitions of [0, 1] where each interval is of size ≥ δ.
We now define a random partition. We let lT = [(1/2)(η

√
T − 1)]. We let

KT = max{k ∈ N+ : klT ≤ NT}. (56)

We define the random partition as P = {p0, p1, ...., pKT } by pk = T−1τklT for k < KT and
pKT = 1. We have that

P (inf
Πδ

max
1≤i≤k

max
r,s∈[ti,ti+1)

|NT (r)−NT (s)| ≥ η/
√
T ) (57)

= P (inf
Πδ

max
1≤i≤k

max
r,s∈[ti,ti+1)

|NT (r)−NT (s)| ≥ η
√
T ,P ∈ Πδ) (58)

+P (inf
Πδ

max
1≤i≤k

max
r,s∈[ti,ti+1)

|NT (r)−NT (s)| ≥ η
√
T ,P /∈ Πδ)

≤ P ( max
1≤i≤K

max
r,s∈[pi,pi+1)

|NT (r)−NT (s)| ≥ η
√
T ) + P (P /∈ Πδ). (59)

Since Nt is monotone we know that the maximum difference inside each interval will have
to occur at the end points, and therefore the above simplifies to

P (max
1≤i≤k

NT (p−i+1)−NT (pi) ≥ η
√
T ) + P (P /∈ Πδ), (60)

19



where NT (p−i+1) := lims↑pi+1
NT (s). By the definition of τj in Equation (6) we observe

that Nτj = j and that Nτj−1 = j − 1. This implies that NT (p−i+1) − NT (pi) = lT − 1
for i ∈ {0, ..., KT − 2} and that NT (p−KT )−NT (pKT−1) < 2lT . Therefore, 60 is bounded from
above by

P (2lT ≥ η
√
T ) + P (P /∈ Πδ) = P (P /∈ Πδ).

We now find an upper bound for P (P /∈ Πδ). We have that P /∈ Πδ if and only if mink(pk+1−
pk) < δ. Therefore,

P (P /∈ Πδ) = P ( min
0≤k≤KT−1

τ(k+1)lT − τklT < δT, T − τ(KT−1)lT < δT ). (61)

Since τKT lT ≤ T this is bounded above by

P ( min
0≤k≤KT

τ(k+1)lT − τklT < δT ) (62)

We let γ ∈ N+. The above probability is equal to

P ( min
0≤k≤KT

τ(k+1)lT − τklT < δT,KT ≤ γ) + P ( min
0≤k≤KT

τ(k+1)lT − τklT < δT,KT > γ). (63)

We bound this from above by the following

P ( min
0≤k≤γ

τ(k+1)lT − τklT < δT ) + P (KT > γ) (64)

= 1− P (τ(k+1)lT − τklT ≥ δT, ∀k ∈ {0, .., γ}) + P (KT > γ). (65)

Since the ∆τj are i.i.d., as seen in Lemma 2.1, this is equal to

1− P (τlT ≥ δT )γ + P (KT > γ) = 1− P (

lT∑
i=1

∆τi ≥ δT )γ + P (KT > γ) (66)

= 1− P (N[δT ] ≤ lT )γ + P (KT > γ) ≤ 1− P (N[δT ] ≤ lT )γ + P (NT/lT > γ), (67)

where the last line follows from the fact that KT lT ≤ NT . Therefore, using the above upper
bound, the finite dimensional convergence of N[rT ]/

√
T , and that limT→∞ lt/

√
T = (1/2)η it

follows that for all γ > 0,

lim sup
δ→0

lim sup
T→∞

P (inf
Πδ

max
1≤i≤k

NT (t−i+1)−NT (ti) ≥ η
√
T ) (68)
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≤ lim sup
δ→0

(1− P (
σM(δ)

η + E(ej)
≤ (1/2)η)γ + P (

σM(1)

η + E(ej)
≥ (1/2)γη)) (69)

= P (
σM(1)

η + E(ej)
≥ (1/2)γη). (70)

Taking the limit as γ →∞, we obtain

lim sup
δ→0

lim sup
T→∞

P (inf
Πδ

max
1≤i≤k

NT (t−i+1)−NT (ti) ≥ η
√
T ) = 0. (71)

This completes the proof that N[rT ]/
√
T is tight in D[0, 1].

Proof of Lemma 4.1:

For α̂i we have, by Theorem 3.2,

α̂i = T−1(Y i
T − Y i

0 ) = T−1(αiT + SiT + cN i
T − ωi) = αi +OP (T−1/2). (72)

Therefore, α̂i
P→ αi as T →∞. For (σ̂i)2 we observe that

T−1

T∑
t=1

(∆Y i
t − α̂i)2 = T−1

T∑
t=1

(αi − α̂i + εit + c∆N i
t )

2 (73)

= T−1

T∑
t=1

[(αi − α̂i)2 + 2(αi − α̂i)(εit + c∆N i
t ) + (εit + c∆N i

t )
2 (74)

= (αi − α̂i)2 + 2(αi − α̂i)Y i
T/T + T−1

T∑
t=1

(εit + c∆N i
t )

2. (75)

The first two terms in Equation ( 75 ) converge in probability to 0 as T → ∞ since both
αi − α̂i and Y i

T/T go to 0 in probability as T →∞. Therefore, we look at the last term.

T−1

T∑
t=1

[(εit)
2 + 2cεit∆N

i
t + c2∆N i

t ] (76)
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= T−1[
T∑
t=1

(εit)
2 + 2c

T∑
j=1

εit∆N
i
t + c2N i

T )] (77)

We have that T−1N i
T = OP (T−1/2) by Theorem 3.2. For the middle term we have that

|T−1

t∑
t=1

εit∆N
i
t | ≤ T−1N i

T max
1≤t≤T

|εit| = OP (T−1/2 max
1≤t≤T

|εit|) = op(1), (78)

where T−1/2 max1≤t≤T |εit| = oP (1) since E|εit|p < ∞ for some p > 4. Therefore, it follows
that

(σ̂i)2 = T−1

T∑
t=1

(εit)
2 +OP (T−1/2) + oP (1), (79)

therefore σ̂i
P→ σi as T →∞.

Lemma 7.3. For each i we let S iT = T−3/2(σ̂i)−1
∑T

t=1(Y i
t −α̂it−Y i

0 ). Under the assumptions
of section 4, we have that

S iT
d→
∫ 1

0

(W i(r) + c̃iM i(r)− rW i(1) + rc̃iM i(r))dr, as T →∞. (80)

In addition, under H0 c̃
i = 0, we have, for each i,

S iT
d→ N(0, 1/12), as T →∞. (81)

Proof of Lemma 7.3 :

We first note that for each i we have that

Y i
[rT ] − α̂i − Y i

0 [rT ]
√
T

=
Y i

[rT ] − αi[rT ]− Y i
0√

T
+ r
√
T (αi − α̂i) (82)

=
Y i

[rT ] − αi[rT ]− Y i
0√

T
+ r
√
T (αi − Y i

T − Y i
0

T
) (83)
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=
Y i

[rT ] − αi[rT ]− Y i
0√

T
−rY

i
T − αiT − Y i

0√
T

⇒ σi(W i(r)+ c̃iM i(r)−rW i(1)+rc̃iM i(1)), (84)

where the above convergence follows from Theorem 3.2. Therefore an application of Theorem
3.2 and the Continuous Mapping Theorem gives the desired convergence.
Under H0 we have that c̃i = 0. Therefore, by the above result, we have that

S iT
d→
∫ 1

0

(W i(r)− rW i(1))dr. (85)

It is clear that S iT is asymptotically normal. We first note that

E(

∫ 1

0

(W i(r)− rW i(1))dr) = 0, (86)

since E(W i(r)) = 0 for all r. Also,

E(

∫ 1

0

W i(r)− rW i(1)dr)2 = E(

∫ 1

0

W i(r)dr −W i(1)/2)2 (87)

= E[(

∫ 1

0

W i(r)dr)2 −W i(1)

∫ 1

0

W i(r)dr +W i(1)2/4] (88)

= 1/3−
∫ 1

0

EW (1)W (r)dr + 1/4 (89)

The last equality is due to the fact that
∫ 1

0
W i(r)dr

d∼ N(0, 1/3) and W i(1)
d∼ N(0, 1).

Therefore, the above is equal to

1/3−
∫ 1

0

rdr + 1/4 = 1/3− 1/2 + 1/4 = 1/12. (90)

This gives us that

S iT
d→ N(0, 1/12), as T→∞. (91)

Lemma 7.4. We have that

E(

∫ 1

0

(W i(r) + c̃iM i(r)− rW i(1) + rc̃iM i(r))dr) = c̃i
√

1/(18π). (92)
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Proof of Lemma 7.4 :

E[

∫ 1

0

[(W i(r)− rW i(1)) + c̃i(M i(r)− rM i(1))]dr] = c̃iE[

∫ 1

0

(M i(r)− rM i(1))dr] (93)

= c̃i
∫ 1

0

EM i(r)dr − (c̃i/2)EM i(1). (94)

It can easily be seen by the reflection principle for Brownian motion that EM i(r) =
√

2r/π.
Therefore, the above equals

c̃i
∫ 1

0

√
2r/πdr − (c̃i/2)

√
2/π = c̃i

√
2/π(2/3− 1/2) = c̃i

√
1/(18π). (95)

Proof of Theorem 4.2 :

We observe that

JN,T = N−1/2
√

12
N∑
i=1

S iT , (96)

where S iT is defined in Lemma 7.3. Under H0 this is asymptotically a sum of independent

N(0, 1) random variables by assumption and Lemma 7.3, therefore JN,T
d→ N(0, 1) as T →

∞.
Under HA the result follows from Lemma 7.4 and the weak law of large numbers.

Proof of Lemma 5.1:

Since

MX
[rT ]√
T

= max
0≤j≤[rT ]

Xj√
T
, (97)

the Continuous Mapping Theorem and Theorem 3.2 imply that

MX
[rT ]√
T
⇒ max

s∈[0,r]
σ(W (s) + c̃M(s)). (98)
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By assumption c̃ > −1 and therefore

max
s∈[0,r]

σ(W (s) + c̃M(s)) ≤ max
s∈[0,r]

σ(M(s) + c̃M(s)) = max
s∈[0,r]

(1 + c̃)σM(s) (99)

= (1 + c̃)σM(r). (100)

In addition, if we let s∗ ∈ [0, r] be such that W (s∗) = M(r) then we can observe that

max
s∈[0,r]

σ(W (s) + c̃M(s)) ≥ σ(W (s∗) + c̃M(s∗) = (1 + c̃)σM(r). (101)

Therefore, maxs∈[0,r](W (s) + c̃M(s)) = (1 + c̃)M(r).
We can also see, by the definition of Rt in Lemma 7.1, that

T−1/2(MX
[rT ], cN[rT ]) = T−1/2(MX

[rT ], c
MX

[rT ] − r[rT ]

η + 1
N[rT ]

∑N[rT ]

j=1 ej
). (102)

Therefore, by Lemma 7.1,

T−1/2(MX
[rT ], cN[rT ]

d→ σ((1 + c̃)M(r), c̃M(r)). (103)

Since M(r) > 0 a.s. for any r > 0 we have, by the Continuous Mapping Theorem, that

MX
[rT ]/N[rT ]

P→ c(1 + c̃)/c̃. (104)

Lemma 7.5. If c̃ > −1 and E|εt|p <∞ for some p > 4, then

T−2

T∑
t=1

(θt − θ)MX
t S

u
t

P→ 0. (105)

Proof of Lemma 7.5 :

We observe that

MX
t = max

j∈{1,..,t}
(Sj + cNj) = max

j∈{1,..,t}
(Njη + cNj +

Nj∑
i=1

ei +

j∑
i=τNj+1

εi) ≥ Nt(η + c), (106)
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where the above inequality comes from selecting j = τNt and the fact that ei ≥ 0. Therefore,

Nt/M
X
t ≤ (η + c)−1 <∞, (107)

where the last inequality follows from the assumption that c̃ > −1. This implies that
|θt| = |γc Nt

MX
t
I(MX

t > 0)| ≤ |γc(η + c)−1|. We now consider T−2
∑T

t=1(θt − θ)MX
t S

u
t .

|T−2

T∑
t=1

(θt − θ)MX
t S

u
t | ≤

MX
T√
T

maxt∈{1,..,T} S
u
t√

T
T−1

T∑
t=1

|θt − θ| (108)

=
MX

T√
T

maxt∈{1,..,T} S
u
t√

T

∫ 1

0

|θ[rT ] − θ|dr. (109)

By Lemma 5.1 and Theorem 3.2 we have that
MX
T√
T

maxt∈{1,..,T} S
u
t√

T

d→ (1+c̃)M(1) maxs∈[0,1] U(s) =

OP (1). In addition, for any δ > 0 we have that∫ 1

0

|θ[rT ] − θ|dr =

∫ δ

0

|θ[rT ] − θ|dr +

∫ 1

δ

|θ[rT ] − θ|dr (110)

≤ δ(|θ|+ |γc(η + c−1)|) +

∫ 1

δ

|θ[rT ] − θ|dr
P→ δ(|θ|+ |γc(η + c−1)|). (111)

The above bound holds for any δ, therefore taking letting δ go to 0 gives that
∫ 1

0
|θ[rT ]−θ|dr =

oP (1). Therefore, T−2
∑T

t=1(θt − θ)MX
t S

u
t = oP (1). This completes the lemma.

Proof of Theorem 5.2:

We have thatT (β̂ − β)
γ̂ − γ
θ̂ − θ

 =

 T−4
∑T

t=1(SXt )2 T−3
∑T

t=1 S
X
t Xt T−3

∑T
t=1 S

X
t M

X
t

T−3
∑T

t=1 XtS
X
t T−2

∑T
t=1X

2
t T−2

∑T
t=1 XtM

X
t

T−3
∑T

t=1 S
X
t M

X
t T−2

∑T
t=1 XtM

X
t T−2

∑T
t=1(MX

t )2

−1

× (112)

(

 T−3
∑T

t=1 S
X
t S

u
t

T−2
∑T

t=1 XtS
u
t

T−2
∑T

t=1M
X
t S

u
t

+

 0
0

T−2
∑T

t=1(θt − θ)MX
t S

u
t

).

26



By Lemma 7.5, Lemma 5.1, and Theorem 3.2 the above converges in distribution to
∫

[0,1]

∫
[0,s]

X(r)2drds
∫

[0,1]
(
∫

[0,s]
X(r)dr)X(s)ds (1 + c̃)

∫
[0,1]

(
∫

[0,s]
X(r)dr)MX(s)ds∫

[0,1]
(
∫

[0,s]
X(r)dr)X(s)ds

∫
[0,1]

X(r)2dr (1 + c̃)
∫

[0,1]
X(r)MX(r)dr

(1 + c̃)
∫

[0,1]
(
∫

[0,s]
X(r)dr)MX(s)ds (1 + c̃)

∫
[0,1]

X(r)MX(r)dr (1 + c̃)2
∫

[0,1]
MX(r)2dr


−1

(113)

×


∫

[0,1]
(
∫

[0,s]
X(r)dr)U(s)ds∫

[0,1]
X(r)U(r)dr

(1 + c̃)
∫

[0,1]
MX(r)U(r)dr

 .
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