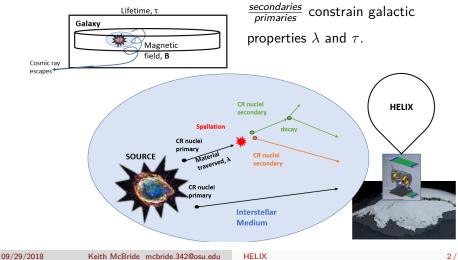
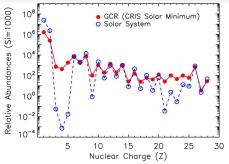
High Energy Light Isotope eXperiment


Keith McBride mcbride.342@osu.edu

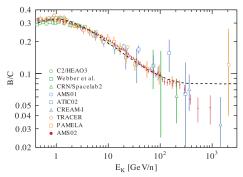
09/29/2018



Cosmic Ray Nuclei

Protons, electrons, and nuclei with energies between **GeV** to 100 EeV.

Abundances and ratio measurements


Research on ratios such as this constrain the energy dependent diffusion of the galaxy

or material CR traversed.


Formato, et al 2016 arxiv 1612.09160

Data shows the overabundance of elements in CR spectra compared to stellar processes \rightarrow Secondaries

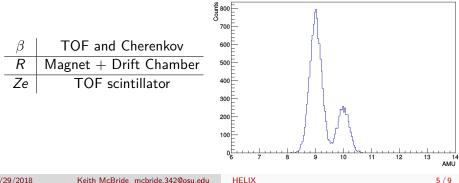
J. S. George, et al 2009 ApJ 698, 2

Isotopes and HELIX Goals

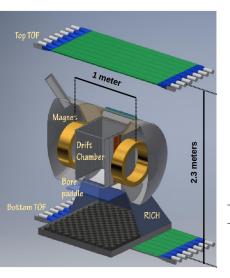
Expect to see thousands of Be events

09/29/2018

Experiment

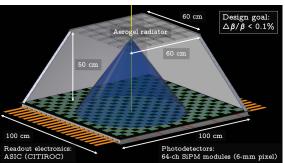

Measuring mass

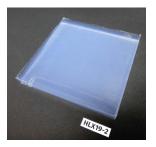
Mass identification using rigidity, velocity, and charge. $R \equiv \frac{p}{Ze} \rightarrow m = \frac{R(Ze)}{\gamma\beta}$ TOF and Cherenkov β R Magnet + Drift Chamber Ze TOF scintillator


Keith McBride mcbride.342@osu.edu

Required resolution for 4σ separation is $\frac{\Delta m}{m} \sim 0.025$. High resolution necessary for determining the isotope ratios.

Mass Identification of BervIlium Isotopes 9 and 10

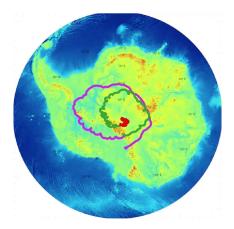

Superconducting Magnet Spectrometer


- TOF measures β with scintillator. (E< 1GeV/n)
- Bore paddle for triggering
- Drift Chamber with magnetic field $\rightarrow R = \frac{p}{Ze}$
- Magnet cooled to 4K with LHe and holds 250L. B \approx 1T, I \approx 100A

β	TOF and Cherenkov
R	Magnet + Drift Chamber
Ze	TOF scintillator

RICH or Ring Imaging CHerenkov Detector

Tabata 2018 RICH detector conference


Silica Aerogel

$$\cos \theta_C = \frac{1}{n\beta}$$
 E> 2GeV/n

$$n = 1.16$$

Flight

ANITA-4 Trajectory 2016

30 day flight with 2 orbits

- Polar Vortex during Austral Summer
- 30km altitude.
- Winds keep payload over continent.
- Constant daylight improves altitude stability.

HELIX Collaboration

- In summary, HELIX is a superconducting Magnet Spectrometer to observe relativistic charged Cosmic Ray nuclei flying on a balloon the size of a football field over the Antarctic ice in Dec 2020.
- Collaboration
- University of Chicago
- The Ohio State University
- Indiana University
- Penn State University
- Northern Kentucky University
- McGill University
- University of Michigan

We thank NASA Grant 80NSSC18K0232

