\checkmark You can check your answers to odd-numbered questions by consulting the back of the textbook.
Homework Assignment 1: (due Tuesday, January 20)
§1.8: \# 23, 28, 36, 40, 48 ["graphing utility" not required for 23, 28]
§1.9: \# 15, 21, 26, 32, 49
Homework Assignment 2: (due Tuesday, January 27)
§2.1: \# 13, 27, 31, 50
§2.2: \# 25, 29, 52, 54, 59, 64, 78
Homework Assignment 3: (due Tuesday, February 3)
§2.3: \# 19, 27, $36^{*}, 51,56,59^{* *}$
§2.4: \# 16, 21, 23, 38, 39
Find the area of the indicated region as well. ${ }^{ *}$ Indicate explicitly the volume in each case.
Homework Assignment 4: (due Tuesday, February 10)
§2.5: \# 33, 41, 47, 54, 78*
*Do this problem twice, both by cylindrical coordinates and by spherical coordinates. You should get the same answer, namely $\pi R h^{2}-\frac{1}{3} \pi h^{3}=\frac{1}{3} \pi h^{2}(3 R-h)$.

Homework Assignment 5: (due Tuesday, February 17)
§3.1: \# 16, 46, 50
§3.2: \# 17, 20, 29, 32, 41, 60
Homework Assignment 6: (due Tuesday, February 24)
§3.3: \# 17, 18, 26, 30, 42, 43
§4.1: \# 15, 31, 34
Homework Assignment 7: (due Tuesday, March 3)
§4.2: \# 21*, $28^{*}, 30^{*}, 35,50,53^{*}$
§4.3: \# 20, $23^{* *}, 24(\mathrm{a})$
*There is more than one way to express the correct answer (depending on the choice of free variables).
** The answer given in the back of the textbook is incorrect.
Homework Assignment 8: (due Tuesday, March 10)
§4.4: \# 2, 10
§4.5: \# 31, 54, 57
§4.6: \# 30, 32
Homework Assignment 9: (due Tuesday, March 24)
§4.7: \# 6, 12, 31
§4.9: \# 20, 26, 50
Appendix C (page 473): $\# 5,11,21,30,33,49,50$
Homework Assignment 10: (due Tuesday, March 31)
§5.1: \#47(a)-(c), 58, 62, 70
§5.2: \# 18, 24, 30, 36, 42
Homework Assignment 11: (due Tuesday, April 7)
§5.3: \# 22, 23, 30, 34, 40, 52
§5.4: \# 11, 19*
*Replace parts (d) and (e) with: "Explain why the motion is underdamped/overdamped if the value of k in part (a) is increased/decreased by 50%."

Homework Assignment 12: (due Tuesday, April 21)
§6.2: \# 14, 16, 21
§6.3: \# 15, 19
§6.4: \# 7, 18*
*Determine (without calculation) the Fourier sine series for $f(x)$ from the ones already obtained for πx and x^{2}.

