SLS Talk Wed. Oct. 3

Investigating the Effect of Thermoelectric Processing on Ionic Aggregation in Thermoplastic Ionomers

By:  Prasant Vijayaraghavan

Ionomers are a class of polymers which contain a small fraction of charged groups in the polymer backbone. These ionic groups aggregate (termed ionic aggregates) to form temporary cross-links that break apart over the ionic dissociation temperature and re-aggregate on cooling, influencing the mechanical properties of these polymers. In addition to enhanced mechanical properties, some ionomers also exhibit self-healing behavior. The self-healing behavior is a consequence of weakly bonded ionic aggregates breaking apart and re-aggregating after puncture or a ballistic impact. The structure and properties of ionomers have been studied over the last several decades; however, there is a lack of understanding of the influence of an electrostatic field on ionic aggregate morphology. Characterizing the effect of temperature and electric field on the formation and structure of these ionic aggregates will lead to preparation of ionomers with enhanced structural properties. This work focuses on Surlyn® 8940 which is a poly-ethelene methacryclic acid co-polymer in which a fraction of the carboxylic acid is terminated by sodium. In this work, Surlyn® is thermoelectrically processed over its ionic dissociation temperature in the presence of a strong electrostatic field. Thermal, X-ray and Infrared studies are performed on the ionomer to study the effect of the thermoelectric processing. It is shown that the application of a thermoelectric field leads to increase in the ionic aggregate order in these materials and reduction in crystal size distribution.