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Abstract

In this work, we study constrained submodular maximization problems and design algorithms
that improve the state-of-the-art in terms of query complexity and/or approximation guarantee.
We first present the adaptive decreasing threshold algorithm, which achieves an approximation
ratio of (1− 1/e− ε) by performing O(max{ε−1, log log k}) queries per element. To the best of
our knowledge, this is currently the fastest known deterministic algorithm, and nearly achieves
the optimal approximation ratio.

We also study several other well-known monotone submodular maximization problems.
First, for the intersection of p-system and d knapsack constraints, we propose the backtracking
threshold algorithm that obtains an (1/(p+ 7

4d+ 1)−Θ(1))-approximate solution by performing
O(logn·log logn) queries per element, which improves the state-of-the-art in both time complexity
and approximation ratio. We next present an (7/16 − ε)-approximate algorithm for a single
knapsack constraint, which requires O(max{ε−1, log logn}) queries per element and two passes
in the streaming setting.

Query complexity lower bounds of submodular maximization problems are also studied in this
paper. We first show a o(n/ logn) lower bound for cardinality constraint and monotone objective.
Using a similar approach, we are able to present a complete characterization of the query
complexity of unconstrained submodular maximization. To establish the query complexity lower
bounds, we introduce a general relationship between randomized and deterministic complexity of
approximation algorithms. We envision that this characterization may be used in other problems
and may be interesting in its own right.

1 Introduction

A set function f : 2E → R+ defined on ground E of size n is submodular, if for any two subsets
S, T ⊆ E, the inequality f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ) holds. It is monotone non-decreasing
if f(S) ≤ f(T ) holds for any two sets S ⊆ T ⊆ E. Submodular functions form a natural class of set
functions with the property of diminishing returns, which has numerous applications in computer
science, economics, and operation research. For example, viral marketing [35, 36], sensor and caching
networks [72, 39, 34], context-aware mobile computing [42, 43], and optimal control [70]. Many
machine learning problems which are inherently discrete, such as feature selection [39], document

1



summarization [46, 47, 30, 53] and news recommendation [68], can also be cast as submodular
maximization problems. Because of its widespread applicability, there has been a vast amount of
literature on submodular maximization subject to diverse types of constraints [58, 37, 63, 12, 17,
26, 67, 28, 27, 16, 62]. However, many of these algorithmic results do not scale well for practical
applications of large-size [4, 64]. Badanidiyuru and Vondrák [4] formally investigated the problem
of designing fast algorithms with provable guarantees for submodular maximization problems.
Obtaining fast running time is of fundamental importance in both theory and practice [20] and there
has been a considerable amount of interest in this direction [2, 27, 41, 10, 16, 54, 19, 20], together
with related large-scale scenarios including distributed settings [5, 52, 55], online and streaming
models [1, 3, 38, 15, 11, 13, 14, 32, 61, 25], etc.
In this paper, we focus on improving both the computational speed and the approximation

guarantee of submodular maximization algorithms. The first problem we consider is maximizing a
monotone submodular function subject to the cardinality constraint. The greedy algorithm [58] is
known to achieve the optimal approximation ratio of (1−1/e) [58, 57, 21], and requires O(k) queries
per element. To accelerate the standard greedy paradigm, Badanidiyuru and Vondrák [4] proposed
the threshold greedy algorithm, which avoids directly seeking the element with the maximum
marginal increment, by selecting elements with marginal values no less than multiplicatively
decreasing thresholds. The threshold greedy algorithm is shown to achieve an approximation ratio
of (1− 1/e− ε) via O((1/ε) log(n/ε)) function evaluations per element. It is natural to wonder: can
the complexity barrier of O((1/ε) log(n/ε)) queries per element for achieving the almost optimal
approximation ratio deterministically be further improved? We answer this question by providing a
faster algorithm1 in Theorem 1.
As a natural generalization of the cardinality case, the classic knapsack constraint has also been

well studied. Sviridenko [63] proposed the density greedy algorithm with partial enumeration, which
achieves the optimal ratio of (1−1/e) in O(n5) time. For the line of algorithm acceleration, the current
best result is due to Ene and Nguyen [19], in which a nearly linear randomized O((1/ε)O(1/ε4)n log2 n)
time algorithm with approximation factor (1−1/e−ε) was proposed. However, the problem under the
streaming model is less well understood, in which there is an inherent trade-off among performance
metrics including approximation guarantee, time complexity and number of passes over the stream.
Huang et al. [32, 33] proposed an (0.363 − ε)-approximate single pass streaming algorithm that
requires O((1/ε4) log4 n) space and queries per element, together with a (0.4− ε)-approximate three
pass algorithm with the same space and running time requirements as the single pass algorithm.
However, closing the gap between the best algorithm and hardness result in the streaming model
for a single knapsack constraint has remained open. We present our algorithm in Theorem 5.
For the more general type of multiple knapsack constraints, Azar and Gamzu [2] proposed a

multiplicative weight update (MWU)-based greedy algorithm that achieves a width-dependent
approximation ratio of Ω(1/d1/W ), where d represents the number of constraints and W refers to the
width of the packing system. The approximation guarantee can be further improved to Ω(1/d1/W+1)
for a binary cost matrix. There also exists a randomized (1− 1/e− ε)-approximate algorithm [40],
when the number of knapsack constraints is constant. In addition to the above-mentioned results,
one question in need of further investigation is: for multiple (even constant number of binary)
packing constraints, does there exist a time efficient deterministic algorithm with width independent

1There is a O(nε−1 log(ε−1 log n)) time algorithm that was obtained independently in [31]. Comparisons between
our algorithm [45] with [31] is presented in Section 2.2.
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constant approximation ratio? We answer this in affirmative in Lemma 6.
The most general type of constraint considered in our paper is the intersection of a p-system

and d knapsack constraints [4]. p-system generalizes many classic combinatorial constraints such
as the intersection of p matroids, p-set packing [4], etc. The current best result for maximizing a
monotone submodular function subject to the intersection of p-system and d knapsack constraints is
due to Badanidiyuru and Vondrák [4], in which an (1/(p+ 2d+ 1)− ε)-approximate algorithm was
proposed and O((n/ε2) log2(n/ε)) oracle queries per element are required. On the inapproximability
side, there is a lower bound of (1− e−p) + ε ≤ 1/(p+ 1/2) + ε even for p-extendible system [24].
To the best of our knowledge, there is no algorithm that is able to move closer towards the lower
bound using a comparable number of queries. We address this challenge by providing an algorithm
with better performance guarantee in Theorem 4.

Finally, in spite of all the attention that submodular maximization has received and the large
literature on the complexity upper bound side, its fine-grained query complexity lower bound
remains open. Recall that the decreasing marginal increment property of the submodular function
is widely known as the discrete analog of decreasing derivative of a concave function. However,
while tight complexity bounds for continuous optimization, which first appeared in Nemirovski and
Yudin [59] in 1983, have already been established for various structural assumptions (e.g., smooth
and non-smooth, convex and strongly convex [59, 60, 6]), the query complexity lower bound of
maximizing a submodular function is still not fully understood. Given the widespread applications
of submodular maximization2, understanding its inherent fundamental computational complexity is
an urgent issue to address. To that end, we present our lower bound results in Theorems 2 and 3.

1.1 Results Overview

Cardinality Constraint. In Section 2, we present a faster deterministic algorithm for the
cardinality constraint, with performance guarantee claimed by the following theorem. We improve
the query complexity of the threshold greedy algorithm [4], which requires O((1/ε) log(n/ε)) function
evaluations per element, to O(max{ε−1, log logn}).

Theorem 1. There is an (1 − 1/e − ε)-approximate deterministic algorithm for the cardinal-
ity constrained monotone submodular maximization problem maxS⊆E,|S|≤k f(S), which performs
O(max{ε−1, log logn}) value oracle queries per element.

Related work [31]. An O(nε−1 log(ε−1 logn)) time algorithm was obtained independently in [31].
We compare our algorithm [45] with that in [31] in Section 2.2.
Query complexity lower bounds of submodular maximization. In Section 3 we also establish
an O(n/ logn) complexity lower bound3 when cardinality bound k ∈ [n/2], for which we reveal the
following general relationship on query complexity between deterministic and randomized algorithms
with desirable approximation guarantees. The conclusion enables us to extend our arguments to the
randomized setting and it relies heavily on the scale free property that is specified in Definition 10.
Due to space limitation, the proof of Theorem 2 is presented in Appendix B.4.

Theorem 2. Suppose that there exists a scale-free input instance set Is for problem P, on which
the worst case time complexity of any α-approximate deterministic algorithm is in the order of

2There exists lower bounds for submodular minimization [29].
3There exists a linear complexity bound when k is constant.
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Ω(T (P)). Then the time complexity of any (α+ δ)-approximate randomized algorithm A of problem
P must be in the order of Ω(T (P)), where δ is any constant such that α+ δ ≤ 1.

Based on Theorem 2 and similar arguments as that for cardinality constraint, we prove that
the double greedy algorithm is optimal in query complexity4. Consequently, we have the following
complete characterization of query complexity of USM.

Theorem 3. For any constant δ > 0, no (randomized) algorithm can achieve an approximation ratio
of (1

4 + δ) for USM, while making o(n/ logn) queries to f(·). In addition, there exists an algorithm5

for the instance of finding the maximum cut in a complete bipartite directed graph, using O(n/ logn)
queries to the cut function fC(·) in (16). As a consequence, let f ](ρ) denote the minimum number
of queries required to obtain a ρ-approximation for USM, as shown in Figure 1, we have f ](ρ) = 0
for ρ ∈ [0, 1

4 ] [22], f ](ρ) = Θ̃(n) for6 ρ ∈ (1
4 ,

1
2 ] [9] and f ](ρ) = Ω(exp(n)) for ρ ∈ (1

2 , 1] [22].

Random 
Set [23] Double Greedy [10]

Theorem 3

Hardness Result [23]

Figure 1: Query complexity of USM: a graphic illustration of f ](·). Here f ](ρ) refers to the minimum
query complexity of ρ-approximate algorithm for USM.

Intersection of p-system and d-knapsack constraints. In Section 4, we study the problem
when the constraint set I represents the intersection of p-system and d knapsack constraints.

Theorem 4. There is an (1/(p + 7
4d + 1) − Θ(1))-approximation algorithm for maximizing a

non-negative monotone submodular function subject to a p-system and d knapsack constraints, which
performs O(logn · log logn) value and membership oracle queries per element.

4We thank Moran Feldman as this application is noted and realized from [23].
5We thank XYZ for pointing out this fact.
6The Θ̃(·) notation hides terms poly-logarithmic in n.
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In Theorem 4 we improve the (1/(p+ 2d+ 1)− ε)-approximate algorithm in [4], which requires
O((n/ε2) log2(n/ε)) oracle queries per element. It is important to remark that the result established
in Theorem 4 surpasses the state-of-the-art [4] both in approximation ratio and time complexity,
and the improvement in approximation ratio is constant for constant value of p and d. The proof of
Theorem 4 is given in Appendix C.9. It is worth pointing out that we can obtain a similar result for
non-monotone objective function, though we omit the details here.
Packing Constraints. In Section 5 we study the case when I represents a packing constraint,
i.e., I = {S ⊆ E|AxS ≤ b}. We first note that within O(n ·max{ε−1. log logn}) time, it is possible
to obtain an approximation of 1/(7

4d + 9
10 + 9

120d+16) − O(ε), which is better than the ratio of
(1/(1 + 7

4d) − ε) implied by Theorem 4. The proof is presented in Appendix D.1. Furthermore,
we investigate two specific forms of packing constrained optimization problems. The first one is
the well-known knapsack constrained submodular maximization problem, for which the result is
summarized in the following Theorem 5.

Theorem 5. There is an (7/16− ε)-approximate algorithm for maximizing a monotone submodular
function subject to a single knapsack constraint, which requires O(max{ε−1, log logn}) value queries
per element. Our algorithm can be adapted to the streaming setting, in which the approximation
ratio of (7/16− ε) can be achieved within two passes over the data stream, while using O(n logn/ε)
space and performing O(logn/ε) queries per element.

In Theorem 5 we improve the (0.4 − ε)-approximate algorithm in [32, 33], which requires
O(log4 n/ε4) queries per element, O(n log4 n/ε4) space and three passes on the stream. We remark
that our algorithm achieves better performance guarantees in all three dimensions of time complexity,
space complexity and number of passes. The proof of Theorem 5 is presented in Appendix D.4
Our next result applies to binary packing constraint with constant dimension. We would like

to emphasize that our approximation ratio is width independent and holds deterministically. It
is worth mentioning that [56] proposed the first deterministic non-trivial algorithm for a constant
number of packing constraints. However, it requires O(nO(poly(1/ε))) time to achieve an approximation
ratio of (1/e− ε), while the running time of our algorithm for constant number of binary packing
constraint is nearly linear in the input size.

Lemma 6. There is a (1/2− ε)-approximate deterministic algorithm that performs Oε(log logn)
value oracle queries per element7, for the binary packing constraint with constant dimension, i.e.,
A ∈ {0, 1}d×n where d = O(1). The result also holds if A ∈ Fd×n, where F consists of constants
and |F| = O(1).

In some of our results, we try to understand the boundary of the approximation guarantee that
one algorithm can achieve via nearly linear number of queries in total, e.g., Oε(log logn) queries per
element, while Ωε(logn) queries per element are required in previous works, which is exponentially
higher than the complexity result(s) in this paper.

7As in the literature (e.g., [1]), the Oε(·) notation hides the dependence on ε, as the hidden term h(ε) is constant
for constant ε.
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1.2 Techniques

Adaptive decreasing threshold algorithm. We first show that an (1− 1/e− ε)-approximate
solution can be obtained via O(n/ε) queries, if we are given access to a constant approximation
of f(OPT). To this end, we maintain an upper and lower estimate on the value of f(OPT), and
adaptively update the estimates based on the outcome of each iteration. More specifically, we utilize
a set of carefully designed thresholds that are related to the estimates in the previous iteration,
to select elements with marginal gains above the threshold. Then the estimates will be updated
according to the objective value of sets selected in current iteration. The two estimates are shown
to have a constant gap at the end of the algorithm. We compare ADT with existing techniques in
Section 2.2.
Backtracking threshold algorithm. The backtracking threshold (BT) algorithm is proposed for
improving the approximation ratio when knapsack constraints are involved. The BT algorithm
selects elements with marginal increments above a threshold into the candidate solution set, until
the total cost exceeds the given budget. Then starting from current element, it constructs a new
candidate solution set by recursively seeking elements in the first candidate solution set under the
budget constraint. Those recursively constructed sets perform as important counterparts of the
first solution. In addition, the down-closed property of the constraint set ensures the feasibility of
obtained solution.
Approximately guessing in the value space deterministically. For binary packing constraint,
the desired performance guarantee is obtained by considering the appropriate residual problem,
for which we need to select a target set. Directly searching among all the possible candidate sets
may incur high query complexity, we reduce the complexity by selecting the element with almost
identical marginal gain (with respect to the current solution) at each step. The solution to the
corresponding residual problem is proved to achieve a deterministic approximation ratio of (1/2− ε).
One salient feature of this deterministic selection procedure is that the query complexity has a near
linear dependence on the input instance size.

2 Faster Algorithm for the Cardinality Constraint

Our adaptive decreasing threshold (ADT) algorithm is specified in Algorithm 1, which mainly
consists of two phases—a preprocessing procedure and a refined threshold decreasing procedure. In
the i-th iteration of the preprocessing procedure, we maintain w̄i and wi as an upper and lower
estimate on the optimal objective value. At the end iteration i, the lower estimate of f(OPT) is
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updated as the maximum function value of the sets obtained in i-th iteration.

Algorithm 1: Adaptive Decreasing Threshold (ADT) Algorithm
1 Initialization: ω1 ← maxe∈E f(e), ω̄1 ← k · ω1, U ← ∅, `← dlog log ke.
2 for i = 1 : ` do
3 αi = exp(log k · e−i)− 1, θ = ωi
4 while θ ≤ ω̄i do
5 S

(i)
θ ← ∅

6 for e ∈ E do
7 if f(S(i)

θ + e)− f(S(i)
θ ) ≥ θ/2k and |S(i)

θ | ≤ k then
8 S

(i)
θ ← S

(i)
θ + e

9 θ ← θ(1 + αi)

10 ωi+1 ← maxθ f(S(i)
θ ), ω̄i+1 ← 2(1 + αi) · ωi+1

11 τ ← 2ew
`

k

12 while τ ≥ w`
ek do

13 for e ∈ E do
14 if f(U + e)− f(U) ≥ τ and |U | ≤ k then
15 U ← U + e

16 τ ← τ − εω`
k

17 return U

2.1 Performance analysis of ADT

Analysis of the preprocessing procedure. We first prove that in the first phase of our algorithm,
wi and w̄i are always valid lower and upper bounds on f(OPT).

Lemma 7. For any i ∈ [`], the optimal objective value always lies between wi and w̄i, i.e.,
wi ≤ f(OPT) ≤ w̄i.

Proof: We prove this lemma by induction. For the base case when i = 1, as w1 is initialized to
be the maximum objective value of a singleton, Lemma 7 is equivalent to maxe f(e) ≤ f(OPT) ≤
k · maxe f(e), which follows from the submodularity of f(·). Notice that for i ≥ 2, we have
wi = maxθ f(S(i−1)

θ ), where S(i−1)
θ is a feasible solution as |S(i−1)

θ | ≤ k. Hence wi is always a valid
lower bound of f(OPT) and what remains to prove is w̄i ≥ f(OPT) for ∀i ∈ [`].
Induction Step. Assume that w̄i ≥ f(OPT) holds for i = q. In the following, we complete
the proof for i = q + 1 by lower bounding the objective value of f(S(q)

θ∗q
). Observe that in the

q-th iteration, θ takes values in set Θq = {wq, wq(1 + αq), . . . , wq(1 + αq)blog(w̄q/wq)/log(1+αq)c.
Combined with the induction assumption w̄q ≥ f(OPT), there must exist some θ∗q ∈ Θq such that
θ∗q ≤ f(OPT) ≤ (1 +αq)θ∗q . Consider the iteration in which θ = θ∗q , it can be seen that f(S(q)

θ∗q
) must

be no less than its size multiplied by the corresponding threshold, if there are exactly k elements in
S

(q)
θ∗q

, i.e., f(S(q)
θ∗q

) ≥ θ∗q
2k · |S

(q)
θ∗ | ≥

θ∗q
2 · 1|S(q)

θ∗q
|=k ≥

f(OPT)
2(1+αq) · 1|S(q)

θ∗q
|=k. If there are less than k elements
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in set S(q)
θ∗q

, elements in OPT \ S(q)
θ∗q

will have a small marginal gain with respect to S(q)
θ∗q

and

[f(OPT)− f(S(q)
θ∗q

)] · 1|S(q)
θ∗q
|<k ≤f(OPT ∪ S(q)

θ∗q
)− f(S(q)

θ∗q
) (monotonicity)

≤
∑

e∈OPT

[
f(S(q)

θ∗q
+ e)− f(S(q)

θ∗q
)
]
≤

∑
e∈OPT

θ∗q
2k =

θ∗q
2 ≤

f(OPT)
2 .

This implies that f(S(q)
θ∗ ) ≥ f(OPT)

2 · 1|S(q)
θ∗q
|<k. To summarize, we have

f(S(q)
θ∗ ) ≥ f(OPT)

2(1 + αq)
· 1|S(q)

θ∗q
|=k + f(OPT)

2 · 1|S(q)
θ∗q
|<k ≥

f(OPT)
2(1 + αq)

. (1)

Therefore w̄q+1 = 2(1 + αq)wq+1 = 2(1 + αq) maxθ f(S(q)
θ ) ≥ 2(1 + αq)f(S(q)

θ∗q
) ≥ f(OPT), which

are mainly based on (1) and the definition of wi, w̄i. The proof is complete. �

As a consequence, we have the following corollary characterizing the relationship between w` and
f(OPT). The correctness of Corollary 8 follows from Lemma 7 and the fact that w̄` = (1 + α`)w` =
exp(log k · e−dlog log ke)w` ≤ ew`.

Corollary 8. For the lower estimate obtained at the end of the `-iteration, we have f(OPT)
2e ≤ w` ≤

f(OPT).

Analysis and motivation of the refined threshold decreasing procedure. For set U returned
by Algorithm 1, we have f(U) ≥ (1−1/−ε)·f(OPT), the analysis and proof of Theorem 1 is presented
in Appendix B.1. Here we explain the motivation of the second phase in detail. Recall that in the
standard greedy algorithm, each selected element has a marginal gain that is no less than the average
residual distance between OPT and the function value of current solution, which ensures the (1−1/e)
approximation ratio. We make the observation that, we can always assume that the average residual
distance lies in an interval with constant multiplicative gap, i.e., f(OPT)−f(U)

k ∈
[
f(OPT)
ek , f(OPT)

k

]
,

since U is already a desirable solution set if f(U) ≥ (1− 1/e) · f(OPT). This motivates us to guess
the average residual distance in each step of the greedy algorithm, via the arithmetic sequence
G̃ =

{
f(OPT)

k , (1− ε) · f(OPT)
k , (1− 2ε) · f(OPT)

k , . . . , f(OPT)
ek

}
.

Proposition 9 (Complexity of Algorithm 1). Algorithm 1 performs O(max{ε−1, log logn}) queries
per element.

Proof: Note that in the i-th iteration of the preprocessing procedure, we perform O( log (ωi/ω̄i)
log(1+αi) ) =

O( log (1+αi−1)
log(1+αi) ) queries on each element, which implies that the total number of queries performed

per element is in the order of O(
∑`
i=1

log (1+αi−1)
log(1+αi) ) = O(

∑`
i=1

log(exp(log k·e−i+1))
log(exp(log k·e−i)) ) = e` = O(log logn).

The refined threshold decreasing procedure has e2/ε = O(1/ε) iterations in total, while each iteration
requires constant number of queries per element. The proof is complete. �
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2.2 Review and comparisons with existing methods

In the following we briefly review the threshold greedy algorithm and the algorithm in [31]. Due to
space limitation, We defer the overview of the lazy greedy heuristic and stochastic greedy algorithm
to Appendix B.2.
Threshold Greedy Algorithm [4]. The decreasing threshold algorithm utilizes a series of
geometrically decreasing thresholds to select elements when its marginal increment is above the
threshold. As pointed out in [4, page 3], the motivation of this algorithm can be thought of inspiring
by lazy greedy, as lazy greedy can be regarded as maintaining continuously decreasing thresholds to
avoid searching the maximum marginal value.
Comparison with algorithm in [31]. The main subroutine in [31], Simple, is in a similar spirit
to the classic greedy algorithm, which continuously selects elements according to the objective
value of current candidate set and parameter v, an (1 − ε)-approximation of f(OPT) (i.e., v ∈
[(1− ε)f(OPT), f(OPT)]). To obtain a feasible value of v, a binary search procedure is applied on
O(ε−1 logn) predefined well-spaced guesses. In each iteration of the binary search [31], the Simple
procedure is applied, which requires O(ε−1) passes on the elements. Our ADT algorithm requires a
constant approximation of f(OPT). To this end, the preprocessing phase uses thresholds decreasing
at a speed that is related to the numerical output in last iteration, and update the estimations of
f(OPT) according to objective values of blog(w̄q/wq)/ log(1 + αq)c sets. For each fixed threshold,
ADT only makes a single pass on the elements to get the result.

While in ADT we can obtain an interval [wi, w̄i+1] that contains f(OPT) and shrinks at each
iteration, the algorithm in [31] is not able to obtain estimates of f(OPT) until the whole binary
search procedure terminates, as it requires the value of all the historic midpoints during the binary
search.

3 Complexity lower bound for cardinality constraint and beyond

Besides the aforementioned O(n ·max{ε−1, log logn}) upper bound, we show a o(n/ logn) lower
bound for k ∈ [n/2] in Appendix B.3. A widely used approach to show time complexity lower bounds
for deterministic algorithms is to figure out a set of hard instances on which, for any deterministic
algorithm, there always exists a specific instance to prevent the algorithm from finding the desired
answer efficiently. Theorem 2 indicates that if the aforementioned instance set satisfies the following
property, termed scale-free, then the deterministic complexity lower bounds can be extended to
randomized setting, with a slight increment (arbitrarily small constant) in approximation ratio.

Definition 10 (scale-free instance set). A finite instance set I is called scale-free, if there exists a
measure µ defined on I such that

maxI∈I′ T (A, I)
maxI∈I T (A, I) = Θ(1)

holds for any deterministic algorithm A and any set I ′ ⊆ I such that µ(I′)
µ(I) = µ(I ′) = Θ(1), where

T (A, I) denotes the time that running time of algorithm A on instance I.

We present the proof of Theorem 2 in Appendix B.4, based on which we further develop the
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following lower bound for USM. We remark that the concept of scale free is potentially useful due
to the symmetry of hard instance sets.
Query complexity of USM. Many well-known problems including maximum facility location,
max-cut are generalized by USM. Buchbinder et al. [9] presented the optimal linear time double greedy
algorithm that achieves 1/2-approximation for USM, we further show that the time complexity is
optimal. Recall that for a complete bipartite directed graph on (C,D), the size of the cut induced by
S ⊆ E = C∪D is equal to fC(S) = |S∩C|·|S̄∩D|, which is a submodular function with respect to S.
Let µ be the uniform distribution over C = {C ⊆ E||C| = n/2}. Via similar adversary arguments as
that for the cardinality constraint and monotone objective function, we show that o(n/ logn) queries
are insufficient for deterministic algorithms to determine whether functions in {fC(·)}C∈C′ that has
an objective value no less than 1/4 times optimal or not, as long as µ(C′) = Θ(1). Combining with
the fact that a uniform random set of E achieves an approximation ratio of 1/4, which generalizes
the performance of a random cut in Max Di-Cut, we obtain the complete characterization of the
query complexity of USM. It is worth noting that there is a matching o(n/ logn) upper bound for
the instance above, based on the fact about retrieving a binary vector under certain conditions
established in [44]. The complete proof of Theorem 3 is deferred to Appendix B.5.

4 Intersection of p-System and d Knapsack Constraints

In this section we consider the problem of maximizing a monotone submodular function under
constraint I = (∩di=1Ki) ∩ Ip, the intersection of a p system constraint and d knapsack constraints.
Here the p system constraint is denoted by Ip and we use Ki = {S ⊆ E | ci(S) ≤ 1} (∀i ∈ [d]) to
represent the i-th knapsack constraint. Element weights in the i-th dimension are specified by weight
function ci(·) : 2E → R

+. Without loss of generality, we assume that all the knapsack constraints
have a unit budget constraint.
Backtracking threshold and main algorithm. As shown in Appendix C.2, in backtracking
threshold algorithm (Algorithm 4) we maintain a threshold ∆ for element selection, which will
be decreased by a multiplicative factor at the end of each iteration. To start with, we eliminate
elements with high cost that are collected by set B. Among the remaining elements, those with
marginal gain no less than ∆ and profit density no less than the predetermined threshold θ, will be
added into the candidate set, as long as the newly constructed set is feasible. When the cost of the
chosen element e is larger than the residual budget, a new feasible solution S̃ is constructed. The
element with largest total cost in set S and element e are added into S̃, we next add remaining
elements in S into S̃ until exceeding the budget. At the end of Algorithm 4, we return the best
candidate solution set constructed.
Our main algorithm (Algorithm 3) takes the output β of Algorithm 5 as input and obtains the

final solution by feeding a series of well-spaced parameters, which are related to β, to the BT
algorithm. In Algorithm 5 we combine ADT and BT to obtain a constant approximation of f(OPT).
The main algorithm and Algorithm 5 are presented in Appendix C.1 and Appendix C.3 respectively.
Performance Analysis. For each element e ∈ E, it is called a large element if 2ci(e) > 1 holds
for at least one index i ∈ [d], otherwise we call it a small element. Let B ⊆ E denote the set of
large elements in the ground set. A simple but crucial consequence is the following upper bound on
the number of large elements in OPT. We defer the proof to Appendix C.4.
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Corollary 11. The optimal solution OPT contains at most |OPT ∩B| ≤ d large elements.

Let e[ be the element that is not added to set S due to violation of some knapsack constraints,
i.e., e[ activates the else loop in line 11 of Algorithm 4. We remark that element e[ in Algorithm 4
may not exist, hence we divide the analysis of backtracking threshold algorithm into two cases in
the following propositions, based on the existence of e[. The proofs of Proposition 12 and 13 are
presented in Appendix C.5 and Appendix C.6 respectively. We defer the proof of Theorem 4 to
Appendix C.9.

Proposition 12. 3f(S∗) ≥ 2θ holds when element e[ exists.

Proposition 13. If element e[ does not exist, f(S∗) ≥ f(OPT)−θ(d−|OPT∩B|/2)
p+|OPT∩B|+1 − (pε+ ε) · f(OPT).

5 Efficient Algorithms for Packing Constraint

In this section, we study the packing constrained submodular maximization problem [41, 4], in
which we have d-dimensional capacity vectors b ∈ Rd+ and items e ∈ E with cost vector c(e) ∈ Rd+.
The objective is to select a set S ⊆ E to maximize submodular function f(·) while satisfying the
packing constraints AxS ≤ b, where xS denotes for the characteristic vector of the set S.

We first present an efficient algorithm with approximation 1/(7
4d+ 9

10 + 9
120d+16)−O(ε) for general

packing constraint in Appendix D.1, which has a time complexity of O(n ·max{ε−1, log logn}) and
a constant approximation ratio gap to the lower bound of 1

d1−ε [18] for constant d. Specific cases
of single knapsack constraint and binary packing constraint are investigated in Section 5.1 and
Section 5.2.

5.1 An Improved Streaming Algorithm for A Single Knapsack Constraint

Our improved solution for a single knapsack constraint consists of Algorithm 2, a backtracking
algorithm utilizing multiple thresholds, and Algorithm 7, which takes Algorithm 2 as an input
subroutine to output the final solution. In the following we give an overview of these two procedures.
Algorithm 7 is deferred to Appendix D.2.
Overview of the two subroutines. We run two threads in parallel in Algorithm 2, the double
threshold backtracking algorithm, where each thread contains two sequential stages. In stage j of
thread i (i, j ∈ [2]), we select elements whose profit density is no less than the threshold τ (i)

j and cost
no more than 1/i (this constraint is trivial in the first thread). Similar to our previous approaches,
we use the backtracking algorithm to recursively construct a new candidate solution if there exists
constraint violation in the proceeding procedure. In the end, we output the best solution among the
collection of sets obtained in the aforementioned two threads.
In our main algorithm, Algorithm 7, we first select a singleton with both function value and

cost close to that of the element with largest cost in E, then Algorithm 2 is utilized to solve the
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corresponding residual problem and compute the final solution set.

Algorithm 2: Double Threshold Backtracking Algorithm
1 Initialization: q ← 2, T (i)

0 , T
(i)
1 , T

(i)
2 , T̃ (i) ← ∅ (∀i ∈ [q])

2 for i ∈ [q] do
3 for j ∈ [q] do
4 T

(i)
j ← T

(i)
j−1, c

(i)
1 ← 3i

3+i , c
(i)
2 ← 9

(3+i)2 , τ (i)
j ← λ · c(i)j (j ∈ [q])

5 for each e ∈ E \ T (i)
j do

6 if f(T (i)
j + e)− f(T (i)

j ) ≥ c(e) · τ (i)
j and c(e) ≤ 1/i then

7 if c(T (i)
j + e) ≤ 1 then

8 T
(i)
j ← T

(i)
j + e

9 else
10 ê

(i)
j ← e, T̃ (i)

j ← T̃
(i)
j + e

11 for e ∈ T (i)
j do

12 if c(T̃ (i)
j + e) ≤ 1 then

13 T̃
(i)
j ← T̃

(i)
j + e

14 else
15 break

16 for i ∈ [q] do
17 ẽ

(i)
1 ← argmaxe∈T (i) c(e), ẽ(i)

2 ← argmax
e∈T (i)

2 \T
(i)
1
c(e)

18 T (i) ← ∪j∈[q]T
(i)
j , U (i)

1 ← {ê(i), ẽ
(i)
1 }, U

(i)
2 ← {ê(i), ẽ

(i)
2 }, U

(i)
3 ← {ê(i), ẽ

(i)
2 } ∪ T

(i)
1

19 Return S∗ ← argmax {f(S)|S ∈ {U (i)
` }1≤`≤3 ∪ {T (i), T̃ (i)}i=1,2, c(S) ≤ 1}

Performance analysis. We give the following lower bound on f(S∗). The proof of Theorem 5 is
given in Appendix D.4.

Lemma 14. For set S∗ returned by Algorithm 2, its objective value satisfies

f(S∗) ≥ 7
16f(OPT) · 1OPT∩B=∅ + 16

25[f(OPT)− f(O ∩B)] · 1OPT∩B 6=∅ −O(ε · f(OPT))

Proof sketch. We divide our analysis into three cases, according to the existence of budget
violation in each stage and iteration. If Algorithm 2 stops at τ (i)

1 , we prove that f(S∗) ≥
max{f(T1), f(ê(i)

1 , ẽ
(i)
1 ), f(T̃1)} ≥ 2

3τ
(i)
1 . If Algorithm 2 stops at τ (i)

2 , objective values of sets
T2, T̃2, T1 ∪{ê(i)

2 , ẽ
(i)
2 } provides a lower bound of (f(OPT \B)− c(OPT \B) · τ (i)

1 + 4
9τ

(i)
2 ) ·1c(T1)≤ 1

3
+

( τ1
3 + 4

9τ2) · 1c(T1)≥ 1
3
on f(S∗). For the third case when Algorithm 2 stops without exceeding the

budget, we have f(S∗) ≥ f(OPT \B)− τ (i)
1 · c(OPT \B). Combining the three cases above, we can

obtain Lemma 14. See Appendix D.3 for a complete proof.

5.2 A Near Linear Time (1/2 − ε)-Approximation Deterministic Algorithm for
Binary Packing Constraints

We start with the formal definition about the residual problem with respect to a given set T .

12



Definition 15 (T -Residual Problem). Let f be a submodular function, its contracted function
fT : 2E\T → R+ is given as fT (S) = f(S∪T )−f(T ). For the optimization problem maxS⊆E f(S), we
define its T -residual problem as maxS∈IT fT (S), where the constraint set IT = {S|S ⊆ E \T, S∪T ∈
I}.

In several constrained submodular maximization problems [37, 63, 40, 19, 4], we are able to obtain
a desirable approximation guarantee for the residual problem, by carefully choosing set T . For
example, in the single knapsack constraint [63], T represents the collection of three elements that
have the largest marginal increments, while T consists of elements with high costs for constant
number of knapsack constraints [40]. However, directly searching set T takes O(n3) and Θ(nd) time
respectively in the aforementioned two examples, which are computationally expensive. Apart from
the aforementioned approaches, we investigate the residual problem with respect to T ], the shadow
set of the target set T . The formal definition of shadow set is specified as follows.
Definition 16 ((α, β)-shadow set). S] is called (α, β)-shadow set of S ⊆ E iff OPT \ (S ∪ S])
is a feasible solution to S]-residual problem, while f((OPT ∪ S]) \ S) + β · f(S]) ≥ f(OPT) and
f(S]) ≥ αf(S).

The first inequality in Definition 16 states that replacing set O ∩ S with O ∩ S] will incur
an additive loss that is no more than β · f(S]). We have the following relationship between the
approximation guarantee of residual problem and that of the original problem. The proof is presented
in Appendix D.5.
Claim 17. A γ-approximate polynomial time algorithm for the U ]-residual problem implies a
polynomial time min{γ, 1

1+β}-approximate algorithm.

5.2.1 Deterministic algorithm for binary packing constraint

Overview of Algorithm 8. Without loss of generality, we assume that elements in OPT are
in greedy ordering, i.e., oi+1 = argmaxe∈OPT {f(OPTi + e)− f(Oi)}. Let OPTi = {o1, o2, . . . , oi},
∆i = f(OPTi) − f(OPTi−1) and iε = max{i|∆i ≥ ε

d · f(OPT)}. As shown in Appendix D.6, in
Algorithm 8 we first construct S]ε, a (1

2 − ε, 1 + ε)-shadow set of OPTiε , i.e., for each element in
OPTiε , an element with comparable cost and similar marginal increment is selected. We next
consider the residual problem maxS⊆E\S]{f(S∪S])|S ⊆ E \S],AxS∪S] ≤ b}, for which we combine
the MWU-based greedy [2] algorithm with a threshold decreasing procedure on E \ (EΓ ∪S]), where
EΓ = {e ∈ E|∃i ∈ Γ such that ci(e) 6= 0} and Γ = {i ∈ [d]|bi − ci(S]) ≤W = 2 log d

δ2 } ⊆ [d].
Performance analysis. The proof of Lemma 18 and Proposition 19 are presented in Appendix
and D.7 and Appendix D.8 respectively.
Lemma 18. S] is a (1/2− ε, 1 + ε)-shadow set of OPTiε , i.e., f(OPT)− f((OPT∪S]) \OPTiε) ≤
(1 + ε)f(S]) and f(S]) ≥ (1/2− ε)f(OPTiε).
Proposition 19. Algorithm 8 returns a solution set So in Oε(n log logn) time, for which we have
f(So) ≥ (1

2 − ε)f(OPT).
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A Additional Related Work

There is a large body of literature on submodular maximization [54, 10, 48, 50, 49, 71, 69, 65],
here we mention only a few which is most relevant to our work. Besides the aforementioned results,
there are also some other well known results towards more practical algorithm design. For the
simple cardinality constraint, Mirzasoleiman et al. [54] and Buchbinder et al. [10] proposed the
stochastic greedy algorithm, a randomized algorithm achieving the (1 − 1/e − ε) approximation
ratio using O(n log(1/ε)) value queries in total. For the general matroid constraint, Badanidiyuru
and Vondrák [4] proposed an accelerated continuous greedy algorithm which uses O((nr/ε4) ·
log(n/ε)) value oracle queries, together with O((log(n/ε))/ε2 + (r2/ε)) matroid independence
queries. Buchbinder et al. [10] designed a faster algorithm that achieves the approximation ratio
of (1 − 1/e − ε) by performing O(kλ + kn

λε5 log2(nε )) value oracle queries and O(k2

ε + λn
ε2 log(nε ))

independence oracle queries, where parameter λ ∈ [1, k] characterizes the tradeoff between the
number of value oracle query and independence query. A (1/e − ε)-approximate algorithm for
cardinality constrained non-monotone submodular maximizing problem is presented [10], which
requires O((n/ε) · log(1/ε)) function evaluations. For a single knapsack constraint, Wolsey [65]
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proposed a modified greedy algorithm with an approximation ratio of 1 − e−β ≈ 0.35, where β
denotes the root of equation ex = 2− x.

B Supplementary Materials of Section 2

B.1 Proof of Theorem 1

Proof: Let set U = {u1, u2, . . . , u|U |} be the output of Algorithm 1 and U (i) = {u1, u2, . . . , ui}
(U (0) = ∅), where ui represents the i-th element being added into U and |U | ≤ k. We first make
the observation that

f(U (1)) ≥ (1− ε) · f(OPT)
k

. (2)

Since τ is initialized to τ0 = ew`
k ≥

f(OPT)
k , there must exist one iteration in which τ ∈ [ f(OPT)

k −
εω`
k ,

f(OPT)
k ]. We argue that set U in this iteration cannot be empty, otherwise the singleton with

maximum function value should be added in the candidate solution no later than this iteration.
Therefore inequality (2) holds.

We use G to represent the set of possible values of threshold τ in the refined threshold decreasing
procedure, according to line 12-16 of Algorithm 1, we have

G =
{ew`
k
− i · εω`

k

∣∣∣i ∈ Z≥0
}⋂[w`

ek
,
ew`
k

]
. (3)

Let τmin = min{τ ∈ G : τ ≥ f(OPT)
ek } be the minimum element in G that is no less than f(OPT∗)

ek ,
then based on the definition of G and τmin, we have

f(OPT)
ek

≤ τmin ≤
f(OPT)
ek

+ εω`
k
.

Without loss of generality, we can assume that at the end of the iteration when τ = τmin, there
are k elements in U . Otherwise for the solution U ′ ⊆ U obtained at the end of this iteration,
we have f(U ′ + e) − f(U ′) < τmin for ∀e ∈ E \ U ′. Consequently we have f(OPT) − f(U ′) ≤∑
e∈OPT [f(U ′ + e)− f(U ′)] ≤ |OPT| · τmin ≤ f(OPT)

e + εw`. and f(U) ≥ f(U ′) ≥ (1 − 1/e) ·
f(OPT)−εw` ≥ (1−1/e−ε)·f(OPT), which already implies the approximation ratio of (1−1/e−ε).
Now we are ready to bound the function value of f(U) = f(U (k)). We first claim the following

recursion inequality,

f(U (i+1))− f(U (i)) ≥ f(OPT)− f(U (i))
k

− ε

k
f(OPT). (4)

To see this fact, observe that elements in E \ U (i) are not added into the candidate set when the
threshold is equal to (τ (i) + εω`

k ). Here τ (i) denotes the corresponding threshold value when ui is
selected. Hence (4) holds for i ≥ 1 since

f(OPT)− f(U (i)) ≤
∑

e∈OPT
[f(U (i) + e)− f(U (i))] ≤ k ·

(
τ (i) + εω`

k

)
≤k · [f(U (i) + ui)− f(U (i))] + εf(OPT). (Lemma 7)
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Inequality (4) also holds for i = 0, as it is essentially equivalent to (2). Similar to the analysis of
standard greedy algorithm, solving the recursion inequality (4) with initial condition given by (2),
we have f(U (i)) ≥ [(1− (1− 1/k)i)− ε] · f(OPT). As there are k elements in the final solution, then
f(U) = f(U (k)) ≥ (1− 1/e− ε) · f(OPT). �

B.2 Review of lazy greedy and stochastic greedy algorithm

• Lazy Greedy Heuristic [51]. The Lazy greedy heuristic speeds up the classic greedy algorithm
in practice, even though its theoretical (worst case) performance is exactly the same as greedy.
For each element, the algorithm maintains an upper bound for its marginal gain, and the
upper bound is updated to the exact value of the marginal increment with respect to current
candidate set when the element is queried. Elements are sorted in a non-increasing value of
its upper bound. In each iteration, lazy greedy continuously evaluates each element along
the sorted list, until identifying an element with marginal gain that is larger than the upper
bounds of remaining elements. The key idea of lazy greedy is to exploit the fact that the
marginal gain of an element with respect to the candidate set is non-increasing during the
iteration of the algorithm, to reduce unnecessary queries and comparisons.

• Stochastic greedy [10, 54]. All the algorithms discussed above are deterministic, while there is
also a fast randomized algorithm termed stochastic greedy. Stochastic greedy algorithm is
indeed a folklore result [10] and provides an approximation guarantee only in the expected
sense, i.e., it only ensures that the average objective value of its random solution is no less than
(1− 1/e− ε) times optimal, rather than being able to obtain a solution of value that is always
within (1− 1/e− ε) optimal. In each iteration of the stochastic greedy, the algorithm takes
the maximum marginal value in a uniformly random sampled subset, instead of the whole
ground set as classic greedy. It was shown that a random set of size O((n/k) · log(1/ε)) is
sufficient to provide the desired expected approximation ratio, which results in O(n · log(1/ε))
queries in total.
On the other hand, it is also important to point out that it still remains a fundamental
problem [7] to derandomize algorithms for submodular optimization. As the function is
accessed via a value oracle, which makes it hard to apply standard derandomization techniques.
There exists several studies working towards obtaining better performance guarantees [7, 8].

B.3 Warm up—A query lower bound for maximizing monotone objective func-
tion subject to cardinality constraint

Without loss of generality, we assume that n is even. Consider a non-negative sequence {aj}j∈[n],
where aj = 0 for j ∈ [n2 ] and aj = 1 otherwise. Among all the N = n! permutations of {aj}j∈[n],
let σ(i) be the i-th (i ∈ [N ]) permutation and σ(i)(j) be the value of the j-th (j ∈ [n]) element in
permutation σ(i). We define a linear function fi(·) : 2E → Z+ as fi(S) =

∑
j∈S σ

(i)(j). The size of
the codomain of f is in the order of O(n), as its function value of which always lies in the interval
of [0, n/2].

The adversary maintains a list L of functions {fi(·)}i∈[N ] and updates the list according to their
function values on the queried set. Initially all the N functions appear in list L. After the algorithm
makes query Si, functions with identical objective value on set Si will be assigned to the same
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sub-list. The adversary always keeps the longest sub-list and returns the associated function value
as the answer to query Si. Let N (i) be the number of functions after the i-th query, we have
N (i+1) ≥ N(i)

n , as there are no more than n distinct function values. Hence, the number of functions
remaining on the list after Q queries is at least

N (Q) ≥ N

nQ
= n!
nQ

.

Suppose that the algorithm chooses set R ⊆ E as its output, without loss of generality we assume
that |R| = n/2, otherwise we can obtain the same conclusion by applying the arguments on set R′,
which contains R and has a size of |R′| = n/2. To achieve an approximation ratio of α = Θ(1), the
objective value of set R must satisfy f(R) ≥ α · f(OPT) = αn/2. Furthermore, the number of such
functions satisfies that

∣∣∣{fi∣∣∣fi(R) ≥ αn/2, i ∈ [N ]
}∣∣∣ =

n/2∑
r=αn

2

(
n/2
r

)
·
(

n/2
n/2− r

)
· (n/2)! · (n/2)! ≥ N (Q) ≥ n!

nQ
, (5)

from which we know that

n2Q ≥
( n
n/2
)

∑n/2
r=αn

2

(n/2
r

)2 ≥
( n
n/2
)

n ·
( n/2
αn/2

)2 . (α = 1/2 + Θ(1))

This implies that Q ≥ n
logn , otherwise the algorithm will fail to distinguish the functions in the list

and thus cannot provide a solution with desired approximation guarantee.

B.4 Proof of Theorem 2

Proof of Theorem 2: Let set Is be a scale-free input instance of problem P and A be a finite
set of deterministic approximation algorithms. We use R(α) to represent the set of randomized
algorithms with expected approximation ratio no less than α ∈ [0, 1]. Note that every randomized
algorithm R could be represented as a distribution λR over the set of deterministic algorithms, then
R(P, α), the randomized complexity of problem P over R(α), could be lower bounded as,

R(P, α) = min
R∈R(α)

max
I∈I

EA∼λRT (A, I) (6)

≥ min
R∈R(α)

max
I∈Is

EA∼λRT (A, I), (7)

where I denote the entire input set and the inequality holds because Is ⊆ I.
Let CR = maxI EA∼λRT (A, I) and S(A, I) be the solution computed by algorithm A on instance

I. According to the definition of approximation ratio, we know that the expected objective function
value of the approximate solution S(A, I), will be no less than a factor of (α+ δ) times the optimal
value OPTI ,

EA∼λR [f(S(A, I))] ≥ (α+ δ) ·OPTI , ∀I ∈ I. (8)

Notice that

EA∼λR [f(S(A, I))] ≤ P
(
f(S(A, I)) ≤ αOPTI

)
·
(
αOPTI

)
+
[
1− P

(
f(S(A, I)) ≤ αOPTI

)]
·OPTI .
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Combining with (8), it follows that

PA∼λR

(
f(S(A, I)) ≤ αOPTI

)
≤ 1− δ

1− α, ∀I ∈ I. (9)

We could further know that

EA∼λR

[
1{f(S(A,I))≤αOPTI}∪{T (A,I)> 2(1−α)

δ
CR}

]
≤EA∼λR

[
1{f(S(A,I))≤αOPTI}

]
+ EA∼λR

[
1{T (A,I)> 2(1−α)

δ
CR}

]
≤
(
1− δ

1− α
)

+ δ

2(1− α) = 1− δ

2(1− α) . (10)

The first inequality follows from union bound; The second inequality is based on (9) and the following
consequence from Markov’s inequality,

EA∼λR

[
1{T (A,I)> 2(1−α)

δ
CR}

]
=PA∼λR

[
T (A, I) > 2(1− α)

δ
CR
]

≤δ · EA∼λR [T (A, I)]
2(1− α)CR

≤ δ

2(1− α) ,

where the last inequality is based on the definition of CR. Applying Yao’s Minimax Principle [66],
we know that for ∀µ, there exists a deterministic algorithm A∗µ such that

EI∼µ
[
1{f(S(A∗µ,I))≤αOPTI}∪{T (A∗µ,I)>

2(1−α)
δ

CR}

]
≤ 1− δ

2(1− α) . (11)

Now we define a new input instance set I∗µ ⊆ Is as

I∗µ =
{
I ∈ Is

∣∣∣f(S(A∗µ, I)) > αOPTI , T (A∗µ, I) ≤ 2(1− α)
δ

CR
}
. (12)

Based on (11), it can be seen that under probability measure µ,

PI∼µ
(
I ∈ I∗µ

)
>

δ

2(1− α) >
δ

2 = Θ(1). (13)

Recall that for any deterministic algorithm A, its worst-case time complexity on Is is at least T (P),
combined with the fact that Is is a scale-free set and inequality (13), we know that

max
I∈Is

T (A∗µ, I) ∈ Ω(T (P)). (14)

On the other hand, from the definition of I∗µ, we know that every input instance in Is satisfies

T (A∗µ, I) ≤ 2(1− α)
δ

CR, ∀I ∈ Is. (15)

Combining (15) and (14), CR is then proven to be in the order of T (P). Notice that the arguments
above holds for arbitrary randomized algorithm in R(α+δ), it follows that

R(P, α+ δ) ∈ Ω(T (P)).

�
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B.5 Proof of Theorem 3

Proof of the O(n/ logn) lower bound in Theorem 3: Consider the following class of func-
tions [22], which correspond to cuts in a complete bipartite directed graph on (C,D):

fC(S) = |S ∩ C| · |S̄ ∩D|, (C ∈ C) (16)

where C = {C ⊆ E||C| = n/2}. It can be verified that fC is submodular for any given set C ∈ C.
Suppose that the algorithm makes Q queries to f(·) and returns T as its solution set. We first make

the observation that for ∀T ⊆ E, there exists a set T ′ ⊆ E with size n
2 , such that fC(T ′) ≥ fC(T ).

To see this fact, we can construct T ′ by combining T with set C ′ ⊆ C \ T with size |C ′| = n
2 − |T | if

|T | ≤ n
2 , otherwise removing elements in T ∩D′, i.e., let T ′ = T \D′. It can be verified that under

this construction fC(T ′) ≥ fC(T ) and

fC(T ′) = |T ′ ∩ C|2, (17)

which is due to the fact that |T ′| = n
2 .

Let µ be the uniform distribution over C, then we have |C′| = Θ(
(n
n
2

)
) for any C′ ⊆ C such that

µ(C′) = Θ(1). Observe that if f(T ) ≥ (1
4 + δ) ·OPT = (1+δ)·n2

16 , then we have the following lower
bound on |T ′ ∩ C|,

|T ′ ∩ C| =
√
fC(T ′) ≥

√
fC(T ) = (1 + Θ(δ)) · n

4 = n′.

Via similar arguments in Appendix B.3, we know that

|C′|
nQ
≤

n
2∑

i=n′

(
n
2
i

)2

,

which implies that the number of queries Q ≥ n
logn . It is straightforward to verify that {fC(·)}C∈C is

a scale free set, as the aforementioned arguments can be also applied for any instance set {fC(·)}C⊆C′ ,
if C′ ⊆ C and |C′| = Θ(|C|). The proof is complete. �

Fact 20. [44] There exists a binary matrix Q ∈ {0, 1}q×n, such that for every vector s ∈ Rn,
equation Q · x = s has at most one binary solution x ∈ {0, 1}n, if

q > (2 log 3 + o(1))(n/ logn). (18)

It suffices to show that Q ·∆x 6= 0 holds for every non-zero vector ∆x ∈ {−1, 0, 1}n. Lev et al. [44]
presented a non-constructive proof via the classic probabilistic method. Consider constructing the
n binary columns of Q at random and independently from uniformly distribution on {0, 1}q, it can
be shown that for any fixed ∆x, the probability that all the row vectors in Q are orthogonal to ∆x
is sufficiently small to ensure that, the summation of probabilities over all vectors ∆x ∈ {−1, 0, 1}n
is strictly less than 1. The facts above imply the existence of Q according to union bound.

Proof of the O(n/ logn) upper bound in Theorem 3: For the complete bipartite directed
graph instance considered in USM above, first note that we can obtain the value of |S ∩ C| and
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|S̄ ∩D| according to the following equations,

|S ∩ C| · |S̄ ∩D| = fC(S), (19)
|S̄ ∩D|+ |S| = |S ∩ C|+ |D|, (20)

in which the solution is unique. It can be seen that as long as we can identify set C, we are able to
obtain the solution for maximizing fC(S).

Let x = 1C be the characteristic vector of set C, using the matrix implied by [44], we make queries
{1Q(i)}i∈[q] to function f , where Q(i) represents the i-th row of Q, and we abuse the notation by
using 1Q(i) to denote the corresponding set. Then we can obtain the product vector s = Q · 1C by
plugging 1Q(i)(i ∈ [q]) into (19)-(20) separately, based on which we can recover the value of C. �

C Supplementary Materials of Section 4

C.1 Details of Algorithm 3

Algorithm 3: Main Algorithm for p-system+d knapsack constraints
1 Input: β returned by Algorithm 5, approximation parameter δ
2 Output: Approximate solution So
3 Initialization: T ← ∅, λ← 7(p+ d+ 1)β
4 while λ ≥ β

p+7/4d+1 do
5 T ′ ← set returned by BT(λ, δ

p+1 )
6 T ← T ∪ {T ′}
7 λ← λ/(1 + δ)
8 Return So ← argmaxS∈T f(S)
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C.2 Details of Algorithm 4

Algorithm 4: Backtracking Threshold (BT) Algorithm (θ, ε) (BT(θ, ε))
1 Input: Submodular function f(·), weight function ci(·) (i ∈ [d]), threshold θ, parameter ε
2 Initialization: S0 ← {argmaxe∈E f(e)}, B ← {e ∈ E | ∃i ∈ [d] such that ci(e) ≥ 1/2}, ∆← f(S0),

S ← ∅
3 while ∆ ≥ εf(S0)

n do
4 for e ∈ E \B do
5 if fS(e) ≥ max{θ ·

∑d
i=1 ci(e),∆} and S + e ∈ Ip then

6 if S + e ∈ I then
7 S ← S + e

8 else
9 S̃ ← {e, argmaxe∈S

∑d
i=1 ci(e)}

10 for e ∈ S do
11 if S̃ + e ∈ I then
12 S̃ ← S̃ + e

13 break

14 ∆← (1− ε) ·∆
15 return S∗ ← argmaxT∈{S,S̃,S0} f(T )

C.3 Details of Algorithm 5

Combine backtracking threshold with adaptive decreasing threshold. Similar to our treat-
ments for cardinality constraint, we use the adaptive decreasing threshold algorithm to approximate
the value of f(OPT) in Algorithm 5.

Algorithm 5: ADT for I = (∩di=1Ki) ∩ Ip
1 Input: Submodular function f(·) : 2E → R+, Algorithm BT (θ, ε).
2 Output: β = ω`
3 Initialization: ω1 ←

3 maxe∈E f(e)
7(p+d+1) , ω̄1 ← n ·maxe∈E f(e), `← dlog logne, ε = 2

7(p+1)(p+d+1)
4 for i = 1 : ` do
5 αi = exp(logn · e−i)− 1, λ = ωi
6 while λ ≤ ω̄i do
7 S

(i)
λ ← BT(λ, ε), λ← λ(1 + αi)

8 ωi+1 ←
3 maxλ f(S(i)

λ
)

2 , ω̄i+1 ← ωi+1(1 + αi)
9 Return β = ω`.

C.4 Proof of Corollary 11

Proof: Suppose that there are more than d large elements in OPT. From the pigeonhole principle
we know that, there exists at least one index i ∈ [d] such that ci(OPT) > 1. However, this contradicts
the fact that OPT is a feasible solution set, the proof is complete. �
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C.5 Proof of Proposition 12

Note that we always assume that every singleton in E is a feasible solution, otherwise we can
apply our algorithms on the ground set consisting of feasible singletons. Suppose that the candidate
solution set S is equal to S[ before considering e[, hence there exists i ∈ [d] such that ci(S[ + e[) > 1.
We use ê to represent the element with the largest total cost in S[, i.e., ê = argmaxe∈S[

∑d
i=1 ci(e).

Let S̃(1) = {e[, ê} and S̃ = S̃(1) ∪ S̃(2). Before proving Proposition 12, we first show the feasibility
of the candidate solution sets involved.

Fact 21. Both S̃ and S̃(1) are feasible solution sets.

Proof: Note that S̃ is initialized to S̃(1) and is always a feasible set after each update, it suffices to
show that S̃(1) ∈ I. To this end, we first remark that S[ ∪ {e[} ∈ Ip, since e[ satisfies all conditions
required in line 8 of Algorithm 4. According to the down-closed property of Ip and the fact that
S̃(2) ⊆ S[∪{e[}, we conclude that S̃(2) ∈ Ip. It remains to show that S̃(2) belongs to ∩di=1Ki. Recall
that both e[ and ê are small elements, then for ∀j ∈ [d] we have

cj(S̃(2)) ≤ cj(e[) + cj(ê) ≤ 1,

which implies that S̃(2) ∈ ∩di=1Ki and the proof is complete. �

Proof of Proposition 12: Without loss of generality we assume that S[ = {e1, e2, . . . , e|S[|},
where ei denotes the i-th element added into S[. Since S̃(2) is also a subset of S[, we denote
it as S̃(2) = {ei1 , ei2 , . . . , ei|S̃(2)|

}, where it ∈ [|S[|] for ∀t ≤ |S̃(2)| ≤ |S[|. We further let S[i =

{e1, e2, . . . , ei} (i ∈ [|S[|]) be the first i elements in S[, and S̃(2)
i is defined in an analogous manner.

According to the density threshold rule, we have

f(S[i+1)− f(S[i ) ≥ θ ·
∑
j∈[d]

cj(ei+1). (21)

We can now lower bound the objective value of S[ as

f(S̃(2)) =
|S̃(2)|∑
j=1

[f(S̃(2)
j )− f(S̃(2)

j−1)]

≥
|S̃(2)|∑
j=1

[f(S[ij )− f(S[ij−1)] (submodularity)

≥ θ ·
|S̃(2)|∑
j=1

d∑
t=1

ct(eij ) = θ ·
d∑
t=1

cj(S̃(2)). (22)

where the last inequality is due to (21). Similarly we can obtain

f(S̃) ≥ θ ·
d∑
t=1

cj(S̃). (23)
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We next claim that S[ \ (S̃(2) + ê) 6= ∅, otherwise S̃ will be equal to S[ ∪{e[} and this contradicts
the fact that S̃ is a feasible solution. Hence there exists at least one element ē ∈ S[ \ (S̃(2) + ê).
We further claim that there exists at least one index i†, such that ci†(S̃ + ē) > 1, otherwise we
conclude that S̃ + ē ∈ ∩di=1Ki. Moreover, the fact that S̃ + ē ⊆ S[ + e[ and S[ + e[ ∈ Ip implies
that S̃ + ē also belongs to Ip. As a consequence, ē will be added into S̃ẽ, this contradicts the fact
that ē ∈ S[ \ (S̃(2) + ê). Therefore∑d

j=1
cj(S̃ + ē) ≥ ci+(S̃ + ē) > 1. (24)

By combining (22) with (24), and interchanging the order of the summation, we know that

f(S̃) ≥ θ ·
d∑
j=1

cj(S̃) ≥ θ ·
(
1−

d∑
j=1

cj(ē)
)
≥ θ ·

(
1−

d∑
j=1

cj(ê)
)
, (25)

where the first and second inequality follow from (23) and (24) respectively. The last inequality is
based on the definition of ê. On the other hand, using similar arguments to (22) and the monotonicity
of f , we know that

f(S̃) ≥ f(S̃(1)) ≥ θ ·
(∑d

j=1
cj(e[) +

∑d

j=1
cj(ê)

)
. (26)

Moreover, we have

f(S[) ≥ θ ·
(∑
e∈S

∑d

j=1
cj(e)

)
≥ θ ·

(
1−

∑d

j=1
cj(e[)

)
, (27)

where the last inequality holds because S[ + e[ belongs to Ip but S[ + e[ /∈ I, from which we know
that the total costs of S[ + e[ in all the d dimensions is larger than 1. Combining (25)–(27), we are
able to derive the following lower bound on the quality of output set S∗,

f(S∗) = max {f(S̃), f(S[)} ≥ f(S[) + 2f(S̃)
3

≥1
3
[
θ ·
(
1−

d∑
j=1

cj(ê)
)

+ θ ·
( d∑
j=1

cj(ê) +
d∑
j=1

cj(e[)
)

+ θ ·
(
1−

d∑
j=1

cj(e[)
)]

=2
3θ. (28)

The proof is complete. �

C.6 Proof of Proposition 13

Proof: To prove this conclusion, we partition the optimal solution set as

OPT = OPT1 ∪OPT2 ∪ (OPT ∩B),

where set

OPT1 =
{
e ∈ OPT \B

∣∣∣fS[(e) < θ ·
∑d

j=1
ci(e)

}
(29)
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represents the set of small elements in OPT whose marginal increment with respect to set S[ is
less than the threshold θ, set OPT2 = OPT \ (B ∪OPT1) denotes the remaining small elements in
OPT. Based on this partition, we are able to lower bound f(S) in the following manner,

f(OPT)− f(S)
(a)
≤f(S ∪OPT)− f(S)
=[f(S ∪ (OPT ∩B))− f(S)]

+ [f(S ∪ (OPT ∩B) ∪OPT1)− f(S ∪ (OPT ∩B))]
+ [f(S ∪OPT)− f(S ∪ (OPT ∩B) ∪OPT1)]

(b)
≤ [f [S ∪ (OPT ∩B)]− f(S)]︸ ︷︷ ︸

Rb

+ [f(S ∪OPT1)− f(S)]︸ ︷︷ ︸
R1

+ [f(S ∪OPT2)− f(S)]︸ ︷︷ ︸
R2

(30)

where (a) is based on monotonicity of f and (b) follows from submodularity of f . We finish the
proof by establishing upper bounds on the three aforementioned terms Rb, R1, R2 respectively.
Firstly, a direct consequence of submodularity and the definition of S∗ is,

Rb = f(S ∪ (OPT ∩B))− f(S) ≤
∑

e∈OPT∩B
f(e) ≤ |OPT ∩B| · f(S∗). (31)

As for the second term R1, it can be upper bounded in the following manner:

R1 = f(S ∪OPT1)− f(S) =
∑

e∈OPT1

[f(S + e)− f(S)]
(a)
≤ θ ·

d∑
j=1

cj(OPT1)

(b)
≤θ ·

(
d−

d∑
j=1

cj(OPT ∩B)
)

(c)
≤θ ·

(
d− |OPT ∩B|

2
)
, (32)

where (a) is based on the definition of OPT1 in (29), which indicates that the profit density of
elements in OPT1, its profit density is less than θ. As OPT is a feasible solution, for any j ∈ [d], we
have cj(OPT) ≤ 1 and cj(OPT1) ≤ cj(OPT) − cj(OPT ∩ B) ≤ 1 − cj(OPT ∩ B) and (b) follows.
(c) holds because the total cost of each large element is no less than 1/2.

Assuming Proposition 22 below, which will be proved in Appendix C.7, we are able to lower
bound the objective value of S.

Proposition 22. f(S ∪OPT2)− f(S) ≤ [p+ (p+ 1)ε] · f(S).

More specifically, by plugging inequalities (31)–(32) and Proposition 22 into (30), we have

f(S) ≥f(OPT)− (Rb +R1 +R2)
≥f(OPT)− |OPT ∩B| · f(S∗)− θ · (d− |OPT ∩B|/2)− (p+O(ε))f(S). (33)
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Rearranging the terms, we get

(p+ 1 + |OPT ∩B|+O(ε))f(S∗) ≥(p+ 1 +O(ε))f(S) + |OPT ∩B| · f(S∗)
≥f(OPT)− θ · (d− |OPT ∩B|/2). (34)

The proof is complete. �

C.7 Proof of Proposition 22

Proof: An important note is that, for any element e ∈ OPT2, the reason that it cannot be added
into S is either the marginal increment of e is less than (εmaxe f(e))/n, or S + e is not a feasible
set in Ip. Owing to this observation, we are able to bound R2 via same arguments for the analysis
of the standard greedy for p-system constraint [12, 4]. Here we provide the proof for completeness.
For S = {e1, e2, . . . , es} and ∀i ∈ [s], we define set Ci ⊆ OPT2 \ S as,

Ci =
{
e ∈ OPT2 \ S

∣∣∣S(i−1) ∪ {e} ∈ I
}
, (35)

which consists of the elements in OPT2 that are able to be added into the candidate solution set
in the i-th step. According to the down-closed property of the independent system, we know that
Ci+1 ⊆ Ci and we have C1 = OPT2 \ S. Consider set Qi = S(i) ∪ (C1 \Ci+1). On the one hand, we
have C1 \Ci+1 ∈ I, since it is a subset of OPT ∈ I, which implies that Qi has a base of size no less
than |C1 \Ci+1|. On the other hand, S(i) is a base of Qi since no elements in Qi \ S(i) can be added
into S(i) according to the definition of Ci. Then based on the definition of p-system, we know that

|C1 \ Ci+1| ≤ p · |S(i)| = pi. (36)

Now consider the procedure of decreasing threshold ∆. For 1 ≤ i ≤ s, we let ∆i be the value of ∆
when element ei is added into S, then we have

f(S(i))− f(S(i−1)) ≥ ∆i. (37)

And we further claim that

f(S(i−1) + e)− f(S(i−1)) ≤ ∆i

1− ε = ∆i−1, ∀e ∈ Ci. (38)

Otherwise e ∈ Ci satisfying (38) will already be included into the candidate solution set in previous
iteration since

• S(i−1) + e ∈ I is a feasible set according to the definition of Ci;

• f(S(i−1) + e) − f(S(i−1)) ≥ θ · [
∑d
i=1 ci(e)] holds, which is based on the submodularity and

the definition of OPT2;

• The marginal increment of e with respect to set S(i−1) is no less than the threshold ∆i−1
according to (38).
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However e /∈ S, thus (38) is true. Using similar arguments, we obtain

f(S + e)− f(S) ≤ ε

n
M, ∀e ∈ Cs+1. (39)

Hence we are able to show that

R2 =f(S ∪OPT2)− f(S) (40)

≤
∑

e∈OPT2\S

[
f(S + e)− f(S)

]
(submodularity)

(a)=
s∑
i=1

∑
e∈Ci\Ci+1

[
f(S + e)− f(S)

]
+

∑
e∈Cs+1

[
f(S + e)− f(S)

]
(41)

(b)
≤ 1

1− ε

s∑
i=1
|Ci \ Ci+1| ·∆i + |Cr+1| ·

ε

n
M, (42)

where (a) is based on the definition of Ai and (b) follows from inequalities (38)-(39). Observe that

• {∆i}i∈[s] is a decreasing sequence;

• The total sum of sequence {|Ci \ Ci+1|}i∈[s] are fixed;

• |Ci \ Ci+1| ≤ p, according to (36).

Hence
∑s
i=1 |Ci \ Ci+1| ·∆i achieves its maximum when |Ci \ Ci+1| = p. As a consequence, the

following upper bound holds for the first term in (42),
s∑
i=1
|Ci \ Ci+1| ·∆i ≤

s∑
i=1

p ·∆i ≤ p · f(S). (43)

Now plugging (43) and inequality |Cr+1| · εnM ≤M ≤ f(OPT) into (42), the proof is complete. �

C.8 Proof of Proposition 23

Algorithm 5 returns w`, which is shown to be a good approximation of f(OPT) in Proposition 23.

Proposition 23. For any i ≥ 0, we have

3f(OPT)
7(p+ d+ 1)(1 + αi)

≤ wi+1 ≤
3
2f(OPT), (44)

which implies that w` ∈ [ f(OPT)
7(p+d+1)(1+c) ,

3f(OPT)
2 ].

Proof: We first note the function value of set S∗ returned by Algorithm 4 is no less than

f(S∗) ≥min
{2θ

3 ,
f(OPT)− θ(d− |OPT ∩B|/2)

p+ |OPT ∩B|+ 1 − (pε+ ε) · f(OPT)
}
. (45)

Inequality (45) directly follows from Proposition 12 and 13, by taking the minimum of the two lower
bounds.
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The RHS of (44) directly follows from the fact that

wi+1 = 3
2 max

λ
f(S(i)

λ ) ≤ 3
2f(OPT).

We finish the proof of the LHS by induction. For the base case when i = 0, inequality (44) is
equivalent to the statement that w1 ≥ 3OPT

7(p+d+1)n , which is true based on the definition of w1. Now
suppose that (44) holds for i = s− 1, i.e.,

ws ≥
3f(OPT)

7(p+ d+ 1)(1 + αs−1) . (46)

Following from (46), we have w̄s = (1 + αs−1)ws ≥
3f(OPT)
7(p+d+1) . As a consequence, there must exist an

integer zs during the s-th iteration, such that

λ∗s = ωs(1 + αs)zs ∈
[ 3f(OPT)
7(p+ d+ 1)(1 + αs)

,
3f(OPT)

7(p+ d+ 1)
]
, (47)

which implies that ws+1 can be lower bounded as follows when ε = 2
7(p+1)(p+d+1) ,

ws+1
(a)
≥ 3f(BT (λ∗s))

2
(b)
≥ 3

2 ·min
{2

3 ·
3f(OPT)

7(1 + αs)(p+ d+ 1) ,
f(OPT)− 3(d−|OPT∩B|/2)OPT

7(p+d+1)
p+ |OPT ∩B|+ 1 − 2f(OPT)

7(p+ d+ 1)
}

(c)
≥ 3

7(p+ d+ 1)(1 + αs)
f(OPT)

where (a) is based on the definition of ws+1. Plugging (47) into (45), we can obtain (b). (c) follows
from Fact 11. Hence we have

w̄s+1 = (1 + αs) · ws+1 ≥
3

7(p+ d+ 1)f(OPT),

which indicates that (44) also holds for i = s. The proof is complete. �

C.9 Proof of Theorem 4

Proof: Consider the optimal threshold θ∗ defined as

θ∗ = f(OPT)
d+ 2/3 + |OPT ∩B|/6 + 2

3p
,

according to Proposition 23, it is easy to see that

θ∗ ∈
[3
2 ·

f(OPT)
p+ 7

4d+ 1
, f(OPT)

]
⊆
[ w`
p+ 7/4d+ 1 , 7(p+ d+ 1)(1 + c)w`

]
.

Hence there exist an iteration in which λ ∈ [(1− δ)θ∗, θ∗], from which we know that

f(So) ≥min
{2(1− δ)θ∗

3 ,
f(OPT)− θ∗(d− |OPT ∩B|/2)

p+ |OPT ∩B|+ 1 − δOPT
}

≥
( 1
p+ 7d/4 + 1 − 2δ

)
f(OPT).

The proof is complete. �
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Time Complexity. To analyze the time complexity of obtaining an 1/(p + 7
4d + 1) − Θ(1)-

approximate solution, we let δ = Θ(1). Note that using our adaptive decreasing threshold algorithm,
we are able to obtain a constant approximation of f(OPT) in log logn rounds, while the time
complexity in each round is n logn, thus the total time complexity is O(n logn · log logn).

D Supplementary Materials of Section 5

D.1 An Improved Algorithm for Multiple Knapsack Constraints

Algorithm overview. We first remark that the constant approximation of f(OPT) required
by Algorithm 6 can be obtained via a similar approach in Section 2. Utilizing this input value in
the initialization, we maintain a threshold τ on the profit density—For each fixed value of threshold,
elements with profit density exceeding τ will be picked into the our first candidate solution S, if the
corresponding new set satisfies the knapsack constraints. At the end of each iteration, we decrease
the threshold τ by a multiplicative factor, until τ reaches the preset boundary value. If there exists
an element violates some knapsack constraints, we construct a new candidate solution S̃ in the
same way as our backtracking threshold algorithm in Section 4. Finally we choose the best solution
among all candidate sets.
The performance of Algorithm 6 is summarized in the following lemma.

Algorithm 6: Backtracking+Threshold Decreasing Algorithm for d Knapsack Constraints
1 Input: submodular function f(·) : 2E → R+, knapsack function ci(·) : 2E → R+ (i ∈ [d]).
2 Output: Set S∗ ∈ ∩di=1Ki.
3 Initialization: λ← c-approximation of f(OPT), e∗ ← argmaxe∈E f(e), S, S̃ ← ∅, τ = λ

cd

4 while τ ≤ 3λ
7d·c do

5 for e ∈ E \B do
6 if fS(e) ≥ τ

∑d
i=1 ci(e) then

7 if ci(S + e) ≤ 1 (∀i ∈ [d]) then
8 S ← S + e;
9 else

10 S̃ ← {e, argmaxe∈S
∑d
i=1 ci(e)};

11 for e ∈ S \ S̃ do
12 if ci(S̃ + e) ≤ 1 (∀i ∈ [d]) then
13 S̃ ← S̃ + e;

14 τ ← (1− ε)τ
15 return S∗ ← argmaxT∈{S∗,S,{e∗}} f(T )

Lemma 24. Algorithm 6 returns a feasible solution S∗ such that

f(S∗) ≥
( 1

7
4d+ 9

10 + 9
120d+16

−O(ε)
)
f(OPT). (48)

while computing S∗ requires O(max{ε−1, log logn}) queries per element, i.e., O(n·max{ε−1, log logn})
queries in total.
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Proof: In Algorithm 6, the threshold is initialized as τ = τ0 = λ
cd and proceeds with the update

rule τ = τi = τ0(1− ε)i. Suppose that we obtain set S(i) after the iteration in which τ = τi, and
there are s iterations in total. If τs ≤ 3

7d · f(OPT), then

f(OPT)− f(S) ≤
∑

e∈OPT
[f(S + e)− f(S)] ≤ τs

∑
e∈OPT

d∑
j=1

cj(e) ≤
3
7 · f(OPT).

Rearranging the terms we can know that (48) holds. Therefore we can assume that τs is strictly
larger than the minimum threshold, which indeed implies that S̃ 6= ∅, i.e., there must exist ẽ1 such
that ci(S + e) > 1 for some i ∈ [d]. Let ẽ1 denote the last candidate element being added into S
and ẽ2 represents the element with maximum total cost in S. We can establish the following lower
bounds on the objective value of set S̃ and {ẽ1, ẽ2},

f(S̃) ≥ τs ·
[
1−

d∑
j=1

cj(ẽ2)
]
, (49)

f({ẽ1, ẽ2}) ≥ τs ·
2∑
i=1

d∑
j=1

cj(ẽi). (50)

While f(S) is no less than

f(S) ≥ τs ·
d∑
j=1

cj(S) ≥ τs ·
[
1−

d∑
j=1

cj(ẽ1)
]
. (51)

Adding inequalities (49) and (50) together, we can get

f(S∗) ≥ max {f(S̃), f({ẽ1, ẽ2})} ≥ τs ·
1 +

∑d
j=1 cj(ẽ1)
2 . (52)

Considering the iteration in which τ = τi, elements in OPT \ (B ∩ S(i−1)) are discarded since

f(S(i−1) + e)− f(S(i−1)) ≤ τi−1 ·
d∑
j=1

cj(e), (53)

which implies that

f(OPT \B)− f(S(i−1)) ≤
∑

e∈OPT\(B∪S(i−1))

[f(S(i−1) + e)− f(S(i−1))] (submodularity)

≤ τi
1− ε

d∑
j=1

cj(OPT \ (B ∪ S(i−1))) (inequality (53))

≤ [f(S(i))− f(S(i−1))]
(1− ε)

∑d
j=1 cj(e(i))

( d∑
j=1

[cj(OPT)− cj(OPT ∩B)]
)

≤(d− |OPT ∩B|/2) · [f(S(i))− f(S(i−1))]
(1− ε)

∑d
j=1 cj(e(i))

. (54)
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Rearranging this inequality, we get

f(S(i))− f(OPT \B) ≥
(
1−

(1− ε)
∑d
j=1 cj(e(i))

d− |OPT ∩B|/2
)
· [f(S(i−1))− f(OPT \B)]. (55)

Solving this recursive inequality and using the fact that 1− y ≤ e−y, we have

f(S + ẽ1) = f(S(s)) ≥
(
1− exp

(
−

(1− ε)
∑d
j=1 cj(S + ẽ1)

d− |OPT ∩B|/2
))
· f(OPT \B), (56)

based on which we have

f(S) ≥
1− exp

(
−

1−
∑d

j=1 cj(ẽ1)
d−|OPT∩B|/2

)
1 + |OPT ∩B| ·

[
1− exp

(
−

1−
∑d

j=1 cj(ẽ1)
d−|OPT∩B|/2

)]f(OPT)−O(ε)f(OPT). (57)

On the other hand, plugging i = s into (54), we can get

f(OPT \B)− f(S(s)) ≤ f(OPT \B)− f(S(s−1)) ≤ τs
1− ε · [d− |OPT ∩B|/2]. (58)

Rearranging this inequality,

f(S∗) ≥f(OPT)− (d− |OPT ∩B|/2) · τs
|OPT ∩B|+ 1 −O(ε)f(OPT). (59)

Here we remark that s can assumed to be strictly positive, otherwise τs will be equal to τ0, and it is
easy to see that (48) holds in this case since

f(S∗) ≥ f(S) + f(S̃) + f({ẽ1, ẽ2})
3 ≥ 2τ0

3 ≥ 2f(OPT)
3d . (60)

Now by combining (51), (52) and (59) together, we can obtain

f(S∗) ≥ min
τs,cj(ẽ1)

max
{(

1−
d∑
j=1

cj(ẽ1)
)
· τs,

1 +
∑d
i=1 ci(ẽ1)
2 · τs, (61)

OPT − (d− |OPT ∩B|/2)τs
|OPT ∩B|+ 1

}
−O(ε)f(OPT)

≥ min
cj(ẽ1)

max
{ (1−

∑d
j=1 cj(ẽ1))

(|OPT ∩B|+ 1)(1−
∑d
j=1 cj(ẽ1)) + (d− |OPT ∩B|/2)

· f(OPT),

(1 +
∑d
j=1 cj(ẽ1))

(|OPT ∩B|+ 1)(1 +
∑d
j=1 cj(ẽ1)) + (2d− |OPT ∩B|)

· f(OPT)
}
−O(ε)f(OPT).

Observe that if the number of large elements in the optimal solution is strictly less than d, then we
can directly derive the following approximation result based on (61):

f(S∗) ≥ 4
6d+ |OPT ∩B|+ 4 ≥

4
7d+ 3 , (62)
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then (48) follows. Hence it suffices to consider the case when there are exactly d large elements in
the optimal solution set, i.e., |OPT ∩B| = d. Combining (61) and (57), we can obtain that

f(S∗) ≥ min
cj(ẽ1)

max
{ 1

1
/[

1− exp
(
−

2−2
∑d

j=1 cj(ẽ1)
d

)]
+ d︸ ︷︷ ︸

Σ1

,

1
(d+ 1) + d/[

∑d
j=1 cj(ẽ1) + 1]︸ ︷︷ ︸

Σ2

}
f(OPT)−O(ε)OPT (63)

Observe that Σ1 is monotone decreasing with respect to the total weight of elements of ẽ1 while Σ2
is monotone increasing. Therefore when

∑d
j=1 cj(ẽ1) ≥ γ = 1

3 + 8
45d ,

f(S∗) ≥ Σ2 ≥
1

(d+ 1) + d/[
∑d
j=1 cj(ẽ1) + 1]

(64)

≥ 1
7
4d+ 9

10 + 9
120d+16

. (65)

We remark that

Σ1 ≥ Σ2
(
∀

d∑
j=1

cj(ẽ1) ≤ γ
)
. (66)

Then by the monotonicity of Σ1, we know that (48) holds. To prove (66), it is sufficient to show the
following conclusion, owing to the monotonicity of Σ2,

g = exp
(2− 2γ

d

)
−
(
1 + γ + 1

d

)
≥ 0.

Note that
∂g

∂(1
d)

= exp
( 4

3d −
16

45d2

)(4
3 −

32
45d

)
−
(4

3 + 16
45d

)
, (67)

utilizing the inequality ex ≥ 1 + x, it can be verified that ∂g
∂( 1
d

) ≥ 0 for d ≥ 2 and g > 0 for d = 1,
hence

g ≥ lim
d→∞

[
exp

(2− 2γ
d

)
−
(
1 + γ + 1

d

)]
= 0.

Time Complexity. The time complexity follows from the following facts:

• Obtaining a constant approximation of f(OPT) requires O(log logn) queries per element.

• There are O(ε−1) iterations in the while loop, and each iteration requires a constant number
of queries per element to add new elements into S. In addition, the number of queries used to
construct set S̃ is in a lower order term.

To summarize, the number of queries performed per element in Algorithm 6 is in the order of
O(max{ε−1, log logn}). The proof is complete. �
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D.2 Details of Algorithm 7

Algorithm 7: Main Algorithm
1 Input: ζ̄, ζ, approximation parameter δ, Algorithm 3 and its solution S∗ on ground set E
2 Initialization: ζ ← ζ̄
3 while ζ ≥ ζ do
4 eζ ← argmin{c(e)|ζ ≤ f(e) ≤ ζ

1−δ , e ∈ E}
5 Apply the backtracking threshold algorithm (Algorithm 3) on function gζ(·) : 2E\{eζ} → R+

under budget 1− c(eζ), where for ∀S ⊆ E \ {eζ}, g(S) = f(S + eζ)− f(eζ) and obtain solution
Sζ

6 ζ ← ζ(1− δ)
7 ζ∗ ← argmaxζ f(Sζ + eζ)
8 S′o ← Sζ∗ + eζ∗

9 Return So ← argmaxS∈{S∗,S′o} f(S)

D.3 Proof of Lemma 14

Proof: In thread i of Algorithm 2, two thresholds τ (i)
1 and τ (i)

2 are utilized to select elements. For a
clean presentation, we omit the index of the thread and lower bound the quality of solution obtained
by two sequential threshold τ1 and τ2 in double threshold backtracking algorithm.

In the following we use Ti (1 ≤ i ≤ 2) to denote the collection of elements obtained by threshold
τi. If there exists element êi that has a marginal increment no less than τi but violates the knapsack
constraint, Ti represents the value of candidate set before element êi arrives. We further let
OPT′ = OPT \ B and e1, e2 be the element with largest cost in T1 and T2 \ T1 respectively, i.e.,
ẽ1 = argmaxe∈T1 c(e) and ẽ2 = argmaxe∈T2\T1 c(e).
We divide our analysis into three cases, according to the existence of budget violation in each

iteration.

Case 1: Algorithm 2 stops at τ1. In this case, there exists ê1 such that c(T1 + ê1) > 1, and
the marginal increment of ê1 is no less than f(T1 + ê1)− f(T1) ≥ τ1. Via similar arguments as that
for (28), we can obtain that

f(S∗) ≥ max{f(T1), f(ê1, ẽ1), f(T̃1)} ≥ 2
3τ1 ≥

τ1 + τ2
3 . (68)

Case 2: Algorithm 2 stops at τ2. Without loss of generality, we can assume that c(T1) ≤ 2
3 ,

otherwise we can immediately obtain the same lower bound as (68), i.e.,

f(S∗) ≥ f(T1) ≥ c(T1) · τ1 ≥
τ1 + τ2

3 .

With the condition that c(T1) > 2
3 , the weight of ê2 satisfies that c(ê2) ≥ 1− c(T2) ≥ 1

3 , since ê2
cannot be added into T2 due to the budget constraint. Recall that T̃2 is obtained by adding ẽ2 and
then elements in T2, until the total weight exceeds the budget, we have

c(T̃2 − ê2) ≥ [1− c(ê2)− c(ẽ1)] · 1c(T1+ê2)>1 + [1− c(ê2)− c(ẽ2)] · 1c(T1+ê2)≤1, (69)
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based on which we can obtain the following lower bound on the objective value of T̃2,

f(T̃2) =[f(T̃2)− f(T̃2 − ê2)] + f(T̃2 − ê2)
≥[τ2 · c(ê2) + τ1 · c(T̃2 − ê2)] · 1c(T1+ê2)>1

≥[τ2 · c(ê2) + τ1 · (1− c(ê2)− c(ẽ1))] · 1c(T1+ê2)>1. (70)

Notice that

f({ê2, ẽ1}) =[f({ê2, ẽ1})− f(e1)] + f(e1)
≥[f(T̃2 + ê2)− f(T̃2)] + f(e1)
≥τ2 · c(ê2) + τ1 · c(ẽ1). (71)

Combining (70) and (71) together, we have

f(S∗) ≥f(T̃2) + f({ê2, ẽ1})
2

≥
[
τ2 · c(ê2) + τ1

2 · [1− c(ê2)]
]
· 1c(T1+ê2)>1 (72)

≥τ1 + τ2
3 · 1c(T1+ê2)>1,2τ2≥τ1 , (73)

where the last inequality holds due to the the monotonicity of (72) with respect to c(ê2), together
with the fact that c(ê2) ≥ 1

3 .
Now we consider the case when c(T1 + ê2) ≤ 1. Due to the definition of ê2, we have c(T2 + ê2) =

c(T1) + c(T2 \ T1) + c(ê2) > 1, which implies that max{c(T2 \ T1), c(ê2)} ≥ 1−c(T1)
2 . In addition,

f(S∗) ≥max{f(T2), f(T̃2)} ≥ max{f(T2), f(T1 + ê2)}
≥f(T1) + max{f(T2)− f(T1), f(T1 + ê2)− f(T1)}
≥f(T1) + τ2 ·max{c(T2 \ T1), c(ê2)}

≥τ1 · c(T1) + τ2 ·
1− c(T1)

2 . (74)

Notice that the lower bound in RHS of (74) is monotonically increasing with respect to the total
weights of T1, we have

f(S∗) ≥ τ1 + τ2
3 · 1c(T1+ê2)≤1,c(T1)≥ 1

3
.

For the case when c(T1) ≤ 1
3 , we first argue that T2 6= T1. Because the total weights of elements

selected in the second iteration is no less than c(T2 \ T1) > 1− c(T1)− c(ê2) ≥ 1
6 > 0, hence element

ẽ2 must exist. We next claim the following lower bound on f(S∗),

f(S∗) ≥ max{f(T2), f(T̃2)}
≥ max{f(T1 + ẽ2), f(T1 + ê2)} (monotonicity of f(·) and T1 + ê2 is feasible)
= f(T1) + max{f(T1 + ẽ2)− f(T1), f(T1 + ê2)− f(T1)}
≥ f(T1) + τ2 ·max{c(ẽ2), c(ê2)}. (75)

37



Plugging the fact f(T1) ≥ f(OPT′)− c(OPT′) · τ1 into (75), we have

f(S∗) ≥
(
f(OPT′)− c(OPT′) · τ1 + τ2

3
)
· 1max{c(ẽ2),c(ê2)}≥ 1

3
. (76)

If max{c(ẽ2), c(ê2)} ≤ 1
3 , we have c(T1∪{ê2, ẽ2}) ≤ 1, i.e., T1∪{ê2, ẽ2} is a feasible set. Consequently

we have

f(S∗) ≥f(T2) + f(T̃2) + f(T1 ∪ {ê2, ẽ2})
3

≥f(T1) + [f(T2)− f(T1)] + [f(T̃2)− f(T1)] + [f(T1 ∪ {ê2, ẽ2})− f(T1)]
3

≥f(T1) + τ2 ·
c(T2 \ T1) + c(T̃2 \ T1) + c(ê2) + c(ẽ2)

3

≥[f(OPT′)− c(OPT′) · τ1] · 1c(T1)≤ 1
3

+ (c(T1) · τ1) · 1c(T1)≥ 1
3

+ 2(1− c(T1))
3 · τ2

≥
(
f(OPT′)− c(OPT′) · τ1 + 4

9τ2
)
· 1c(T1)≤ 1

3
+
(τ1

3 + 4
9τ2

)
· 1c(T1)≥ 1

3
. (77)

Case 3: Algorithm 2 stops without exceeding the budget. In this case, we have

f(S∗) ≥f(OPT′)−
∑

e∈OPT′\S∗
[f(S∗ + e)− f(S∗)]

≥f(OPT′)− τ2 · c(OPT′). (78)

Now we are ready to combine our analyses in the aforementioned three cases, i.e., inequalities
(68), (73) and (77)-(78),

f(S∗) ≥min
{τ1 + τ2

3 , f(OPT′)− τ1 · c(OPT′) + τ2
3 , f(OPT′)− τ2 · c(OPT′)

}
(a)
≥
( 6c(OPT′) + 1

[3c(OPT′) + 1]2 − ε
)
· f(OPT′) (79)

≥
( 7

16 − ε
)
f(OPT) · 1OPT∩B=∅ + 16

25[f(OPT)− f(OPT ∩B)] · 1OPT∩B 6=∅. (80)

where (a) holds with equality when

τ1 = 3
3c(OPT′) + 1f(OPT′)−O(ε)f(OPT)

and

τ2 = 9c(OPT′)
[3c(OPT′) + 1]2 f(OPT′)−O(ε)f(OPT).

Observe that the coefficient of f(OPT′) in (79) decreases with respect to the weight of OPT′, thus
(80) follows from the facts that c(OPT′) ≤ 1− 1

2 · 1OPT∩B 6=∅ and f(OPT′) ≥ f(OPT)− f(OPT ∩
B) · 1OPT∩B 6=∅. �
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D.4 Proof of Theorem 5

Proof: For set S′o obtained in the 8-th line of Algorithm 7, we have

f(S′o) ≥
4
11f(OPT) +

( 3
11 − δ

)
f(OPT ∩B). (81)

Consider the iteration when

(1− δ)f(OPT ∩B) ≤ ζ = ζ̂ ≤ f(OPT ∩B),

we claim that

c(eζ̂) ≤ c(OPT ∩B),

since OPT ∩B is a candidate element when selecting element eζ̂ . Moreover, OPT \B is a feasible
solution for the residual problem induced by eζ̂ . If we apply an β-approximation algorithm on the
corresponding residual problem, the following inequality holds for Sζ̂ ,

g(Sζ̂) ≥ β · g(OPT \B). (82)

Plugging the definition of the residual function g into (82),

f(S∗) ≥ f(Sζ̂ + eζ̂)
(a)
≥ β · f(OPT \B) + (1− β) · f(eζ̂)
(b)
≥ β · f(OPT) + (1− 2β) · f(OPT ∩B)− δ · f(OPT ∩B), (83)

where (a) we use the fact that g(OPT ∩B) = f(OPT ∩B + eζ̂)− f(eζ̂) ≥ f(OPT ∩B)− f(eζ̂); (b)
holds since f(OPT \B) ≥ f(OPT)− f(OPT ∩B) and f(eζ̂) ≥ ζ̂ ≥ (1− δ)f(OPT ∩B).

Recall that our Algorithm 3 provides an approximation ratio of β = 4
11 . Taken together with

Lemma 14, we have

f(S∗) ≥min
B

max
{ 7

16f(OPT) · 1OPT∩B=∅ + 16
25[f(OPT)− f(OPT ∩B)] · 1OPT∩B 6=∅,

4
11f(OPT) +

( 3
11 − δ

)
· f(OPT ∩B)

}
−O(ε)f(OPT)

≥
( 7

16 − ε
)
· f(OPT).

The proof of approximation guarantee is complete.

Time complexity of offline algorithm. Both Algorithm 2 and Algorithm 7 require a constant
upper and lower approximations of f(OPT) as inputs, which can be obtained by our backtracking
threshold algorithm in O(n log logn) time in the offline case. Notice that in Algorithm 2, there are
O(ε−1) different values of λ and it runs in O(n) time for each fixed λ, from which we know that the
time complexity of Algorithm 2 is O(n ·max{ε−1, log logn}). And Algorithm 7 can be accomplished
within the same order of time, as it requires O(δ−1) calls to Backtracking Threshold Algorithm and
δ = O(1).
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Complexity in streaming setting. In the streaming model, we run Algorithm 2 and Algo-
rithm 7 in parallel. The main difference with the offline algorithm lies in the approach used to obtain
a constant approximation of f(OPT). Since f(OPT)

maxe f(e) lies in the range of [1, n], we can maintain
O( logn

ε ) copies of solutions in parallel for each possible approximation value of OPT , which implies
a total time complexity of O(n logn

ε ) and space complexity of O(n logn
ε ). �

D.5 Proof of Claim 17

Proof: Utilizing the γ-approximate algorithm for U ]-residual problem, we can obtain a set U ′ such
that

fU](U ′) ≥ γ · max
S⊆E\U]

fU](S) ≥ γfU](OPT \ (U ∪ U ])), (84)

where the last inequality follows from the fact that OPT\(U∪U ]) is a feasible solution to U ]-residual
problem. Plugging the definition of U ]-residual function into (84), we can obtain

f(U ′ ∪ U ]) ≥γf((OPT ∪ U ]) \ U) + (1− γ)f(U ])
≥γf(OPT) + (1− γβ − γ)f(U ]).

If γ + γβ ≤ 1, then we have f(U ′ ∪ U ]) ≥ γf(OPT). Otherwise utilizing the simple fact that
f(U ]) ≤ f(U ′ ∪ U ]), we can obtain f(U ′ ∪ U ]) ≥ f(OPT)

1+β . �

D.6 Details of Algorithm 8

Algorithm 8: An Oε(n log logn) Time Deterministic Algorithm for A ∈ {0, 1}O(1)×n

1 Construct a ( 1
2 − ε, 1 + ε)-shadow set of OPTiε , denoted by S], by (1) guessing the marginal

increments of elements in OPTiε via set Gε = {0, ε
|Oiε |

f(OPT), 2ε
|Oiε |

f(OPT), · · · , f(OPT)}; (2)
guessing the cost vector of elements in Oiε , which belongs to {0, 1}d.

2 b′i ← bi − ci(S]) (∀i ∈ [d])
3 wi ← 1

b′
i

(∀i ∈ [d])
4 λ̄, λ← Upper and lower bounds on the ratio of marginal gain and weight
5 T ← ∅, λ← λ̄
6 while λ ≥ λ do
7 for e ∈ E \ (EΓ ∪ S] ∪ T ) do
8 if

∑d
i=1 b

′
iwi ≤ 1 + δW + (δW )2 and fT∪S](e) ≥ λ ·

∑d
i=1 wici(e) then

9 wi ←
[
1 + δWci(e)

b′
i

+
(
δWci(e)

b′
i

)2]
· wi (∀i ∈ [d])

10 T ← T + e

11 Return So = S]ε ∪ T

D.7 Proof of Lemma 18

Proof: We denote set S] = {e]1, e
]
2, . . . , e

]
|S]|} and S

]
i = {e]1, e

]
2, . . . , e

]
i} (i ∈ [|S]|]), where e]i is the

element selected at the i-th step of guessing. According to the definition of Gε in Algorithm 8, we
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know that the increment of e]i with respect to set S]i−1 is similar as that of element o]i, i.e.,

f(S]i )− f(S]i−1) = f(S]i−1 + e]i)− f(S]i−1) (85)

≥ (1− ε)[f(S]i−1 + oi)− f(S]i−1)]− ε

|Oiε |
f(OPT). (86)

The increment of o\i in (85) can be lower bounded as

f(S]i−1 + oi)− f(S]i−1)
(a)
≥f(S]i−1 ∪ (OPT \OPTi−1))− f(S]i−1 ∪ (OPT \OPTi)) (87)
(b)
≥f(S]i−1 ∪ (OPT \OPTi−1))− f(S]i ∪ (OPT \OPTi)) (88)

where in (a) we use submodularity of f and the fact that S]i−1∪ (OPT\OPTi) + oi = S]i−1∪ (OPT\
OPTi−1). (b) follows from monotonicity of f . Take summarization from i = 1 to |S]|, we can obtain

f(S]) =
|S]|∑
i=1

[
f(S]i )− f(S]i−1)

]

≥(1− ε)
|S]|∑
i=1

[
f(S]i−1 + oi)− f(S]i−1)

]
− εf(OPT)

≥(1− ε)
|S]|∑
i=1

[
f(S]i−1 ∪ (OPT \OPTi−1))− f(S]i ∪ (OPT \OPTi))

]
− εf(OPT)

=(1− ε)[f(OPT)− f((OPT ∪ S\) \OPTiε)]− εf(OPT).

Rearranging the inequality above, we can obtain the first inequality. For the second inequality,
notice that

f(OPTiε)− f(S]) ≤
∑
e∈O

[f(S] + e)− f(S])] (submodularity)

=
|S]|∑
i=1

[f(S]i−1 + oi)− f(S]i−1)]

≤ 1
1− ε

|S]|∑
i=1

[f(S]i−1 + e]i)− f(S]i−1)] (selection rule of our algorithm)

=
f(S]i−1)
1− ε .

Rearranging the terms, the proof is complete. �

D.8 Proof of Proposition 19

Proof: We first note that |OPT∩EΓ| ≤ dW , since for each i ∈ Γ, there are at most W elements in
OPT ∩EΓ whose cost in the i-th dimension is non-zero and |Γ| ≤ d. We next claim the following
proposition about the performance of Proposition 25.
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Proposition 25. Set T is an (1− 1/e− δ)-approximate solution for the S]–residual problem, i.e.,

f(T ∪ S])− f(S]) ≥ (1− 1/e−O(δ))[f(OPT ∪ S] \ (OPTiε ∪ Eγ))− f(S])]. (89)

Assuming the correctness of Proposition 25, we are ready to finish the proof. According to
Proposition 18, we have

f(OPT \ Eγ)− f((OPT ∪ S]) \ (OPTiε ∪ Eγ)) ≤ f(S]). (90)

Combining with Proposition 25 in which we let δ = 1
2 −

1
e , we know that

f(T ∪ S]) ≥ f(OPT \ EΓ)
2 ≥

(1
2 − ε

)
f(OPT), (91)

which follows from the definition of EΓ, as removing each element in O ∩ EΓ will incur a loss no
more than ε

dW f(OPT) and |OPT ∩ EΓ| ≤ dW .
�

Proof of Proposition 25: In this proof we shall depart from the previous notation, for any set
S ⊆ E, we let S′ = S \ (S] ∪EΓ). Suppose that element e(t+1) is selected at the (t+ 1)-th iteration
of the while loop, then for ∀e ∈ E′ \ T (t), we have

fT (t)∪S](e) ≤
∑d
i=1w

(t)
i ci(e)∑d

i=1w
(t)
i ci(e(t+1))

fT (t)∪S](e
(t+1)), (92)

which implies that

∑
e∈OPT′

fT (t)∪S](e) ≤
∑d
i=1w

(t)
i ci(OPT′)∑d

i=1w
(t)
i ci(e(t+1))

fT (t)∪S](e
(t+1)).

For the LHS, based on the submodularity of f , we have∑
e∈OPT′

fT (t)∪S](e) ≥ f(OPT′ ∪ S])− f(T (t) ∪ S]). (93)

Combining (92) and (93),

d∑
i=1

w
(t)
i ci(e(t+1)) ≤ fT (t)∪S](e(t+1))

f(OPT′ ∪ S])− f(T (t) ∪ S])
·
d∑
i=1

w
(t)
i ci(OPT′)

≤ fT (t)∪S](e(t+1))
f(OPT′ ∪ S])− f(T (t) ∪ S])

·
d∑
i=1

b′iw
(t)
i . (94)

Observe that
d∑
i=1

b′iw
(t+1)
i =

d∑
i=1

b′iw
(t)
i ·

[
1 + δWci(e(t+1))

b′i
+
(δWci(e(t+1))

b′i

)2]
(95)

≤
d∑
i=1

b′iw
(t)
i + (δW + δ2W ) ·

d∑
i=1

w
(t)
i ci(e(t+1)) (96)
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where we use Wci(e(t)) ≤ b′i as W = min{ b′i
ci(e) |e ∈ E \ (EΓ ∪ S]), i ∈ [d]}. Let Φ(t) =

∑d
i=1 b

′
iw

(t)
i ,

then Φ(0) = d, and

Φ(t+ 1) ≤ (1 + δ + δ2) · Φ(t), (97)

which follows from the update rule of w(t)
i in Algorithm 8 and definition of W . Further we can

obtain the following bound on the increment of Φ by utilizing (94),

Φ(t+ 1)
Φ(t) ≤1 + (δW + δ2W ) · fT (t)∪S](e(t+1))

f(OPT′ ∪ S])− f(T (t) ∪ S])

≤ exp
{

(δW + δ2W ) · f(T (t+1) ∪ S])− f(T (t) ∪ S])
f(OPT′ ∪ S])− f(T (t) ∪ S])

}
, (98)

which further implies that

Φ(t̄)
Φ(0) ≤ exp

{
(δW + δ2W ) ·

t̄−1∑
t=0

f(T (t+1) ∪ S])− f(T (t) ∪ S])
f(OPT′ ∪ S])− f(T (t) ∪ S])

}
≤
( f(OPT′ ∪ S])
f(OPT′ ∪ S])− f(T (t̄) ∪ S])

)(δW+δ2W )
(99)

Rearranging the terms, we have

f(T (t̄) ∪ S]) ≥
(
1−

(Φ(0)
Φ(t̄)

) 1
δW+δ2W

)
f(OPT′ ∪ S])

≥
(
1−

(d[1 + δ + δ2]
eδW

) 1
δW+δ2W

)
f(OPT′ ∪ S]), (100)

For the second inequality, we utilize the fact that Φ(t̄+ 1) ≥ eδW and Φ(t̄+ 1) ≤ Φ(t̄) · (1 + δ + δ2).
Note that (d[1 + δ + δ2]

eδW

) 1
δW+δ2W =e

−1
1+δ · d

1
δW+δ2W · (1 + δ + δ2)

1
δW+δ2W

≤
(1 + 2δ)(1 + 2

W )(1 + 2 log d
δW )

e
≤ 1 + 15δ

e
,

where we use ex ≤ 1 + 2x for ∀x ∈ [0, 1], and W = 2 log d
δ2 . The proof is complete. �
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