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Abstract—Communication system design to date is predicated
on principles that abstract information as digital sequences ir-
respective of their meanings. Such a semantic-agnostic approach
leads to fundamental limits that are application and technology
independent, and offers efficient engineering of communication
systems. Emerging applications that involve communications
however, call for going beyond the engineering problem of reliably
reconstructing a digital sequence. Most current communication
devices are computing devices that execute tasks. Increasingly
communication is needed for a purpose and is integrated with
decision making, machine learning and sensing. Further, human
networks operate over machine networks, which necessitate more
sophisticated human-machine communication. The goal of this
vision paper is to advocate for Semantic Communications, i.e.,
communication system design that, at the outset, pays attention
to the content, its meaning, context, and purpose. We will argue
that taking into account the meanings and context of information
can lead to better communication designs. In particular, we argue
in favor of semantic distortion, a novel metric introduced nearly
a decade ago, based upon which communications systems design
aiming to convey the meaning and purpose can be designed.
We review the current efforts of Semantic Communications
which has recently become a popular area of 6G, and poten-
tial directions of Semantic Communications, which can explore
various different directions with novel metrics including using
Knowledge Graphs (KL), information theoretic approaches, and
machine/Deep Learning (DL).

Index Terms—Semantic Communications, Task Oriented Com-
munication, Context Awareness, Deep Learning, Information
Theory.

I. INTRODUCTION

Shannon established the fundamental limits of represen-

tation and communication of information in 1948 in his

landmark paper [1]. A fundamental starting assumption in

Shannon’s approach is to strip the meanings from the commu-

nication messages: ”Frequently the messages have meaning;

that is they refer to or are correlated according to some system

with certain physical or conceptual entities. These semantic as-

pects of communication are irrelevant to the engineering.” [1].

This allows for representing messages as digital sequences and

the problem of reliable reconstruction becomes one of identi-

fying one of these sequences. The resulting framework which

quantifies information and connects the limits of compression

and reliable communication to the information measures have

been the cornerstone of communications system design ever

since. In particular, insights quantifying information capacity

and separation of source and channel coding have arguably

led to today’s compression and communication as we know

it.

Shortly after Shannon’s work, this fundamental assumption

has been brought into question. Shannon and Weaver iden-

tified three levels where a problem is likely to occur during

communication [2]: i) technical level; ii) semantic level; iii)

effectiveness level. The first level deals with the accurate

transmission of symbols while the second level focuses on

how the meanings are conveyed over the link. The third level

investigates the impact of the transmitted message on the

receiver and how effectively it is processed. These levels of

classification clearly highlight the semantic aspect, and despite

having focused on the first level, shows the broader thinking

early on.

Over the years, practical metrics such as throughput, Bit

Error Rate (BER), and Symbol Error Rate (SER) have been

used to quantify the performance of communication links. Ad-

ditionally, decades of research brought us closer to Shannon’s

fundamental limits. The digital revolution transformed society

at large, to the point that we rely on devices that are designed

by these principles for all aspects of life.

This brings us to present day where a new revolution

is brewing: 6G. The envisioned applications set forth for

the next decade in 6G clearly points to a more natural

and integrated human-machine interaction, including funda-

mentally better ways for machines to analyze and respond

to human behavior. Additionally, emerging applications like

remote surgeries, digital twins, fully autonomous vehicles,

smart environments [3], [4], [5], [6] are all demanding with

respect to wireless resources (bandwidth), and call for better

ways of communicating needed information with reliability

and ultra-low latency, rather than all information. For these

applications to be pervasive, we need to consider the content,

the meaning and the goal of messages. In other words, to

enable future applications, we need to add the second level

(and even third) of communication of [2].

This paper reviews the past decade on semantic com-

munications research and aims to emphasize the potential

benefits of this approach. Specifically, we will argue that

unlike classical communications, semantic communications
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focus on only conveying the information that is pertinent to the

transmission task and/or its meaning. This mind-set naturally

leads to resource savings which can be significant with careful

design and tailored to the application. This approach requires

tools to extract the semantic information, and metrics to

quantify the semantic knowledge for sources with different

modalities. There are different approaches utilizing knowledge

graphs (KL), information theory (IT), and deep learning (DL)

models in the literature. These will be summarized in the next

sections starting with the early efforts defining the semantic

communication metric.

II. SEMANTIC COMMUNICATIONS: THE BEGINNINGS

Although, including meanings of messages has been consid-

ered in various works following Shannon, there have not been

significant advances in this area until recently. [7] is among the

earliest references to recognize that semantic communications

can lead to better utilization of resources. In particular, a

transmitter design that minimizes semantic distortion of the

receiver has been considered, effectively replacing the age-old

syntactic Word Error Rate (equivalently BER or SER) with

semantic error as the performance metric.

Conventional transmitter design maps source symbols to

codewords (index assignment) to minimize the symbol errors

over the noisy communication link [8], [9]. The inclusion

of semantics in this design, naturally calls for a mapping

that optimizes semantic error, called semantic distortion in

[7]. This differentiation between the errors is captured via

the utilization of a semantic measure. In [7], a taxonomy-

based semantic measure was used. The similarity between two

concepts is defined as:

sim(ci, cj) = maxc∈S(ci,cj)[−log(p(c))] (1)

where p(c) is the probability of the concept c, S is the set of

general concepts in taxonomy including both ci and cj . The

similarity of words is then:

sim(wi, wj) = max(ci,cj)[sim(ci, cj)] (2)

Expressions ci, cj denote the different senses (meanings) of the

words wi, wj respectively. The average semantic distortion is

then given by:

D(π) =

|W |∑
i=1

p(wi)(

|W |∑
j=1

p(π(wj)|π(wi)) ∗ d(wi, wj)) (3)

where π(.) is the index assignment, p(wi) denotes the proba-

bility of word wi, and p(π(wj)|π(wi)) denotes the probability

of receiving the codeword assigned to word wj when code-

word of wi was transmitted [7].

Minimizing semantic distortion leads to mappings where

semantically similar codewords are placed to points that are

close in terms of Hamming Distance [7]. The provides a

semantically similar codeword that is likely to be decoded

in case of error brought on by channel noise, minimizing the

semantic loss of the link. The inclusion of meanings in the

metric removes the limitation in conventional systems where

the errors are treated equally independent of their similarity in

semantic space. Hence, errors in transmission become inter-

pretable from the human perspective. As an example, consider

in a noisy communication link, the transmitted message is ”A

car is approaching”, and receivers A and B received messages

”A table is approaching”, and ”A vehicle is approaching”

respectively. Although the errors of A and B are similar from

the traditional perspective (with BER and SER), the semantic

error of B is much lower compared to A. This example

also connects us to context-aware communications, one can

also see that the message received by A is received in error

immediately. Utilizing context or knowledge can lead to better

designs.

The concept of Knowledge Graph (KG) [10] is utilized

in [7] to achieve the minimum number of codewords. The

setup in [10], [11] includes two users, each with their own

messages (facts), xi and x̂i for users 1 and 2 respectively. Users

are interested in reaching conclusions by exchanging facts in

an interactive communication scenario. Knowledge graphs for

both users are constructed with individual facts as the vertex

set. An edge between two facts from the user’s knowledge, (xi,

xj) is present if they reach a conclusion with the same fact, x̂k,

from the other user. The problem then becomes graph coloring

with vertex set, W, and edge set, E, where the chromatic

numbers of graphs are taken into consideration. To ensure valid

coloring, a function was introduced [7],

f(c) =
∑

(wi,wj)∈E
wi,wj∈W

I{c(wi)=c(wj)} (4)

Where,

I{c(wi)=c(wj)} =

{
1, if c(wi) = c(wj)

0, otherwise
(5)

c(wi) is the proposed color for the word wi and c is the

proposed coloring. For coloring, c, to be valid, f(c) = 0 in

(4). Adopting this constraint to index policies, the mapping

that minimizes the average semantic distortion D(π) over all

valid colorings is then sought in [7]:

πopt = argminπD(π)

s.t.f(π) = 0
(6)

This optimization problem is NP-hard and thus simulated an-

nealing was employed to find near-optimal mappings for large

scale problem. It is worthwhile to note that with the advent

of data-driven machine learning methods, semantic distortion

optimization is much more within reach, see, for example, the

next section for extensions utilizing deep learning.

Bringing the importance of context and side information to

the forefront, [12] further explored a game theoretic approach

to obtain optimal transmission policies for minimum end-to-

end semantic error. In addition to the transmitter decoder pair,

the system model considered in [12] includes an agent who

can influence the communication process by supplying side

information. One can imagine such an agent being helpful by

providing context to the decoder as to the incoming message.
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It can also be detrimental by providing adversarial side in-

formation. Modeling a probabilistic agent, a Bayesian game

is played where Player 1 tries to optimize the encoding and

decoding (the system), and Player 2 is the agent (influencer

whose nature is uncertain). Corresponding payoff functions

were set for the players and Nash Equilibrium is investigated.

Furthermore, the case when the agent is known to be helpful

for sure is investigated for achieving minimum semantic error

where the behavior can be considered as side information to

the decoder [12].

These early studies show the potential benefits of including

semantics in communication system design, and introduce

pathways to explicitly taking semantics of information into

account in future designs. In recent years, especially with

the advent of deep learning, there has been as resurgence of

interest from the research community in various directions of

content-aware communications design, i.e., bringing seman-

tics. Today, semantic communications is emerging as a major

direction in the design of 6G systems.

III. RECENT LITERATURE

A. Rate-Distortion Approaches

There is recent work that frames semantic communications

as rate-distortion problems. Of specific interest is indirect rate-

distortion or remote source coding. Indirect rate-distortion

problem, introduced in [13], adds a noisy channel between

a source S and the encoder, meaning the encoder observes a

noisy source. This is a classical problem in information theory.

The output of the encoder propagates through a noisy commu-

nication channel and is obtained at the receiver. Witsenhausen

studied this problem further in [14] by considering side infor-

mation at the decoder and providing a reformulation for the

expected distortion function. This formulation is widely used

in recent studies [15], [16], [17]. These works consider the

input channel as a semantic channel that introduces distortion

to the source parallel to the notion started by [7].

In [15], data at the encoder is represented with a tuple (S,

X). In this notation, S is the semantic information of the source

and is not directly observable. X is defined as appearance

of S to the encoder. The receiver obtains X̂ and Ŝ through

a communication channel. Distortion constraints Ds and Da

are defined separately for (S, Ŝ) and (X, X̂) respectively. The

problem was considered as a combination of rate-distortion

with multiple distortion constraints and indirect rate-distortion

problems [15]. These recent works can be seen as theory

approaches to semantics, although they mainly remain in the

Shannon theory domain.

B. Semantic Communications Utilizing Deep Learning Models

In [18], a communication system is modeled as an autoen-

coder. Different from traditional models, the transmitter, and

receiver are jointly optimized for end-to-end data reconstruc-

tion. Although, not specific to semantic communications, this

work certainly has motivated researchers in communications

to build deep learning-enabled models, where the source and

channel coding blocks are jointly optimized [19].

In this approach, source and channel encoder/decoder blocks

are replaced with neural networks and the channel is rep-

resented with a non-trainable noise layer. The problem is

considered as an end-to-end reconstruction task and training is

performed with the selected loss function. For this structure,

there are recent approaches to replace the source coding

neural network with models that are successful at extracting

features from the source in DL tasks. This structure thus will

perform semantic coding to preserve the meaning through

communication.

In [20], joint source-channel coding (JSCC) for text trans-

mission is done utilizing long-short-term memory (LSTM)

networks. LSTM models are widely used in natural language

tasks and are utilized in this model to capture the meanings

[21]. Authors in [22] design a DL-enabled JSCC-based system

for text transmission. Transformers are used to capture the

meanings thanks to their attention mechanism. The use of

transfer learning in cases of knowledge and channel alterations

is investigated. A sentence similarity metric was defined to

evaluate the similarity level of the two sentences that extends

the word similarity in [12] to the whole sentence. In addition to

text, the transmission of speech signals is investigated in [23],

where Squeeze and Excitation (SE) Networks are used to ex-

tract essential information from speech signals. The extension

in [24] utilizes CNN and RNN models for a speech recognition

task where speech is captured at the transmitter and text is

generated at the receiver. Instead of sending speech signals, ex-

tracted semantic features are transmitted decreasing the traffic.

To generalize the concept to multi-user multi-modal cases, a

study in [25] was conducted. Machine Translation (MT), and

Image Retrieval (IR) tasks are selected for multi-user case

and Visual Question Answering (VQA) task is selected for

multi-user multi-modal case. A unified transformer structure

was proposed to process the data for multiple tasks and multi-

modals. Results show that this framework increases robustness

by providing enhanced communication in low SNR regimes

and achieving higher semantic similarity scores compared to

the traditional separation-based methods like Huffman, Brotli

(for text), Adaptive Multi-Rate Wideband (AMR-WB) (for

speech) JPEG (for image) for source coding and Turbo, Reed-

Solomon (RS), Polar Codes for channel coding [22], [24], [25].

For image transmission, DL enabled JSCC model was

proposed in [19] involving CNN to process the image source.

It was seen that model outperformed the state of art techniques,

JPEG source coding with capacity achieving channel coding

by offering a higher PSNR score. Similar work was done in

[26] for video transmission. Video signals are first considered

as a sequence of images and selected key frames from this

sequence are sent by using a similar technique in [19]. Motion

information was extracted from the remaining frames and

encoded by an interpolation encoder. Results showed that the

proposed model outperformed the state of art H.264 video

encoder with LDPC channel coding. [26].

All of these recent works showcase the utility of deep

learning in designing non-traditional end-to-end communica-

tion systems, essentially affirming the merits of joint source-
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channel coding in practical systems of the future. Extracting

and conveying the needed information and explicitly taking the

content semantics into account integrates well with end-to-end

approaches employing deep learning.

IV. CONCLUSION AND FORWARD LOOK

In this vision paper, we have discussed the emerging field

of Semantic Communications. We have talked about the

motivation for and origins of semantic communications and

summarized recent developments that nicely dovetail with the

recent advents in machine learning for communications. For a

more comprehensive survey on semantic communications and

the adjacent area of goal oriented communications, the reader

is referred to [27].

In this paper, we have argued the case for replacing the

traditional symbol/word error metrics that have driven practical

communication network design for decades, with semantic

error. Such a leap brings in the possibility of end-to-end

designs conveying useful information to the destination. This

mindset departs from measuring the performance of a network

by throughput, which separates communications from the

actual goal of the network. As 6G designs on the horizon

point to convergence of task execution, computing, learning

and communications with distributed networked intelligence,

semantic communications paradigm, we posit, is needed to

execute this vision.

Semantic communications is still a nascent field. There

are a number of exciting directions and formulations taking

semantics into account in network design. There is also

significant attention from researchers towards defining the

transformative directions. There are as many recent opinions

on what semantics in communications is as is not. While the

power of deep learning is evident for content and semantics

aware multi-modal communications design of the future, it

is also important to note that exciting directions remain on

the modeling side as well, in particular towards quantifying

semantic information. Further, better integration with natural

language processing is needed in order to utilize context

and structure in content better. We conclude by advocating

for hybrid approaches: a mix of theoretical foundations and

practical designs, for example building on rate-distortion/JSCC

framework, and considering semantic error as an application

dependent metric; and a mix of learning and model based

designs harnessing the power of deep learning and (wireless)

network models.
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[26] T.-Y. Tung and D. Gündüz, “Deepwive: Deep-learning-aided wireless

video transmission,” IEEE Journal on Selected Areas in Communica-

tions, vol. 40, no. 9, pp. 2570–2583, 2022.
[27] D. Gunduz, Z. Qin, I. E. Aguerri, H. S. Dhillon, Z. Yang, A. Yener, K. K.

Wong, and C.-B. Chae, “Beyond transmitting bits: Context, semantics,
and task-oriented communications,” To appear in IEEE Journal on

Selected Areas in Communications, arXiv preprint arXiv:2207.09353v2,
2022.

71


