Ohio Noxious Weed Identification – Week 20 Marestail


FamilyComposite, Asteraceae.

Habitat: Thin turf, agronomic crops, pastures, orchards, fallow fields, waste areas, and roadsides.

Life cycle: Summer or winter annual.

Growth habit: Seedlings develop a basal rosette and mature plants erect are reaching 6 1/2 ft in height.

Leaves: The mature plant has leaves that are entirely without petioles (sessile). Leaves are 4 inches long, 10 mm wide, alternate, linear, entire or more often toothed, crowded along the stem, and hairy. Leaves become progressively smaller up the stem.

Stem: Erect, solid, hairy, reaching 6 1/2 ft in height.

Continue reading

Absorbency of Alternative Livestock Bedding Sources

Reggie Voyles, undergraduate research intern, Department of Animal Science, Iowa State University
Mark Honeyman, professor, Department of Animal Science, Iowa State University
Iowa State University, Northwest Research Farms and Allee Demonstration Farm ISRF05-29, 31
(previously published on Talking Sheep – Sheep Education and Information: March 28, 2018)

As the demand for niche-marketed meats increases, so does need for research in this area. One niche market that is being examined is pork raised in deep-bedded systems. There is also a call for alternative bedding materials. Farm produced bedding sources such as cornstalks and various types of straws are commonly used. However, this study looked at other possible materials. Products were tested to see if they could be equal substitutes based on their absorbency. A ground lumber product and a ground lumber with drywall product with a ratio of 8:1 lumber-to-drywall were tested. These products were produced from demolished buildings. They had different performance qualities than wood shavings and were compared to cornstalks, recycled paper, oat straw, and triticale straw.

Continue reading

Mud Control is Grazing Management

By: Rory Lewandowski, OSU Extension Educator, Wayne County (originally published in Farm and Dairy)

An unseasonably warm February led to mud management issues for many pasture-based livestock operations. Spring typically leads to our April showers and the “traditional” time of managing around mud. We just arrived in mud season a little earlier.

All this mud is an undesirable condition, from an animal performance, resource management and environmental perspective.

Graziers need to have a mud control plan as part of a comprehensive grazing management system.

Within a grazing system, mud does not just happen. Wet soils combined with livestock create mud.

How quickly mud is created depends upon the number of livestock in a given area, the weight of those livestock, the saturation level of the soil, the time of year, and the strength of the surface to support those livestock.

Continue reading

Control Winter Weeds for Better Pastures

Lauren Peterson, Hay and Forage Grower summer editorial intern
(Previously featured in Hay & Forage Grower: February 13, 2018)

Gone are the days when warm-season weeds seemingly had a corner on the warm-season pasture market. Producers who typically focus their control efforts on warm-season broadleaf and grass weeds, such as ragweed, broomweed, sandbur, or johnsongrass, may want to broaden their efforts.

Soils and crops consultant of the Noble Research Institute, Eddie Funderburg, explains that cool-season weeds, or those that emerge in the fall and grow throughout the winter and spring, are finding their way into warm-season pastures. Funderburg explains this growing problem and highlighted some of the main culprits in a recent Noble Research Institute News and Viewsnewsletter.

Annual ryegrass
“Ryegrass can be a valuable forage or a difficult weed, depending on your situation,” Funderburg began.

Commonly seen as a weed in summer forages, ryegrass hinders producers in two ways. The first is hay quality for horses. Funderburg noted that hay producers can struggle selling their first and second cuttings containing ryegrass as high-quality horse hay.

In pastures, where cattle consumption does not keep up with ryegrass growth, the species becomes extremely competitive with warm-season grasses in late spring. When it dies, ryegrass forms a mat that shades the ground, further inhibiting the growth of summer grasses such as bermudagrass. “I’ve seen quite a few stands of bermudagrass lost to excessive ryegrass competition,” Funderburg said.

For effective control of annual ryegrass, Funderburg recommended spraying a nonselective herbicide in the dormant season. He warned that this treatment is not ideal if plants like cool-season legumes are actively growing at that time.

Glyphosate, the active ingredient in Roundup, is frequently used when desirable plants are inactive because it will kill only green plants upon application. Funderburg added that in some regions, ryegrass has become resistant to glyphosate. Where this is the case, paraquat can be used as a substitute.

“Take extreme caution when handling paraquat since it can be lethal to the applicator if ingested,” Funderburg warned. “It is a good idea to rotate glyphosate and paraquat to prevent resistance from developing, even if resistance is not confirmed in your fields.”

Thistles are a persistent problem in pasture management. This invasive species is best fought during the winter or early spring in order to see effective control results. Both treatments discussed above are effective in the rosette stage (lying flat on the ground), Funderburg noted.

Once thistles begin to bolt and shoot a seedhead, they are much harder to control. Before thistles bolt, broadleaf herbicides are more effective. Funderburg listed 2,4-D alone, 2,4-D with picloram, dicamba or aminopyralid, metsulfuron methyl, or a combination of metsulfuron methyl, 2,4-D, and dicamba as potential chemical control options.

“Henbit is a plant that was not generally considered a pasture weed in the Southern Great Plains until the past few years, but now it can be a major competitor with bermudagrass in the early spring,” Funderburg said.

Although 2,4-D alone may not eradicate henbit, it can easily be taken care of with other herbicides when sprayed early. Funderburg recommended glyphosate in the dormant season, a mixture of 2,4-D and glyphosate, or mixtures of 2,4-D, dicamba, picloram, aminopyralid, and metsulfuron. For best results, spray when the henbit is still small.

Winter weeds aren’t always a bad thing. Warm-season pastures and hayfields simply need to be scouted to determine if control is necessary. Funderburg said that in most cases control of winter weeds requires an additional application in order to also control summer weeds. An exception to this is aminopyralid (sold as Milestone or formulated with 2,4-D and sold as GrazonNext HL). Research shows that if applied in February, aminopyralid gives season-long protection against western ragweed, Funderburg added.

“Always read the label before handling, mixing, or applying pesticides,” cautioned Funderburg. “Pay particular attention to safety information and follow all recommended safety practices. Remember, the label is the law.”

Protect Sheep and Goats with CDT Vaccine

Peggy Coffeen, Dairy/Livestock Editor

This week we have another achieved article resurfacing from just few years ago. In this article, Dr. Eric Gordon, a member of the OSU Sheep Team,outlines the importance of a proper vaccination program. Be sure to check out this quick piece to learn more about the benefits of vaccinating your herd or flock with CDT.

Failing to arm sheep and goats disease protection is a bit like heading into a tackle football game with no helmets or pads. Less protection means greater risk. Vaccines are an important component in suiting up small ruminants to hit the field – or pasture. At minimum, sheep and goats of all ages and stages should be protected from clostridial diseases.

Dr. Eric Gordon, DVM, The Ohio State University, believes that clostridial diseases are the only group that all sheep and goats should be vaccinated against. He recommends using a three-way vaccine generically referred to as CDT, which protects against Clostridium perfringens type C and D and Clostridium tetani (tetanus). Eight-way vaccines are also on the market, but the three-way CDT is the core vaccine for sheep and goats.

Protect Against these Three: CDT
The CDT vaccine is both inexpensive and very effective at preventing the quick and fatal consequences that can result from a clostridial infection. “The key here is vaccination and prevention rather than treatment because usually we are too late to treat it,” Gordon says.Types C and D are the culprits of enterotoxemia.

Type C:
Type C is found around the farm in manure and soil. A young animal may ingest this strain while nursing a doe or ewe with a dirty or contaminated udder. Once inside the body, the bacteria grow rapidly and produce a toxin that results in rapid death.

Type D:
Type D is the clostridial strain tied to overeating disease. While certain levels exist in the stomach, bacteria can proliferate in the small intestine when fast-growing lambs or kids ingest large amounts of feed, grain specifically. These toxins then enter the bloodstream, and the animal responds with body convulsions, jerky movements, salivation and coma. Death can occur in as little as 30-90 minutes.

When it comes to tetanus, wounds and lacerations are a conduit for the deadly bacteria to infect the body with deadly toxins. While puncture wounds incurred from in and around facilities are one way tetanus can infect the animal, surgical procedures like castration, docking and dehorning can also present a risk.

Based on his observations, Gordon believes that the method of castration matters when it comes to tetanus. He has seen a higher incidence of tetanus among animals that have been banded compared to those that were surgically cut. This is because the bacteria thrive in an anaerobic environment, which is created by the dead tissue that forms below the band. However, the infection risk from banding is reduced when animals are protected by a vaccine.

Vaccine Recommendations:
From babies to mommas and bucks, protecting against these swift and deadly clostridial infections is a wise choice. At a cost of roughly $0.30 per dose, it is a “pretty cheap and pretty effective” way in assure the health of your animals, Gordon notes. Following the vaccine protocol for kids and lambs and providing an annual booster through adulthood will provide optimal protection.

When ewes and does are vaccinated properly, they are able to pass on temporary protection to their vulnerable babies through colostrum. Gordon recommends that ewes and does be vaccinated in the last month of pregnancy. For first-time moms, he suggests giving two shots – one 6 weeks prior to lambing or kidding, followed by another 3 weeks prior to lambing or kidding. This puts the maximum amount of antibody in colostrum for the lamb or kid.

When the immunization status of the mother is unknown or uncertain, the best bet for disease prevention is to vaccinate the baby at 1-3 weeks of age, followed by two booster shots, each given at 4 week intervals.

For properly vaccinated babies, he recommends administering the CDT vaccine at about 8-12 weeks of age. If the ewe or doe was properly vaccinated, her colostrum will provide good protection up to that point. The timing should also be 1-2 weeks prior to castrating or docking.

And don’t forget about the boys. Gordon suggests hitting rams and bucks with a CDT vaccine about a month before going into the breeding pens. “That’s when most likely to get injured, and injury can lead to clostridial infection,” he notes.

Vaccines are Not Band-Aids:
“Vaccines shouldn’t be a Band-Aid for poor management,” adds Gordon. There are other ways to improve immune function other than vaccinations, and they are just as important. Reducing animal stress and providing good nutrition, clean bedding and housing, ventilation, and an ample water source are basic things that do wonders for animal health. Practicing good hygiene by keeping animals clean and dry will also help prevent the spread of clostridial diseases.

“If we do [these things], it’s amazing what the animal can fight off on its own,” he states. “Coupled along with the vaccination program, that is the answer.”

Livestock Water is Essential, Even in Winter

Ted Wiseman, OSU Extension Educator ANR, Perry County

(Image Source: Catskill Merino Sheep)

Water is essential for all livestock regardless of the time of year. So far this year we have certainly had our share of chopping ice, thawing water lines and troughs. With recent temperatures many of us often focus on keeping livestock well fed and with adequate shelter. However, often times we forget about the most important nutrient which is water. Water consumed by livestock is required for a variety of physiological functions. Some of these include proper digestion, nutrient transportation, enzymatic and chemical reactions, and regulation of body temperature.

Although water is the cheapest nutrient we may purchase or provide, it is the one we provide the most of on a per pound basis. For example, every pound of dry matter consumed, cattle will need to drink about seven pounds of water. Consumption of water varies depending upon temperature, size of the animal, feed intake, mineral intake and stage of production. Lack of water consumption will affect animal performance. With colder temperatures feed intake is increased to generate body heat. Decreased water availability reduces feed intake which results in decreased body condition. This is especially important if your newborns arrive in the spring, following reduced water and feed intake which leads to poor fetal growth rates and lactation levels.

To ensure adequate water intake, reports have indicated that water temperature should be 37 to 65 degrees. The rumen operates at 101-102 degrees; ingesting extremely cold water can decrease digestion until the water warms to body temperature. Be sure to monitor waterers regularly, for temperature and cleanliness. Stray voltage is another issue that should be monitored for new installations as well as established watering devises. An electrical AC current above three to four volts is enough to decrease water intake. Tank heaters can be an option, but keeping electrical cords away from any contact with livestock can be an issue.

For many grazing operations ponds, streams and developed springs are the primary sources of water. These may limit the areas to be grazed and where winter feeding is done depending upon how far livestock need to travel to the water source. Producers over the years have utilized technologies by installing pipelines, storage tanks and more recently the use of solar power to move water to various locations. There are numerous styles of watering designs, each have advantages and disadvantages, especially during the winter.

Which style to choose depends upon many factors and you need to spend some time looking at various types and speaking with producers in your area for advice. Just a few things to consider, first what type(s) of livestock do you have or plan to add and how many animals can the waterer handle? Where do you need to place it and how is water going to be delivered? Are you going to need external heat source during the winter? How much maintenance is required and how easy is it to clean? Will your livestock need to be trained to use the system? What is the life expectancy of the waterer? And lastly of course price, but this should not be the deciding factor. A cheaper waterer that doesn’t last as long and requires more of your time to maintain will be much more expensive in the long run.

If given a choice of water sources cattle do prefer to drink from a tank instead of streams or ponds. In a few studies that looked at this, cattle where given access to both with no restriction to stream or pond access. In both studies cattle preferred to drink from tanks 75 to 90 percent of the time. When cattle drink from a pond or stream the second cow normally travels farther into the water source for a cleaner drink.

Good quality water is essential for livestock, regardless of the source you have. Rarely do many of us test our water on a regular basis, but it should be considered. Especially if you notice reduced water intake or refusal. Water analyses for livestock typically include total dissolved solids or salinity, pH (acid or alkaline value), nitrates, sulfates, and hardness. Bacteria can be a health concern, especially during summer months and during drought conditions. If you plan to test your water, consult your water testing lab for proper water sample collecting procedures.

Until spring arrives, keep those water sources opened up and clean.

Mastitis: An Issue Not to be Taken Lightly

Michele Marques, PhD student from the Animal Bioscience Program, Federal Rural University of Pernambuco – Brazil
Guilherme Moura, PhD student from the Animal Bioscience Program, Federal Rural University of Pernambuco – Brazil
Luciana da Costa, DVM, MSc, PhD, OSU Assitant Professor, Department of Veterinary Preventive Medicine, College of Veterinary Medicine (da-costa.2@osu.edu)


Mastitis in Small Ruminants:

What is mastitis?
Mastitis in goats and sheep, similar to cows, is defined as inflammation of the mammary gland and can occurs due several factors, which may be infectiousor not and may present in clinical or subclinical form. In clinical mastitis, it is possible to observe the signs of inflammation, such as:

  • pain,
  • redness,
  • swelling of the gland,
  • and changes in milk characteristics, which may show lumps, pinkish/reddish coloration or even absence of secretion.
  • Some severe cases could lead to udder necrosis (“blue bag”) and even death.

In subclinical mastitis, the female does not present inflammatory signs, however, due to presence of some microorganisms in the mammary gland milk quality can be decreased.

(Gangrenous mastitis in a goat.)


(Difference between normal milk and milk from gangrenous mastitis.)


(Sheep mastitis.)

The inflammatory process of the mammary gland can have several origins. For example, traumas and lesions or it can be due to infectious agents, such as fungi, viruses, or in majority of cases bacterial agents. They can cause either environmental or contagious mastitis.

  • Environmental mastitis is directly related to the hygiene of the places where these ewes and goats remain.
  • Contagious mastitis are associated with transmission between animals and even between human-animal interactions.

Whereas most bacteria can cause either clinical or subclinical mastitis, Staphylococcus aureusPasteurella hemolytica and various yeasts and molds are often recovered from milk samples of ewes affected with clinical symptoms. “Blue bag” (clinical mastitis with a hard, cold swollen udder) is typically caused by Pasteurella hemolytica or Staphylococcus aureus.  Coagulase-negative staphylococci have been frequently reported to be the most commonly isolated pathogens recovered from cases of subclinical mastitis of dairy ewes.

**Ewes with subclinical mastitis produce less quantities of milk and milk with lower quality.

(Blood agar plate with Staphylococcus aureus colonies (contagious mastitis).)

Management / Control
The correct management of the ewes and goats in any production system, dairy or meat, is the key point for mastitis control. Preventing mastitis in dairy herds will ensure milk quality, animal health and welfare.

Among the most important measures in management of dairy goats and ewes, we can point out the sanitary control of the animals, especially regarding clinical forms of mastitis, separating the positive animals and discarding the contaminated milk.

In addition, the adoption of a microbiological-based milking line, pre and post dipping usage, and regular maintenance and hygiene of milking machines are measures that also contribute to better milk quality and animal health.

In meat herds and flocks, mastitis control is mainly based on culling animals that present recurrent episodes of clinical mastitis, which directly affect kid and lamb growth. The other general managements are related to hygiene measures that should be part of the property routine, ensuring a clean environment on stables, maternity paddocks, milking parlor, material and equipment used in milking.

(Milk samples for culture in blood agar plates.)

(Dairy goat milking parlor.)


  • Mastitis is considered one of the mostly costing diseases in the world, because it directly affects milk quality and its products.
  • In meat herds and flocks, it is notorious for the losses of kids and lambs due to mortality as a result of low nutrition caused by mastitis.
  • Prevention of infection is the key to control mastitis.
  • Good hygienic housing and consistent milking practices are crucial to minimize the impact of this disease.

Five Pasture Improvements to Begin in January

– Dean Kreager, OSU Extension AgNR Educator, Licking County (this article originally published in Farm & Dairy)

New Year’s Day has come and gone, as have some of our New Year’s resolutions: eat less junk food, go to the gym more often, lose weight, and the list goes on.

I hope our pasture management goals for the year last longer. As I contemplate the projects I have completed and those that are still on the list for another year, I think about how I can get more production from my pasture or how I can feed more animals on the same amount of land.

Today, I will stick with the “5 Things” theme in this issue and will touch on five areas of pasture management you can work on in January to improve utilization of your pastures through the growing season.

1) Weed control: Controlling woody invasive species such as multiflora rose, honey locust, and hawthorn trees can improve your pastures by reducing competition for nutrients as well as saving on flat tire repair, and reducing the number of lame animals from thorns.

A 2005 report from Cornell estimated invasive weeds in pastures in the United States cost $1 billion a year in losses and damages. It is a never-ending war, but even in January, you can win some battles.

Many herbicides are labeled for use on woody invasives and each use has advantages and disadvantages. During the winter, a basal bark treatment can be effective in controlling these problem plants.

Basal bark applications can be applied anytime during dormancy, which is typically mid-December to early April, as long as the plants are dry and little or no snow covers the base of the plant.

This time of year, with less vegetation, even small multiflora rose bushes or honey locust trees are easy to spot. Spraying can be limited to a small section of the plant reducing the amount of spray needed and the size of equipment used. A backpack sprayer is a good option.

Winter basal bark treatments also reduce the chance of harm to other plants from drift or through uptake from actively growing plants.

The spray mixture for basal bark treatment will usually be an oil soluble herbicide mixed with a petroleum-based product such as diesel fuel or kerosene.

A triclopyr product or one that has triclopyr and 2, 4-D can be very effective. The mixture is sprayed on the bottom 18 to 24 inches of the stem and crown of plants.

It will often work on plants with a diameter of up to 6 inches. A colorant can be added to assist with keeping track of where you have been.

Read the label to confirm the product is labeled for pasture use and then follow the instructions. Different herbicides will have different instructions and the label is the law for that product.

2) Fences: A warm day in January or February is a great time to get out and work on your fences. Dead vegetation reveals problems that may stay hidden in green grass and tall weeds.

Fixing fences now, especially on those sections that will have animals turned out on them in the spring, will save you from rushing around in the spring to make temporary fixes that will get you by until you have more time.

Do not forget to look for broken and cracked electric insulators and shorts that reduce the effectiveness of electric fences.

3) Water sources: One of the greatest limitations to efficient pasture utilization is the proximity to water. Look at your pasture layout and think about ways water sources could be added to reduce the distance to water or allow you to add additional sections within your pasture.

Can a spring be developed, a waterline added, or a stream or pond be adapted as a water source?

4) Soil testing: Pastures are often overlooked when we do soil testing. Just like your other crops, nutrients are removed from the soil when plants grow and are eaten by animals.

Some, but not all, of these nutrients are returned to the soil in manure and urine. Often, the problem is nutrients are not evenly spread across the pasture. Pasture lots should be designed to help spread the manure evenly by reducing congregation areas and moving animals frequently.

Do not forget to pay attention to pH, as this can be a limiting factor. Fescue may grow well at 5.5 pH while clover and alfalfa will not.

An application of lime may make a big difference in productivity.

5) Frost seeding: Look into the benefits of frost seeding additional legumes into your pastures. Often pastures do not contain as much legume as you think. Legumes should be 30-40 percent of the dry matter weight in the pasture if you want to fully utilize the nitrogen fixing capacity and eliminate the need to add nitrogen fertilizer.

Estimating the amount of clover in a pasture on a dry matter basis can be deceiving. The broad flat leaves that have a high moisture content can be misleading when looking at dry matter content.

The time to frost seed is approaching soon, so now is the time to order your seed.

I hope that you can find an item or two in this “5 Things” list that will improve the utilization of your pastures in 2018.

Using Goats to Improve Pastures

– Marcus McCartney, OSU Extension AgNR Educator, Washington County (originally published in Farm & Dairy)

Do you have leftover fair goats, or inherited some that did not make weight at the fair?

Perhaps your kids or grandkids have been bugging you for the small ruminant animal for some time. Or by chance, did you come into a small herd recently?

If so, then don’t perceive goat ownership as a chore or inconvenience but rather embrace it, think positive, and start letting the goats work for you.

There are several ways goats can be a useful management tool in almost any farm operation.

For beef producers, goats are incorporated into the operation with the goal of brush and weed management for new or existing pastures.

For establishing new pastures, goats are great at cleaning up brush and unwanted vegetation prior to the initial investment of starting a new pasture (seeding, liming, fertilizing, etc.) and loading with livestock.

For example, let’s look at the role of goats from converting a woodland area (timber) to pasture. Goats can be used to harvest and clear underbrush (including smaller trees) in selected areas before cutting and then sold to recoup money.

They can consume vegetation in steep dangerous terrain where making an herbicide application or clearing with machinery is difficult.

In a recent study of goats grazing in a power line right of way for five years in West Virginia, the brush was reduced from 45 percent down to 15 percent in one year. After five years of grazing, goats reduced brush cover to 2 percent.

Goats are natural browsers and prefer to graze or browse with their heads up — just like deer if given the opportunity — which makes them ideal for clearing brushy understory.

In this environment, vines constitute a significant portion of a goat’s diet, including poison ivy which they prefer, as well as saplings, young leafy trees, black locust, briars, brambles, sumac, honeysuckle, privet, Virginia trumpet creeper and broadleaf weeds.

They will not eat through the hard bark of mature trees but may girdle younger, thinly barked trees if better forage is unavailable.

Mature trees can remain undamaged as long as the goats have other forage to graze or browse.

Goats can also be used in a post-clearing situation for sprout and weed control. They will eat and remove the little green sprigs which occur on the side of trees, between rocks, and regrowth from roots.

Using goats to clear land before timbering is time-consuming, but allows one to harvest value from undergrowth and reduce debris before trees are removed.

Goats can do this work relatively inexpensively and consistently. Goats do not require a lunch break, are able to work quietly without the negative attention of herbicides and machinery, and lastly, they provide great entertainment.

Most commonly, goats are used in a beef operation to help control unwanted vegetation in existing pastures through a method called co-grazing or better known as multi-species grazing.

Even though multi-species grazing is a very old idea, it is a method that is becoming recognized again.

Multi-species grazing is the practice of using two or more livestock species (together or separately) on the same pasture-land in the same growing season to obtain the benefits of improved pasture quality, increased carrying capacity, more uniform grazing, more total pounds of gain per acre, vegetation control, decrease gastrointestinal parasite load, and more profit potential.

Most studies indicate better pasture use and production when sheep, cattle and goats are grazing and browsing together, as opposed to grazing alone.

The different dietary preferences and grazing behaviors result in greater plant use which means heavier stocking rates and increased production from a unit of land.

The breakdown of plant preferences is as follows for goats and cattle:
• Goats: grass 20 percent, weeds 20 percent, and browse 60 percent.
• Cattle: grass 70 percent, weeds 20 percent and browse 10 percent.

In this respect, goats do not compete much with beef cattle. This is one reason the most noticeable benefit for multi-species grazing for producers is brush and weed management.

Another major benefit which goes sometimes unnoticed is the decreased load of gastrointestinal parasites.

Goat and sheep parasites cannot survive in the stomach of cattle and parasites from cattle cannot survive in the stomach of goats or sheep.

Therefore, multi-species grazing will decrease gastrointestinal parasite loads and slow resistance of gastrointestinal parasites to conventional dewormers.

Finally, before implementing goats into your herd, consider the following factors: an upgrade in fencing may be needed as goats can escape easily, predator control needs to be accounted for, and the costs associated with implementing goats.

Grazing Wind Damaged Corn Residue

Jeff McCutcheon, OSU Extension Educator, Southeast Regional Director

Although this information has been posted in the past, as harvest has come and gone, this opportunity may serve as a viable option for those looking for a cheap feed source to graze the mature ewe flock on. This strategy allows farmers to optimize on losses associated with harvest as well as serve as a means to save on winter feedings.

To survive the current feed economy livestock producers need to graze their livestock as long as they can.  Every day livestock are meeting their nutritional needs through grazing they are being fed as economically as possible.  Typically cattle producers utilize corn residue as a feed source but, in Ohio, sheep producers need to consider grazing corn residue as well.  When corn stalks become available for grazing livestock producers need to move to take advantage of this resource.

Because the feed is in contact with the ground and deteriorating in the field you should start grazing corn residue as soon as the combine pulls out of the field. The nutrient value of residue declines the longer it is exposed to weathering. Sixty days after harvest is the window for maximum feed value. After 60 days it may not meet the needs of your livestock and you will need to provide supplemental feed. Grazing residue right away will provide a better feed.

Wind damaged fields can have more grain left in the field after harvest than normal.  Check fields for excess grain before grazing. Too much corn left in the field can cause acidosis and founder. In these cases cattle need to be adapted to a higher grain ration before grazing. They should initially be turned into residue with their rumens full if a problem is expected.

Strip grazing will also force the animals to eat leaves, cobs, and stalks instead of just gleaning the grain.  Giving animals only a few days or weeks worth of corn residue at a time utilizes the forage more efficiently.  Strip grazing provides a more uniform diet.  Leaving cattle in the entire field for a couple months or longer means the livestock will initially pick the grain and some of the leaves. Eventually they will only have the stalks, or the least nutritious plant part, left and will need to be supplemented.

Typically fence and water are the excuses used for not grazing corn residue.  There are several inexpensive, temporary options for both. Check out Rory’s article for fencing and “Watering Systems for Grazing Livestock”