Artificial Photosynthesis

By Rorey Smith, Kenton Kiser, and Tanner Anderson Team Djibouti

ohtoptens.com

Agenda

- Introduction
- What is Artificial Photosynthesis?
- Splitting CO2 with a Catalyst
- Bacteria Breaking Down CO2
- Converting Biofuels by a Photoelectrochemical Cell
- Conclusion

Artificial Photosynthesis

- Converting sunlight, CO2, and water to oxygen/fuel through unnatural processes
- Benefits:
 - Reduces excess CO2
 - Environmentally friendly
 - Renewable
 - Instantaneous
- Limitations:
 - Production low
 - Expensive
- 1. Lewis, Nathan S. (1995) "Artificial Photosynthesis.".

Dig Info www.diginfo.tv

Splitting CO2 with a Catalyst

- $CO2 \rightarrow CO + \frac{1}{2}O2$
- Catalyst as substance that causes or speeds up a chemical reaction
- Ruthenium is fastest/most efficient
- Cons
 - Not readily available or cheap
 - Produces CO
 - Low amount of O2 produced

1. Zuofeng, Chen. (2015). Splitting CO2 into CO and O2 by a Single Catalyst..

Ruthenium (Ru)

RWMMint www.rwmmint.com

Bacteria Breaking Down CO2

- Energy from sunlight
 - Nanowires
- CO2 reducing bacteria
- Produces acetate
 - Fuel and polymers

• Cons

- 3% efficiency
- Short lifespan
- Goal for consumer availability
 - 10% efficiency
- Liu, (2015). Nanowire-Bacteria Hybrids for Unassisted Solar Carbon Dioxide Fixation to Value-Added Chemical.

Converting Biofuels by a Photoelectrochemical Cell

- Convert water and sunlight into fuel
 - Photo-absorber and Catalysts
- Cons:
 - Produces small amount of hydrogen
 - Hydrogen fuel cannot be used efficiently yet
 - Costly/Not efficient

Stanford http://www-ssrl.slac.stanford.edu

1. Gust. (2009). Solar Fuels via Artificial Photosynthesis. American Chemical Society,

Conclusion

- What is Artificial Photosynthesis?
- Three Methods
 - CO2 can be split with catalyst
 - Reducing CO2 with bacteria to produce fuel
 - Converting Biofuels by a Photoelectrochemical Cell
- Pros: Utilizing the sun to create environmentally beneficial fuels/oxygen
- Cons:Renewable resources are expensive/inefficient
- Looking to become more efficient in the future

Gust, Devens, Thomas A. Moore, and Ana L. Moore. "Solar Fuels via Artificial Photosynthesis." *Accounts of Chemical Research* 42.12 (2009): 1890-1898. *Solar Fuels via Artificial Photosynthesis*. American Chemical Society, 17 July 2009. Web. 23 Sept. 2015. http://pubs.acs.org.proxy.lib.ohio-state.edu/doi/pdf/10.1021/ar900209b>.

Lewis, Nathan S. "Artificial Photosynthesis." American Scientist. 6th ed. Vol. 83. N.p.: Sigma Xi, The Scientific Research Society, 1995. 534-41. Print.

Liu, Chong, Joseph J. Gallagher, Kelsey K. Sakimoto, Eva M. Nichols, Christopher J. Chang, Michelle C. Chang, Peidon Yang. "Nanowire-Bacteria Hybrids for Unassisted Solar Carbon Dioxide Fixation to Value-Added Chemical." Nano Letters 15.5 (2015): 3634-3639. American Chemical Society, 13 April 2015. Web. 20 October 2015. http://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.5b01254>

Zuofeng, Chen. "Splitting CO2 into CO and O2 by a Single Catalyst." Proceedings of the National Academy of Science of the United States of America. N.p., 25 Apr. 2012. Web. 24 Sept. 2015.