Artificial Photosynthesis

By Rorey Smith, Kenton Kiser, and Tanner Anderson
Team Djibouti

ohtoptens.com
Agenda

- Introduction
- What is Artificial Photosynthesis?
- Splitting CO2 with a Catalyst
- Bacteria Breaking Down CO2
- Converting Biofuels by a Photoelectrochemical Cell
- Conclusion
Artificial Photosynthesis

- Converting sunlight, CO2, and water to oxygen/fuel through unnatural processes
- Benefits:
 - Reduces excess CO2
 - Environmentally friendly
 - Renewable
 - Instantaneous
- Limitations:
 - Production low
 - Expensive

Splitting CO2 with a Catalyst

- CO2 → CO + \(\frac{1}{2} \)O2
- Catalyst - as substance that causes or speeds up a chemical reaction
- Ruthenium is fastest/most efficient
- Cons
 - Not readily available or cheap
 - Produces CO
 - Low amount of O2 produced

Bacteria Breaking Down CO2

- Energy from sunlight
 - Nanowires
- CO2 reducing bacteria
- Produces acetate
 - Fuel and polymers
- Cons
 - 3% efficiency
 - Short lifespan
- Goal for consumer availability
 - 10% efficiency

Converting Biofuels by a Photoelectrochemical Cell

- Convert water and sunlight into fuel
 - Photo-absorber and Catalysts
- Cons:
 - Produces small amount of hydrogen
 - Hydrogen fuel cannot be used efficiently yet
 - Costly/Not efficient

Stanford
http://www-ssrl.slac.stanford.edu
Conclusion

● What is Artificial Photosynthesis?
● Three Methods
 ○ CO2 can be split with catalyst
 ○ Reducing CO2 with bacteria to produce fuel
 ○ Converting Biofuels by a Photoelectrochemical Cell
● Pros: Utilizing the sun to create environmentally beneficial fuels/oxygen
● Cons: Renewable resources are expensive/inefficient
● Looking to become more efficient in the future
References

