
A SURVEY OF THE BGG DESCRIPTION OF COHOMOLOGY OF FLAG VARIETIES, WITH

APPLICATIONS

JOSHUA KIERS

Abstract. In these lectures we will follow the original paper of Bernstein, Gel’fand, and Gel’fand (Schubert cells
and cohomology of the spaces G{P ) which identifies the cohomology of flag varieties W-equivariantly with certain

(sub)quotients of explicit polynomial rings. We will develop the Lie combinatorics necessary to identify (and prove)

“good” polynomial representatives with their Schubert class counterparts, along the way introducing the Bruhat order
and the famous divided-difference operators. We will develop an “integration” formula by way of application, and I will

explain how I used this in a crucial way for computer verification of two new instances of the Saturation Conjecture.

1. Lecture 1

1.1. Notation. G is a complex semsimple Lie group, assumed to be connected and simply connected. H Ă B fixed
maximal toral and Borel subgroups of G. X “ G{B the flag variety. N is the unipotent radical of B. g, h, b, n are
the respective Lie algebras. Φ Ă h˚ is the root system (set of h-weights) of g w.r.t. h. The choice of B gives a set of
positive roots Φ` Ă Φ; let Φ´ “ ´Φ` denote the set of negative roots. Recall the injective composite map

NGpHq{H ãÑ AutpHq ãÑ Autphq » Autph˚q,

whose domain and image are both commonly known as the Weyl group W (the last isomorphism is the Killing form
identification); see [FH04, Appendix D] for more details. For γ P Φ`, sγ P W is the reflection across the hyperplane
orthogonal to γ_ in h˚. ∆ “ tα1, . . . , αru is the base of Φ determined by B (equiv. by Φ`); here r “ dimH is
the rank of G. For ease of notation, si means sαi and is called a simple reflection; W is generated by ts1, . . . , sru.
`p¨q : W Ñ Zě0 is the length function:

`pwq “ mintk | w “ si1 ¨ ¨ ¨ siku.

w0 is the unique element of W of longest length.
To each w PW , associate the Schubert cell (resp. variety) Cw “ B 9w Ă G{B (resp. Xw “ B 9w Ă G{B).

1.2. Overview. Recalling the Bruhat decomposition,

G “
ğ

wPW

BwB,

we see that the Cw partition X. Each Cw is isomorphic to C`pwq as an algebraic variety, and the Xw naturally give
a cell decomposition of X. Therefore the fundamental classes µpXwq P H2`pwqpXq give a free Z-basis of the singular
homology of X. For more info, see [Spr98], [Ful96, Appendix B].
X has Poincaré duality, so the dual classes rXws P H

2pdimX´`pwqqpXq give a basis of the cohomology of X.

Question 1.1. Remember H˚pXq is a graded ring. Do we already know this ring (i.e., have a presentation of it)?
Can we describe the basis elements rXws? Can we describe the W -action on it? Can we integrate forms on X?

By freeness of H˚pXq and the universal coefficient theorem, H˚pX;Qq » H˚pXq b Q. In what follows it will
actually be simpler to keep H˚pX;Qq in mind, and for ease of notation we will continue to use H˚pXq for the rational
cohomology.

Let R “ Qrαis “ Sym˚ph˚Qq, where h˚Q is the dual Q-vector space to the subspace of h generated over Q by the

simple roots. Then there exists a map R Ñ H˚pXq as follows. First, we describe a linear map f : h˚Q Ñ H2pXq as

follows. To a weight ω : hÑ C, we associate a 1-dimensional representation C´ω of B (N acts trivially). The diagonal
quotient GˆB C´ω is naturally the total space of a line bundle Lω over G{B. Set fpωq “ c1pLωq to be the first Chern
class of that line bundle. By a universal property, this extends to a Q-algebra morphism RÑ H˚pXq.

Theorem 1.2 ([Bor53],[AH61]). θ : R{J » H˚pXq is an isomorphism, where J is the ideal generated by W -invariant
elements with no constant term. Furthermore, θ is W -equivariant.

Remark 1.3. In fact, the H-equivariant cohomology H˚HpXq » R bRW R, so we should expect R bRW Q » R{J as
rings, where RW ü Q by multiplication by the constant term.

Exercise 1.4. Show that R{J » RbRW Q as rings.
1
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Here we explain the “W -equivariance” part of the theorem. Both rings in the above isomorphism have natural
graded (grade R by 2¨degree) W -actions. The action on R is clear (induced by the linear action on h˚Q). Topologically

speaking (see [Han73]),

X » K{T,

where K is a maximal compact subgroup of G (“compact form”) and T “ K XH a maximal torus in K. The formula

w.k̄ :“ kw´1

indicates a left W -action on K{T which induces graded actions on H˚pXq and H˚pXq by functoriality.
The contribution of [BGG73] is to answer the second question above: that is, they (and we in these lectures) will

construct the polynomials on the R{J side corresponding to the basis elements rXws. In cohomological degrees 0 and
2, we already have a headstart:

Lemma 1.5.

(1) θp1q “ rXw0s

(2) θpωjq “ rXw0sj s for a fundamental weight ωj.

Proof. The first statement is clear by convention.
For the second statement, we calculate the divisor of zeros of a section of the line bundle Lωj ; this will give an

element in the Chow group A1pXq, which we may identify with H2pXq, and this is a valid method of calculating the
Chern class (see [Har06, Appendix A.3]).

To that end, we remark that sections of Lωj can be identified with algebraic functions f : GÑ C satisfying

fpgbq “ ωjpbqfpgq

for all g P G, b P B. Exercise: show this. Furthermore, there exists such a function f which also satisfies

fpugq “ fpgq

for all u P N .
Let xiptq “ expptXαiq, x´iptq “ expptX´αiq for any i “ 1, . . . , r, where the Xγs are a (certain) standard basis for g.

Then

xiptqsi “ x´ipt
´1qxip´tqt

α_i ,

here tα
_
i “ expptHαiq. There exists a unique j such that w0si “ sjw0 (since w0∆ “ ´∆), and w0xiptq “ x´jptqw0

(up to possibly a coefficient on the t). Therefore

sjx´jptqw0si “ sjw0x´ipt
´1qxip´tqt

α_i

xjptqsjw0si “ w0six´ipt
´1qxip´tqt

α_i

fpw0q “ ωipt
α_i qfpw0six´ipt

´1qq

t´1fpw0q “ fpw0six´ipt
´1qq;

so the limit as t Ñ 8 shows that fpw0siq “ 0. Since f is N -invariant, f vanishes on the entirety of Bw0siB, so
necessarily on the closure Xw0si . Note that f vanishes to order 1 on exactly this variety. �

2. Lecture 2

2.1. The Bruhat order.

Definition 2.1. For w1, w2 PW and γ P Φ`, the notation

w1
γ
ÝÑ w2

means sγw1 “ w2 and `pw2q “ `pw1q ` 1. By w ă w1 we mean there is a sequence

w “ w1
γ1
ÝÑ w2 ¨ ¨ ¨

γk
ÝÑ wk`1 “ w1.

Exercise 2.2. Show that ď establishes a partial order on W .

Remark 2.3. We get the same partial order if we stipulate instead that w1sγ “ w2 and `pw2q “ `pw1q ` 1.

The Hasse diagram for type A2:
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s1s2s1 “ s2s1s2

s2s1 s1s2

s1 s2

1

We recall a few results from any standard course in Lie algebras; see for example [Hum72, §9.2, 10.2, 10.3]:

Proposition 2.4.

(1) For any γ P Φ`, w PW , swγ “ wsγw
´1.

(2) For αi P ∆, si permutes the positive roots other than αi.
(3) For some (possibly repeated) indices tiju, if

si1 ¨ ¨ ¨ siq´1
αiq

is negative, then for some index 1 ď p ă q,

si1 ¨ ¨ ¨ siq “ si1 ¨ ¨ ¨ sip´1
sip`1

¨ ¨ ¨ siq´1
.

(4) If w “ si1 ¨ ¨ ¨ siq is a minimal-length expression of w, wpαiq q is negative.

(5) `pwq equals the size of Φ` X w´1Φ´, and `pwq “ `pw´1q.

Lemma 2.5. Let w “ si1 ¨ ¨ ¨ si` be a reduced decomposition. Set γj “ si1 ¨ ¨ ¨ sij´1αij (γ1 “ αi1). Then the roots
γ1, . . . , γ` are distinct and comprise the set Φ` X wΦ´.

Proof. Distinctness:
Assume γj “ γk, j ă k. Then we arrive at

αij “ sij ¨ ¨ ¨ sik´1
αik

αij “ sij`1 ¨ ¨ ¨ sikαik ,

which contradicts length-minimality of the subword sij`1
¨ ¨ ¨ sik .

One inclusion:
Each γj “ si1 ¨ ¨ ¨ sij p´αij q, which is positive by length-minimality. Also,

γj “ wpsi`si`´1
¨ ¨ ¨ sijαjq,

and the part in parentheses is negative again by length-minimality. So tγju Ă Φ` X wΦ´.
The result follows since each set has size `pwq “ `. �

Corollary 2.6.

(1) Let w be as before and γ P Φ` such that w´1γ P Φ´. Then for some j,

sγsi1 ¨ ¨ ¨ sij “ si1 ¨ ¨ ¨ sij´1

(2) For w PW and γ P Φ`, `pwq ă `psγwq if and only if w´1γ P Φ`.

Exercise 2.7. Prove the corollary.

Now we examine neighbourhoods in the Hasse diagram:

Lemma 2.8. Let w1, w2 PW,αi P ∆, γ P Φ`, and assume αi ‰ γ. Set γ1 “ siγ; note γ1 P Φ`. Then

w2 w2

siw2 ðñ siw1

w1 w1

αi γ

αiγ1

Proof. Let us prove p ùñ q. Note that `pw2q “ `pw1q is given. Since w2 “ sisγ1w1 “ sγsiw1 it suffices to prove

`psiw1q ă `pw2q. Since siw1 “ sγw2, we verify this by checking w´1
2 γ is negative: w´1

2 γ “ w´1
2 siγ

1 P Φ´. �

We take that local statement and extend it a little bit:



4 JOSHUA KIERS

Lemma 2.9. Given w ă w1 and αi P ∆,

(1) either siw ď w1 or siw ă siw
1;

(2) either w ď siw
1 or siw ă siw

1.

Proof. Let us prove the first statement.
Take a path

w “ w1 Ñ w2 Ñ ¨ ¨ ¨ Ñ wk “ w1.

Of course, if siw Ñ w or if siw “ w2, the first case holds. So assume w Ñ siw and siw ‰ w2.
We will induct on k.
Case k “ 2: apply previous lemma immediately.
Inductive step: we have siw ă siw2. Now consider the pair pw2, w

1q.
�

Corollary 2.10. Let αi P ∆ and w1
αi
ÝÑ w11, w2

αi
ÝÑ w12. If one of w1, w

1
1 is smaller than one of w2, w

1
2, then

w1 ď w2 and w11 ď w12.

Proof. Case w11 ď w2: trivial.
Case w11 ď w12: equality gives trivial. Else w11 ď w2 (previous case) or w1 ă w2, as desired.
Case w1 ď w12: we cannot have equality, since then w11 “ w2 but have different lengths. So w1 ă w12 and either

w11 ď w12 (previous case) or w11 ă w2 (previous case).
Case w1 ď w2: then w1 ă w12 (previous case).

�

Finally we come to a third characterization of the Bruhat order:

Proposition 2.11. Let w P W , and let w “ si1 ¨ ¨ ¨ si` be a reduced word. For ease of notation, set tj :“ sij (the tjs
are not all necessarily distinct).

(1) If 1 ď j1 ă . . . ă jk ď ` and w1 “ tj1 ¨ ¨ ¨ tjk , then

w1 ď w

(2) If w1 ă w, then w1 has a representation of the above form for some tj1, . . . , jku.
(3) If w1 Ñ w, then there exists a unique index p such that

w1 “ t1 ¨ ¨ ¨ tp´1tp`1 ¨ ¨ ¨ t`.

Proof. Claim (3) is essentially Corollary 2.6(1). Uniqueness follows from a contradiction given tp`1 ¨ ¨ ¨ tq “ tp ¨ ¨ ¨ tq´1.
Claim (2) follows from claim (3), since the expression in (3) is already reduced!
Claim (1) we will show by induction (the base case is obvious). If j1 ą 1, then w1 ď t2 ¨ ¨ ¨ t` by hypothesis, and

w1 ď t1w ă w. If j1 “ 1, then t1w
1 ď t1w by hypothesis, and w1 ď w by Corollary 2.10.

�

There is a fourth characterization of the Bruhat order, more geometric in nature.

Proposition 2.12 ([Ste67]). Let w,w1 PW . Then

w ď w1 ðñ Xw Ď Xw1 .

BGG reprove this result explicitly ([BGG73, Theorem 2.11]). Another proof follows from the same kind of limit
analysis as in our proof of Lemma 1.5.

2.2. Divided difference operators. Let R “ Qrαis, I “ RW , I` Ă I the subring of elements with no constant
term, and J the ideal generated by I`.

Definition 2.13. For γ P Φ, we define for f P R

Aγf “
f ´ sγf

γ

(note that this is well-defined!).

Lemma 2.14.

(1) A´γ “ ´Aγ , A2
γ “ 0.

(2) wAγw
´1 “ Awγ .

(3) sγAγ “ ´Aγsγ “ Aγ ; sγ “ ´γAγ ` 1 “ Aγγ ´ 1.
(4) Aγf “ 0 ðñ sγf “ f .
(5) AγJ Ď J .
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(6) For χ P h˚Q, the commutator of Aγ with multiplication by χ is

rAγ , χs “ χpγ_qsγ .

Exercise 2.15. Prove the lemma.

3. Lecture 3

3.1. Divided difference operators, continued. For simplicity, Ai means Aαi for simple root αi P ∆.
The divided difference operators satisfy the following crucial property:

Theorem 3.1. Let αi1 , . . . , αi` be a sequence of simple roots. Set w “ si1 ¨ ¨ ¨ si` and Api1,...,i`q :“ Ai1 ˝ ¨ ¨ ¨ ˝Ai` . Then

(1) If `pwq ă `, Api1,...,i`q “ 0.
(2) If `pwq “ `, Api1,...,i`q does not depend on the decomposition w “ si1 ¨ ¨ ¨ si` ; in this case we define Aw :“

Api1,...,i`q.

Proof. We proceed by induction on `, the case ` “ 1 being trivial.
For (1), examine v “ si1 ¨ ¨ ¨ si`´1

. If `pvq ă `´1, then by induction we are done. Else, `pvq “ `´1 and `pwq “ `´2.

Since `pw´1q ă `psi`w
´1q, wαi` ą 0. So for some index j,

si`si`´1
¨ ¨ ¨ sij “ si`´1

¨ ¨ ¨ sij`1
,

thus sij ¨ ¨ ¨ si`´1
“ sij`1 ¨ ¨ ¨ si` ; furthermore, these are both reduced decompositions. By induction,

Aij ˝ ¨ ¨ ¨ ˝Ai`´1
“ Aij`1 ˝ ¨ ¨ ¨ ˝Ai` ;

therefore Aij ˝ ¨ ¨ ¨ ˝Ai`´1
“ Aij`1 ˝ ¨ ¨ ¨ ˝A

2
i`
“ 0.

For (2), we introduce operators

Bpi1,...,i`q :“ si` ¨ ¨ ¨ si1Api1,...,i`q.

Put wj :“ si` ¨ ¨ ¨ sij . Then

Bpi1,...,i`q “ w2Ai1w
´1
2 w3Ai2w

´1
3 ¨ ¨ ¨w`Ai`´1

w´1
` Ai`

“ Aw2
i1
˝Aw3

i2
˝ ¨ ¨ ¨ ˝Aw`i`´1

˝Ai` ,

where Awγ :“ wAγw
´1.

Lemma 3.2.

“

Bpi1,¨¨¨i`q, χ
‰

“
ÿ̀

j“1

χpwj`1α
_
j qwj`1w

´1
j B

pi1,¨¨¨ , pij ,¨¨¨ ,i`q

Proof. First,
“

Bpi1,¨¨¨i`q, χ
‰

“
“

Aw2
i1
˝ ¨ ¨ ¨ ˝Ai` , χ

‰

“
ÿ̀

j“1

Aw2
i1
¨ ¨ ¨ rA

wj`1

ij
, χs ¨ ¨ ¨Ai`

“:
ÿ̀

j“1

Tj .

Observe that swj`1αj “ wj`1w
´1
j and rA

wj`1

ij
, χs “ χpwj`1α

_
j qswj`1αj . Therefore

Tj “ χpwj`1α
_
j qA

w2
i1
¨ ¨ ¨A

wj
ij´1

wj`1w
´1
j A

wj`2

ij`1
¨ ¨ ¨Ai` .

One checks that

A
wk`1

ik
wj`1w

´1
j “ wj`1w

´1
j A

si` ¨¨¨ysij ¨¨¨sik`1

ik
,

so we may more simply write

Tj “ χpwj`1α
_
j qwj`1w

´1
j B

pi1,¨¨¨ , pij ,¨¨¨ ,i`q
,

as desired.
�
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Now fix a 1 ď j ď `. If `psi1 ¨ ¨ ¨xsij ¨ ¨ ¨ si`q ă `´ 1, then Tj “ 0 by inductive hypothesis.

Otherwise, si1 ¨ ¨ ¨xsij ¨ ¨ ¨ si` “ w1
γ
ÝÑ w where

γ “ si1 ¨ ¨ ¨ sij´1
αij ,

and

χpwj`1α
_
j q “ w1χpw1wj`1α

_
j q “ w1χpsi1 ¨ ¨ ¨ sij´1

α_j q “ w1χpγ_q.

Furthermore,

wj`1w
´1
j B

pi1,¨¨¨ , pij ,¨¨¨ ,i`q
“ wj`1w

´1
j w1´1A

pi1,¨¨¨ , pij ,¨¨¨ ,i`q
“ w´1Aw1

using the inductive hypothesis.

Since all w1
γ
ÝÑ w appear in the form above, we have

“

Bpi1,¨¨¨i`q, χ
‰

“
ÿ

w1
γ
ÝÑw

w1χpγ_qw´1Aw1 .

The RHS does not depend on the choice of reduced word for w! The result follows then from the following lemma. �

Lemma 3.3. Let B be an operator on R such that Bp1q “ 0 and rB,χs “ 0 for all χ. Then B “ 0.

Proof. Thus B vanishes on any monomial χ1 ¨ ¨ ¨χs. �

We actually derived the following useful corollary, which we will use later to produce a formula for multiplication
by Chern classes.

Corollary 3.4.
“

w´1Aw, χ
‰

“
ÿ

w1
γ
ÝÑw

w1χpγ_qw´1Aw1

3.2. Schubert classes in homology as operators on R. Let Si “ R˚i , where Ri is the p2qith graded piece of R;
set S “ ‘Si. There is a natural pairing

p, q : Si ˆRi Ñ Q
which we extend to S ˆRÑ Q by 0. Since H2ipXq and H2ipXq have a perfect pairing, we expect to see a dual basis
in S to the cohomology Schubert classes in R (more precisely in R{J). One can show that the dual basis to trXwsu

under this pairing is tµpXw0wqu; this follows from some relatively straightforward intersection theory, see for example
[Ful98, Chapter 19]. In fact, the perspective of [BGG73] is to produce the basis tµpXwqu in S and use it to make
explicit the dual polynomials trXw0wsu in R{J .

Toward that end, we define some operators on S. First of all, W acts naturally on S since it does on R. For χ P h˚Q,
we denote by

χ˚ : S Ñ S

the adjoint to the operator χ¨ : RÑ R. Likewise, we let Fγ be the adjoint of Aγ , and Fw that of Aw. We already have
the following results:

Theorem 3.5. Let αi1 , . . . , αi` be a sequence of indices, and set w “ si1 ¨ ¨ ¨ si` .

(1) If `pwq ă `, Fi` ¨ ¨ ¨Fi1 “ 0.
(2) If `pwq “ `, Fi` ¨ ¨ ¨Fi1 depends only on w and equals Fw.
(3) rχ˚, Fwws “

ř

w1
γ
ÝÑw

w1χpγ_qFw1w

Set Dw :“ Fwp1q. We will later see that Dw is identified with the Schubert fundamental classes µpXwq. We record
various properties of the Dw as follows:

Theorem 3.6.

(1) Dw P S`pwq.
(2) Let w PW and α P ∆. Then

FαDw “

"

0, `pwsαq “ `pwq ´ 1
Dwsα , `pwsαq “ `pwq ` 1.

(3) For χ P h˚Q, χ˚Dw “
ř

w1
γ
ÝÑw

w1χpγ_qDw1

(4) For w PW and α P ∆,

sαDw “

"

´Dw, `pwsαq “ `pwq ´ 1
´Dw `

ř

w1
γ
ÝÑwsα

w1αpγ_qDw1 , `pwsαq “ `pwq ` 1.
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(5) Let w PW , ` “ `pwq, and choose χ1, . . . , χ` P h
˚
Q. Then

pDw, χ1 ¨ ¨ ¨χ`q “
ÿ

χ1pγ
_
1 q ¨ ¨ ¨χ`pγ

_
` q,

the sum running over all chains e
γ1
ÝÑ w1 ¨ ¨ ¨

γ`
ÝÑ w` “ w´1.

Proof. (1) is obvious.
(2) follows from Theorem 3.5(1).
(3) follows from Theorem 3.5(3) since χ˚p1q “ 0.
For (4), Lemma 2.14(3) shows that the action of sα on S is equal to that of α˚Fα ´ id. So the result follows from

(2) and (3) combined.

Finally, (5). Observe that if w1
γ
ÝÑ w, then w1sw1´1γ “ w, therefore

w1´1 w1´1γ
ÝÝÝÝÑ w´1,

and (note w1´1γ is positive)

χpw1´1γ_q “ w1χpγ_q,

so the result follows from induction on ` and (3).
�

Define a new set of operators pDw on R by the rule

pDwpfq “ θpfq X µpXwq

if f is homogeneous of degree `pwq, extending by 0 in the natural way. Thus we may think of pDw P S`pwq. The
following is the geometric crux of the entire paper:

Theorem 3.7. pDw “ Dw.

Proof. The trick is that it suffices to show pDw “ 1 and

χ˚ pDw “
ÿ

w1
γ
ÝÑw

w1χpγ_q pDw1

for every χ P h˚Z, thanks to induction on `pwq and Theorem 3.6(3).
Recall from algebraic topology that if z P HkpXq, c P HipXq, and y P Hk`ipXq,

z pcX yq “ pcY zqpyq;

therefore for any z “ θpfq P H2`pwq´2pXq,

pχ˚ pDw, fq “ p pDw, χ ¨ fq “ pc1pLχq Y zq X µpXwq “ z Y pc1pLχq X µpXwqq,

and the proof reduces to showing

µpXwq X c1pLχq “
ÿ

w1
γ
ÝÑw

w1χpγ_qµpXw1q.(1)

By functoriality (i.e., f˚pf
˚δ X εq “ δ X f˚ε whenever this equations makes sense), we may interpret (1) as taking

place in the homology and cohomology of Xw itself. A result from algebraic topology says that if σ is a nonzero section
of Lχ and it has divisor

div σ “
ÿ

miYi,

then

Xw X c1pLχq “
ÿ

miµpYiq,

provided that Xw is nonsingular in codimension 1. For a proof of this latter fact, see [BGG73, Proposition 4.3].
Now, both sides of (1) are linear in χ, so writing χ “ λ´ λ1 for regular dominant λ, λ1, we may reduce to the case

χ “ λ is regular dominant. Let V be an irreducible representation of G with highest weight λ, and consider the line
bundle ηV on PpV q given by the total space

ηV “ tpP, φq|φ : P Ñ C, P Ď V,dimP “ 1u;

that is, ηv “ Op1q. Since B acts trivially on the line xvλy of highest weight in V , there is a natural embedding
i : G{B ãÑ PpV q. It is easy to verify that i˚pηV q “ Eλ.

Define a linear functional φw : V Ñ C by

φwpvµq “

"

1 µ “ wλ
0 vµ is a weight vector with weight different than wλ,
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extending by linearity. Then φw induces a global section σ of Op1q. By definition, σ vanishes nowhere on the cell
NwB{B Ď Xw. Therefore divpσq is supported in

ď

w1
γ
ÝÑw

Xw1 ;

furthermore, the Xw1s are irreducible, so divpσq “
ř

w1
γ
ÝÑw

aγXw1 for some integers aγ ě 0. We can calculate aγ as

the multiplicity of vanishing of the section δ˚σ pulled back via the map δ : P1 Ñ Xw that sends 0 to w1B{B. This in
turn equals the order of vanishing of

φwpexpptE´γqvw1λq “ ctw
1λpγ_q

at t “ 0, so the proof is complete.
�

3.3. Polynomials in cohomology. Let H denote the subspace of S dual to J under the pairing p, q. Since 1 is
clearly in H and since the Fγ fix H, we see that each Dw P H.

Theorem 3.8. The set tDwu forms a basis of H.

Proof. We first argue that the Dw are linearly independent (I suppose this already follows from having identified them
with the Schubert fundamental classes, but here is a direct algebraic proof). By Theorem 3.6(5), pDw0 , ρ

`pw0qq ą 0
(the pairing of ρ with any positive root is strictly positive). So in particular Dw0 ‰ 0.

Assume for contradiction that there is a nontrivial dependence relation
ÿ

cwDw “ 0,

and find a w̃ of minimal length so that cw̃ ‰ 0; set ` “ `pw̃q and k “ `pw0q. Find simple reflections si1 , . . . sik´` so that

w̃si1 ¨ ¨ ¨ sik´` “ w0.

Then by repeated application of Theorem 3.5,

Fik´` ¨ ¨ ¨Fi1Dw̃ “ Dw0 ;

Fik´` ¨ ¨ ¨Fi1Dw “ 0

for any w ‰ w̃ such that `pwq ě `. Applying Fik´` ¨ ¨ ¨Fi1 to our sum, therefore, we arrive at cw̃Dw0
“ 0, a contradiction.

Second, we show that the Dw span. To verify that
à

QDw Ñ H

is surjective, it suffices to show that the dual map is injective. That is, we must show that if f P R satisfies pDw, fq “ 0
for all w, then f P J . It suffices to prove this just for homogeneous f , and we do so by induction on degree of f , the
case deg f “ 0 being clear.

Suppose f has degree d ą 0. For any α P ∆ and w PW , we observe that

pDw, Aαfq “

"

pDwsα , fq “ 0 `pwsαq “ `pwq ` 1
0 `pwsαq “ `pwq ´ 1;

therefore by induction Aαf P J . Rearranging, f ´ sαf P J . It follows readily that f ´wf P J for any w PW ; now we
average:

f ´
1

|W |

ÿ

wPW

wf P J,

but of course the term 1
|W |

ř

wPW wf is itself in J . So f P J .

�

By construction, H and R{J have a nondegenerate pairing induced from p, q. Already, this gives a new proof that
R{J has finite Q-dimension. Now let Pw P R{J be the dual basis to Dw. We immediately know the following:

Theorem 3.9.

(1)

AαPw “

"

0, `pwsαq “ `pwq ` 1
Pwsα , `pwsαq “ `pwq ´ 1

(2)

χPw “
ÿ

w
γ
ÝÑw1

wχpγ_qPw1
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(3)

sαPw “

"

Pw, `pwsαq “ `pwq ` 1
Pw ´

ř

wsα
γ
ÝÑw1

wαpγ_qPw1 , `pwsαq “ `pwq ´ 1

4. Lecture 4

4.1. Structure of R. Amazingly, then, we have the following corollary:

Corollary 4.1.

Pw “ Ai` ¨ ¨ ¨Ai1Pw0
,

where w “ w0si1 ¨ ¨ ¨ si` and `pwq “ `pw0q´ `. In other words, Pw “ Aw´1w0
Pw0

. More generally, Pv “ Av´1wPw when
v is a left subword of some reduced expression for w.

So in our quest for explicit polynomials, we reduce to finding Pw0
.

Theorem 4.2.

Pw0 ”
1

|W |

ź

γPΦ`

γ mod J.

The proof is somewhat lengthy and technical, see [BGG73, Theorem 3.15].
Some other properties of the polynomials are:

Proposition 4.3.

(1) Set k “ `pw0q. Another expression for Pw0
is

Pw0
” ρk{k! mod J

(2) Suppose w1, w2 PW , `pw1q ` `pw2q “ k. Then Pw1Pw2 “ 0 if w1 ‰ w0w2, and Pw1Pw0w1 “ Pw0 .
(3) For any f P R, one may write

f “
ÿ

wPW

P̃wfw

where fw P R
W and the P̃w are fixed homogeneous lifts of the Pw.

Proof. Let us prove (3), for example.
We proceed by induction on deg f . If f has degree 1, the statement is clear.
Take deg f “ k, and let g collect the deg ă k terms of f . Then f ´ g is homogeneous of degree k. Then

pDw, f ´ gq “ 0

unless `pwq “ k, so take w1, . . . , wt to be the elements in W of length k, and set ci “ pDwi , f ´ gq. Define

p “ f ´ g ´
ÿ

ciP̃wi ;

then clearly pDw, pq “ 0 for all w PW . Note that p is still homogeneous of degree k. We can therefore write

p “
ÿ

rjsj

with each rj P R, sj P R
W , sj homogeneous, and sjp0q “ 0. Then each rj can be chosen to have degree ă k, so we

may write

rj “
ÿ

P̃wrj,w

for each j. Then

f “ g `
ÿ

ciP̃wi `
ÿ

P̃w
ÿ

rj,wsj

puts f in the desired form. �

Now suppose we have picked specific lifts P̃w0
“ 1

|W |

ś

Φ` γ and in general P̃w :“ Aw´1w0
Pw0

. The following

theorem shows how to decompose R as a free RW module of rank |W |:

Theorem 4.4. The multiplication map

RW ‘ ¨ ¨ ¨ ‘RW Ñ R

pfw0
, . . . , feq ÞÑ

ÿ

fwP̃w

is an isomorphism of RW -modules.



10 JOSHUA KIERS

Proof. Surjectivity follows from the previous proposition.
For injectivity, we simply describe the inverse map by algorithm. Take f P R. We know f “

ř

fwP̃w for some
choices of fw P R

W ; we show how to recover them from f (so they are uniquely determined).
First, fw0

“ Aw0
. To find fw0si for the various si, first set f 1 “ f ´ fw0

. Then fw0si “ Aw0sif
1. In general,

Awf “ fw if fv “ 0 for all `pvq ą `pwq: if w and w1 have the same length, then AwPw1 “ AwAw1´1w0
Pw0 , but

ww1´1w0 ‰ w0 means the operator AwAw1´1w0
is 0. �

Corollary 4.5. By the algorithm, if f is homogeneous of degree k, then the (nonzero) fw are each homogeneous of
degree k ´ `pwq.

Example 4.6. Applying the above algorithm to x3 in the ring R “ Qrx, y, zs, W “ S3, we have

x3 “ px` y ` zqx2 ` p´yx´ zx´ zyqx` pxyzq1

This incidentally shows that x3 P J .

Exercise 4.7. Express x4, y2, in the basis of the P̃w.

4.2. Integration formula. Take f P R and express f “
ř

wPW P̃wfw as above. Then
ş

X
f “ f X µpXw0

q “ Aw0
f “

fw0p0q. There is another way to calculate fw0p0q, (i.e., to apply Dw0):

Theorem 4.8.
1

ś

Φ` γ

ÿ

wPW

p´1q`pwqwf
ˇ

ˇ

0
“ fw0

p0q

Proof. We will first prove that
1

ś

Φ` γ

ÿ

wPW

p´1q`pwqwf “ fw0 .

Fix a w ‰ w0; we can find some Ai such that AiPw “ 0. Fix a subset W̃ Ă W such that every u P W is either in W̃
or in W̃si, but not both; i.e., W “ W̃ \ W̃si. Then

1
ś

Φ` γ

ÿ

uPW

p´1q`puquPw “
1

ś

Φ` γ

ÿ

uPW̃

p´1q`puq ruPw ´ usiPws

“
1

ś

Φ` γ

ÿ

uPW̃

p´1q`puquαiAiPw

“ 0.

Therefore the result follows. �

Remark 4.9. Evaluation at a point other than 0, given deg f ď k, is valid.

Remark 4.10. This formula can also be distilled from the localization theorem in T -equivariant cohomology, after
passing back to regular cohomology.

Corollary 4.11. Suppose g P J . Then gwp0q “ 0 for all w PW . Therefore:

(1) The alternating sum

1

|W |

ÿ

wPW

p´1q`pwqwg
ˇ

ˇ

0
“ 0

(2) If deg g ď `pw0q, then

1

|W |

ÿ

wPW

p´1q`pwqwg “ 0

with no evaluation.

Example 4.12. Back to our R “ Qrx, y, zs and W “ S3, x2y ` y2x is in J since

x2y ` y2x´ px2y ` y2xq ´ px2z ` z2xq ` py2z ` z2yq ` pz2x` x2zq ´ py2z ` z2yq “ 0

Exercise 4.13. Suppose f satisfies sif “ f for some i. Then show
ş

f “ 0 two different ways: (1) by applying Aw0

and (2) by applying the formula above.
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4.3. Application to testing the Saturation Conjecture. Let C be the semigroup of triples pλ, µ, νq of dominant
weights such that λ` µ` ν is in the root lattice and

cNλ,Nµ,Nν :“ dim rV pNλq b V pNµq b V pNνqs
G
‰ 0

for some N . Then by extensive work over the past few decades (see, for example, the survey by Kumar [Kum14]), we
know

Theorem 4.14. pλ, µ, νq P C if and only if for certain pu, v, wq satisfying

rXus ¨ rXvs ¨ rXws “ rXes P H
˚pG{Piq,

the inequality
pu´1λ` v´1µ` w´1νqpxiq ď 0

holds. Here Pi is the maximal parabolic for simple index i, and xi the associated fundamental coweight.

Therefore finding the inequalities for C amounts to performing lots of cup products in cohomology and keeping track
of certain ones.

A famous conjecture asks:

Conjecture 4.15. If G is simply-laced, then

cNλ,Nµ,Nν ‰ 0 ùñ cλ,µ,ν ‰ 0.

This is known to fail for all non-simply-laced types. It had been verified for G of type A (any rank) by Knutson
and Tao [KT99] and type D4 by Kapovich, Kumar, and Millson [KKM09]. I was able to verify it for types D5 and D6

by first writing down the inequalities (by doing lots of cup products) and then checking the conjecture on the minimal
generating set of C: the Hilbert basis. Details can be found in [Kie19].
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