ECE2560 Spring 2022 - Final - Page01 of 03

Final ECE2560 Spring 2022

Collaboration with other students is not allowed

Use the word template and instructions contained on our web site to submit your
work to Carmen. Do not email directly to your TA or me. Files emailed to the TA or
me will not be accepted.

In this program we will use interrupts generated by a Timer on your
microcontroller. Timers were introduced in Screencast22. Based on that
screencast you configure TimerB0O on your MCU by using the following code in
your main program.

; Configer timer BO, connected to ACLK, to raise interrupts
bis.w #TBCLR, &TBOCTL
bis.w #TBSSEL __ ACLK, &TBOCTL
bis.w #MC__CONTINUOUS, &TBOCTL
bis.w #TBIE, & TBOCTL
bic.w #TBIFG, &TBOCTL

This code will configure TimerBO and the timer will start generating interrupts
periodically. You will handle these interrupts in an Interrupt Service Routine (ISR).
Call this ISR Timer_Overflow just as we did in Screencast22. You will need to
figure out the Interrupt Vector associated with timer interrupts before you can
use this ISR. Screencast22 at 29:11 shows you what Interrupt Vector to use so
that your ISR will be invoked every time the timer generates an interrupt.

We will also use interrupts generated by button SW1. The aim of our program is
to implement a counter which counts the number of timer generated interrupts
between two presses of the button SW1. Pressing button SW1 once will start our
counter, and it will start counting the interrupts being generated by the timer.
Pressing SW1 again will stop the timer and the number of timer interrupts
between the time the counter was started and the time when the counter was
stopped will be written to a variable named result. Pushing SW1 again will start
the counter again.

Final Spring2022 Page 1



ECE2560 Spring 2022 - Final - Page02 of 03

Use the following variables in the .data region

count: .Space 2 ; count of timer
; interupts since the program started

countO: .space 2 ; Value of count
; variable at the time counter is started

countl: .space 2 ; Value of count
; variable at the time counter is stopped

result: .Space 2 ; result = countl - countO

cstatus: .space 1 ; Zeroth bit of
; cstaus stores your counter's status bit.
; 0 means counter stopped, 1 means counter running

Note that by "Timer" we mean TimerB0 on yoour MCU which is generating the
timer interrupts. By "counter" we mean the counter you are implementing which
counts the number of interrupts being enerated by the Timer.

Timer ISR (name it Timer_Overflow) Should increase the value of the count
variable every time it is invoked. It should also clear the interrupt flags (see
Screencast22) since this interrupt is multisourced. These are the only
responsibilities of this ISR.

The ISR servicing SW1 (name it PORT1_ISR) should do the rest, its functionality
should be such that

i) When it is invoked and your counter is in the stopped state then it should
turn the counter to be in the running state, and if it is in the running state
then it should put it in the stopped state, while also handling the variables
countO, countl and result appropriately based on the table above. The ISR
should handle toggling the Oth bit of cstatus. It should not change the value
of the count variable.

ii) The red LED should indicate whether your counter is running or stopped.
When the Oth bit of cstatus is equal to 1 then the red LED on your launchpad
should turn on. When the Oth bit of cstatus is 0 then the red LED should be
turned off.

Final Spring2022 Page 2



ECE2560 Spring 2022 - Final - Page03 of 03

Start the program with the red LED in the turned off state and the Oth bit of
scount set to 0 in your main program.

Important Note: It turns out that for some reason a SW1 interrupt is
automatically generated by the system at program startup even though you have
not pressed the button SW1 yourself. This means that at program start up, the ISR
for SW1 will already have been invoked once. Keep this in mind. For example, if in
your main program you put the counter in the stopped state (and you toggle the
counter's state in your SW1 ISR), and you start your program, the ISR would
already have been invoked once and your counter would be in a running state at
startup even though you have not pressed SW1. This should not pose a problem if
your program is written correctly, just press the button again to put the counter
in the stopped state. This happens only once at program startup.

Low Power Mode: Put your MCU is LPM3 Low Power Mode while it is waiting for
interrupts.

Attach the following to your solution:

i) Assembly language source code (Word format
only). Make sure to attach every line of the source code, with nothing missing so
that we can run the code on our computers

li) Run your program. As mentioned above, the program will start with SW1
interrupt service routine already invoked once, so your counter will be in the
running state (if your program is written correctly). Press SW1 to put the counter
in the stopped state. Now wait about 15 seconds (this time is not critical).

lii) Press SW1 again (to put the counter in running state)
Iv) Wait about 10 seconds and then press SW1 to stop the counter.
v) Press the suspend/pause button in the debugger
vi) While your program is suspended go to the .data region of your memory
browser and take a screenshot of the memory browser showing the values of

the variables count, countO, countl, result and scount.
vii) Include this screenshot in your solution

Final Spring2022 Page 3





