\square Exclusine-OR Operators

$$
\begin{aligned}
& X O R \rightarrow X \oplus Y=X \bar{Y}+\bar{X} Y X \\
& X N O R \rightarrow \overline{X \oplus Y}=X Y+\bar{X} \bar{Y} \text { X }
\end{aligned}
$$

$$
\begin{array}{ll}
x \oplus 0=x & x \oplus 1=\bar{x} \\
x \oplus x=0 & x \oplus \bar{x}=1 \\
x \oplus \bar{Y}=\overline{x \oplus Y} \quad \bar{x} \oplus Y=\overline{x \oplus Y} \\
A \oplus B=B \oplus A & \\
(A \oplus B) \oplus C=A \oplus(B \oplus C)=A \oplus B \oplus C
\end{array}
$$

O\&d Function

odd function

$$
=\left\{\begin{array}{lll}
1 \text { when } x \text { of l's is } & \text { odd } \\
0 " \text { " " } " \text { even }
\end{array}\right.
$$

$A \oplus B \oplus C \oplus D$

$C D$	00	01	11	10
$A B$		1		1
00	0000	0001	0011	0010
01	1	\square	1	
11	100	0161	011	0110
10	1	100	1101	111
10	1110			
1000	1001	1011	1010	

Odd function

Even function $\overline{X \oplus Y \oplus z}$

even function

$$
=\left\{\begin{array}{l}
1 \text { when } x \text { of I's is even } \\
0 \text { "" " " odd }
\end{array}\right.
$$

Example: Design \rightarrow BCD-to-Excess-3 Code Converter
specification.
excess -3 code \rightarrow binary combination corresponding

Decimal	input	Output
Dight	$B C D$	Excess -3
	$A B C D$	$W \times Y$

Fromulation

z

$$
\left.\begin{array}{rl}
W & =A+B C+B D \\
X & =\bar{B} C+\bar{B} D+B \bar{C} \bar{D} \\
Y & =C D+\bar{C} \bar{D} \\
Z & =\bar{D}
\end{array}\right\} \quad \begin{aligned}
& \text { implementation }
\end{aligned}
$$

\downarrow mre simpeification

$$
\begin{aligned}
& T_{1}=C+D \\
& W=A+B C+B D=A+B T_{1}
\end{aligned}
$$

$$
\begin{aligned}
& X=\bar{B} C+\bar{B} D+B \bar{C} \bar{D}=\bar{B} T_{1}+B \bar{C} \bar{D} \\
& Y=C D+\bar{C} \bar{D} \\
& Z=\bar{D}
\end{aligned}
$$

