Lecture 9b

Exclusive - OR Operators

$$\times \oplus \overline{\wedge} = \overline{\times} \oplus \overline{\wedge}$$
 $\times \oplus \overline{\wedge} = \overline{\wedge} \oplus \overline{\wedge}$
 $\times \oplus \overline{\wedge} = \overline{\wedge} \oplus \overline{\wedge}$
 $\times \oplus \overline{\wedge} = \overline{\wedge} \oplus \overline{\wedge}$
 $\times \oplus \overline{\wedge} = \overline{\wedge} \oplus \overline{\wedge}$

Old Function

ABBOCDD

(CD 00	01	11	10	
AB	1		1	
8000	0001 6	1	010	Odd function
01 0100	0161	1110	110	-
11 1100	1101	1111	110	
10 1000	1001	011 /1	010	L g

$$\frac{\times}{Y} = \frac{(\times \oplus Y) \oplus Z}{(\times \oplus Y) \oplus Z} = \frac{\times \oplus Y \oplus Z}{X}$$

A
$$\oplus$$
 B \oplus C \oplus D \oplus

Example: Decign > BCD-to-Excess-3 Code Converter

Specification.

excess-3 code > binary combination corresponding

to the decimal oligit plus 3

section of the decimal oligit plus 3

5+3=8 > 1000 excess-3 code

9+3=12 > 1100

Decimal input
Digit BCD
Excess-3

A B C D

W X Y Z

$$W = A + B C + BD$$

$$X = \overline{B}C + \overline{B}D + B\overline{C}\overline{D}$$

$$Y = CD + \overline{C}\overline{D}$$

$$Z = \overline{D}$$

$$V = C + \overline{D}$$

$$Z = \overline{D}$$

$$V = C + \overline{D}$$

$$T_1 = C + D$$

$$W = A + BC + BD = A + BT_1$$

$$X = \overline{BC} + \overline{BD} + \overline{BCD} = \overline{BT_1} + \overline{BCD}$$

$$Y = \overline{CD} + \overline{CD}$$

$$Z = \overline{B}$$

