
Aspects of the Monster Tower Construction:

Geometric, Combinatorial, Mechanical,

Enumerative

Susan Colley Gary Kennedy

November 10, 2022

These are notes for a 4-lecture series we delivered at the Workshop on Nash
Blow-up and Semple Tower, II, June 3–7, 2019, at KU Leuven in Belgium.
We also prepared four individual sets of lecture slides. Related lectures were
delivered by Ferran Dachs Cadefau and Alejandro Bravo-Doddoli.

1



Introduction

In these lectures we survey the construction and use of the monster tower (also
known as the Semple tower) in three distinct areas of mathematics.

Lecture 1: The Monster Tower (Kennedy) — This lecture will explain how three
seemingly different situations lead to the same construction:

1. Compactifying curvilinear data (algebraic geometry)

2. Studying Goursat distributions (differential geometry)

3. Analyzing a truck with trailers (mechanics and control theory)

Lecture 2: Combinatorial Aspects (Colley) — We explain a natural system of
coordinate charts on the monster space. We show how to lift (prolong) a curve
in the base into the tower. We explain a natural coarse stratification of the
monster, catalogued by a simple system of code words.

Lecture 3: Mechanical Aspects (Kennedy) — A version of the monster tower
construction creates the natural configuration space for a truck with trailers. We
explain the model and survey some important features, including Lie brackets
of its basic vector fields, its singular configurations, and its dynamics.

Lecture 4: Enumerative Aspects (Colley) — We begin with an introduction
(via examples) to the subjects of enumerative geometry and intersection theory.
Specializing to the enumeration of contacts between plane curves, we present a
strategy for counting such contacts and illustrate it with a quadruple contact
formula we once proved. The ideas behind this formula lead to a discussion of
the orbits of the monster space, and to the idea of appropriately lifting a family
of curves.
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Lecture 1: The monster tower

This lecture will explain how three seemingly different situations lead to the
same construction:

1. Compactifying curvilinear data (algebraic geometry)

2. Studying Goursat distributions (differential geometry)

3. Analyzing a truck with trailers (mechanics and control theory)

Compactifying curvilinear data (algebraic geometry)

Let’s start with a smooth manifold or complex manifold or smooth algebraic
variety M of dimension m > 1. Suppose we have two smooth curves C1 and
C2 passing through a point, and that we have a system of local coordinates
x1, . . . , xm based there, so that, for each curve, dx1 doesn’t vanish at the point.
We say that the curves have the same curvilinear data up to order k at the
point if the values of all derivatives djxi/(dx1)j agree up to order k.

Figure 1 shows the parabola y = 1
2x

2 − 1 and the unit circle. Working at
the point (0,−1), for the parabola we see that(

y, y′, y′′, y(3), y(4)
)

= (−1, 0, 1, 0, 0) ,

whereas for the circle we have(
y, y′, y′′, y(3), y(4)

)
= (−1, 0, 1, 0, 3) .

Thus the two curves have the same curvilinear data up to order 3. Rotating
both curves and now looking at the point

(
1
2

√
2, 12
√

2
)
, we find that(

y, y′, y′′, y(3), y(4)
)

=

(
1

2

√
2, −1,−2

√
2, −12, −60

√
2

)
for the parabola, and(

y, y′, y′′, y(3), y(4)
)

=

(
1

2

√
2, −1, −2

√
2, −12, −72

√
2

)
for the circle.

Agreeing in curvilinear data up to order k is (m − 1)k conditions, and one
can check that they are independent of local coordinates. One can see that
a curvilinear datum is a point in a manifold (or smooth variety) of dimension
m + (m − 1)k, and that in fact we have a tower of such manifolds, with M as
the base, with fiber a projective space Pm−1 at the first stage, and then affine
space fibers Am−1 thereafter.

Furthermore, it makes sense to lift our curves up through the tower. In
other words, to each point p on the smooth curve C we can associate the point

3



Figure 1: A parabola and its osculating circle, before and after rotation.

recording its curvilinear data (up to whatever order we like), and the locus of
these points is again a smooth curve.

We have traced this idea back as far as the work of Halphen. In his doctoral
thesis [20] and in a 94-page paper [19], he wrote about what we would now call
the parameter space for curvilinear data in the plane.

Here are two things we’d like to do:

1. Give a coordinate-free version of the construction.

2. Compactify the spaces in the tower, in some natural way.

The first-order datum is giving us a tangent direction, so at the first stage
of the construction we have M(1) = PTM , the total space of the projectivized
tangent bundle. The lift of a curve is its Nash blowup.

Naively, one might guess that one just continues in this way: define M(2) =
PTM(1), etc., but this can’t be right, because it doesn’t give us a manifold
of the right dimension. The dimension of M(2) ought to be 3m − 2, but the
dimension of PTM(1) is 4m − 3. To say this another way, most points of the
proposed space are inaccessible: they can’t be reached by lifting (twice) a curve
from the base. There must be something special about the tangent lines to
(once) lifted curves — what is it?

Semple [35] supplied the answer. To explain what he did, we’ll work in a
somewhat larger context, and explain what we call the basic construction.

The basic construction

Suppose that M is a smooth manifold or nonsingular algebraic variety over
an algebraically closed field of characteristic 0. Suppose that B is a rank b
subbundle of its tangent bundle TM . Let M̃ = PB, the total space of the
projectivization of the bundle, and let π : M̃ → M be the projection. A point
p̃ of M̃ = PB over p ∈ M represents a line inside the fiber of B at p, and since
B is a subbundle of TM , this is a tangent direction to M at p. Let

dπ : TM̃ → π∗TM
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denote the derivative map of π. A tangent vector to M̃ at p̃ is said to be a focal
vector if it is mapped by dπ to a tangent vector at p in the direction represented
by p̃; in particular a vector mapping to the zero vector (called a vertical vector)
is considered to be a focal vector. The subspace of focal vectors is called the
focal space. (Figure 2 illustrates the construction, assuming that b = 2.) The

set of all focal vectors forms a subbundle B̃ of TM̃ , called the focal bundle;
its rank is again b. Thus we can iterate this construction to obtain a tower of
spaces (i.e., smooth manifolds or nonsingular algebraic varieties) together with
their associated bundles.

M

dπ

focal space

direction 

represented 

by p

p

~

p
~

M
~

Figure 2: The focal space.

If we begin the construction by taking B to be the tangent bundle TM itself,
then the resulting tower

· · · →M(k)
πk−→M(k − 1)

πk−1−−−→ · · · →M(2)→M(1)→M(0) = M

is called the Semple tower over the base M . The space M(k) is said to be at
level k. Observe that it is the total space of a Pm−1-bundle over M(k − 1); in
particular, M(1) is the total space of the projectivized tangent bundle PTM .
The bundle constructed at step k of the construction is called the kth focal
bundle and denoted ∆k; it is a subbundle of the tangent bundle TM(k).

The earliest instance of the construction seems to occur in Gherardelli’s
1941 paper [18], which constructed P2(2) over the projective plane P2. The
full tower was explained by Semple in [35]. We learned about the construction
from remarks of Collino in [11], and used it to study problems of enumerative
geometry in [7], [8], and [9]. It was treated in greater generality by Lejeune-
Jalabert [25]. Demailly used it to study positivity questions for hyperbolic
varieties in [12].
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Studying Goursat distributions (differential geometry)

Now let’s make a fresh start. (Our main source for this exposition is [28], and
we will adopt its notations.)

A distribution D on a smooth manifold is a subbundle of its tangent bundle.
We want to consider germs of distributions at a point; thus we may work at
the origin in Euclidean space Rn. Two distributions represent the same germ if
they agree in some neighborhood of the origin. Let d be the rank of D; its type
is the pair (d, n); the number s := n − d is called the corank. (To match these
notations with those in our basic construction, replace (d, n) by (b,m).)

There is a natural topology on the set of germs. There is also a natural
notion of equivalence of germs: local diffeomorphism taking one distribution to
the other.

How can you tell when two germs are equivalent? Let’s look at the well-
known theorem of Frobenius:

A distribution is completely integrable if and only if it is involutive.

(See, e.g. [1, pp. 95–96].)
We need to explain the terminology in this statement. The distribution

is said to be completely integrable if through each point we can find a sub-
manifold whose tangent space at that is the fiber of D. Equivalently, we can
find local coordinates x1, x2, . . . , xn so that at each point D is spanned by
∂/∂x1, ∂/∂x2, . . . , ∂/∂xd. To understand the meaning of “involutive,” we need
the notion of Lie bracket of vector fields. Suppose that X and Y are vector
fields. We can think of them as operators on functions, and thus compose them.
We define

[X,Y ] = XY − Y X,

again an operator on functions, and one can prove that it is again a vector field.
The distribution D is said to be involutive if the Lie bracket of two arbitrary
vector fields in D is again in D.

Now differential geometers and control theorists are interested in noninvolu-
tive distributions. (In Lecture 3 we’ll say something about why.) It is therefore
natural to consider the Lie square

D2 = D + [D,D]

where the second term consists of all possible Lie brackets of vector fields in
D. In general this won’t be a distribution, since the rank may vary from point
to point, but let’s suppose that it is, and let’s iterate the construction to get a
sequence of subbundles (as we assume) of the tangent bundle

D = D1 ⊂ D2 ⊂ D3 ⊂ · · ·

where each bundle is the Lie square of the previous bundle. Call this the Lie
squares sequence.

The bundle is said to be Goursat if we have this mild growth: the rank
increases by one at each step, until we reach the tangent bundle.
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Engel [14] studied Goursat distributions of type (2, 4). Here the sequence
of ranks is 2, 3, 4. He discovered that all such distributions are equivalent. We
now call this sole distribution the Engel distribution.

Building on Engel’s work, Cartan [3] showed how to prolong the Engel dis-
tribution to obtain Goursat distributions, and he showed that for a generic pro-
longation there is a single normal form, i.e., a single equivalence class of Goursat
distributions. In [28], Montgomery and Zhitomirskii write: “Some researchers
believe that Cartan missed the singularities [the nongeneric prolongations] in
the problem of classifying Goursat distributions. It would be more accurate to
say that he was not interested in them.”

So what is this prolongation procedure? In the case d = 2, we’ve already
seen it above. If we have a rank 2 Goursat distribution D on a manifold M , then
we’re in the situation of the basic construction, and thus we obtain M̃ := PD,
a P1-bundle over M , together with a new rank 2 distribution D̃. (Montgomery

and Zhitomirskii use the notations PM for M̃ and E for D̃.) The inverse images

of the bundles in the Lie squares sequence all increase in rank by one, and D̃
fits in at the beginning:

D̃ ⊂ π−1D ⊂ π−1D2 ⊂ π−1D3 ⊂ · · · .

Thus one observes that again D̃ is Goursat. By iterating the construction, one
obtains a tower of P1-bundles over M . Montgomery and Zhitomirskii called it
the monster tower.

(Their construction doesn’t agree with our basic construction if d > 2, but
we don’t need to talk about that case.)

Now here’s what Montgomery and Zhitomirskii did that’s really clever: they
reversed the construction. Suppose D is a germ of a rank 2 Goursat distribution
of corank s > 2. They explain how to deprolong it to obtain a rank 2 Gour-
sat distribution. We won’t go into the details of this construction, but if you
look into their cited paper, the key observation is what they call the Sandwich
Lemma. From it, they show how to identify a rank 1 subbundle that ought to
be collapsed, so that D collapses down to a rank 2 distribution of corank s− 1.

From this one obtains a beautiful understanding of Goursat distributions
of rank 2, as follows: given a germ Goursat distribution of rank 2, deprolong
repeatedly until you reach corank 2. You now have the Engel distribution! Thus
your given germ can be found somewhere in the repeated prolongation of the
Engel distribution. In fact one can take this even further, by observing that the
Engel distribution can be obtained by twice prolonging the tangent bundle to a
surface.

All of this appears in their 2001 paper [28] and the subsequent monograph
[29], but it took several years for someone to realize that the two tower con-
structions — Semple and monster — are the same, in the case where the base
is a (real) surface. That person was Montgomery’s student Alex Castro, and
we think the connection was first written down in his 2010 dissertation at UC
Santa Cruz [5]. In light of this discovery, the “monster” terminology has now
been adopted in greater generality, as a synonym for “Semple.” For example,
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the space M(k) encountered earlier is now called the kth monster.
You might observe that the construction in algebraic geometry is “bottom-

up”: in trying to analyze curves on a manifold, we are led to construct a tower
over it. By contrast, if you are given a Goursat distribution, you are already
somewhere up in the tower, and the Montgomery–Zhitomirskii construction
shows you how to move downward.

Analyzing a truck with trailers (dynamics and control the-
ory)

Introductory talks about control theory often mention a truck towing a trailer.
The truck is free to move in the plane; it can be driven forward or backward,
braked, and steered. We model it as a point with an attached vector, which
shows which way it is pointing. (See Figure 3.) The truck can be moved
following any differentiable path, subject to the following condition: the velocity
vector must point in the direction that the truck is pointing. If the velocity
vector is zero, this is interpreted as a vacuous condition (automatically satisfied).
It is thus legal to drive the truck simply by turning, i.e., by keeping its position
fixed while changing which way it’s pointing.

Figure 3: Truck and trailer.

The trailer is also modeled as a point with attached unit vector, and its
motion must satisfy two constraints:

1. It must be one unit of distance from the truck.

2. Its velocity must be in the direction of truck. (Again the zero velocity
vector always satisfies this condition.)

In the literature of dynamics, control theory, and engineering, the first condition
is called a holonomic constraint : it’s a condition on positions, and it will be
incorporated into our choice of configuration space. The second condition, which
restricts the allowable velocities, is called a nonholonomic constraint.

This does seem to fit the physical situation of a tractor-trailer or big rig,
consisting of a relatively compact cab and a long trailer whose wheels can’t be
turned; think of the point as the rear of the trailer. It’s also a good model of
an automobile or a bicycle [15].

8



The configuration space consists of quadruples

(x, y, ϕ0, ϕ1),

where (x, y) is the position of the trailer, ϕ0 records the direction of the unit
vector pointing from the trailer toward the truck (using the positive x-direction
as the reference direction), and ϕ1 records the bending angle between the di-
rection of the trailer and the direction of the truck. (See Figure 4.) Thus the
configuration space is R2×S1×S1. (Notice that the position of the truck isn’t
made explicit, but obviously can be inferred.)

Figure 4: Coordinates for the truck-and-trailer configuration space.

The physical situation suggests, and the mathematical model confirms, that
the path of the truck determines the path of the trailer. In other words, the
nonholonomic constraint gives us a differential equation which, given the path
of the truck, can be solved to determine the path of the trailer. Here are two
examples:

• If the truck and trailer are aligned and we drive the truck forward, the
trailer follows in a straight line.

• We can drive the truck in a unit circle (using the same unit as for the
length of the trailer), so that the trailer stays fixed at a point.

Control theory is concerned with the opposite direction: if you want the
trailer to follow a certain path, how should you drive the truck? The answer is,
of course, a process involving differentiation. In fact, there’s a nice geometric
description: suppose we specify a differentiable path for the trailer. At each
point, draw the unit tangent vector, and then mark the head of this vector.
The heads of all these vectors trace out the required path of the truck. This
process is illustrated in Figure 5.

As an example, suppose you want to move the trailer along a circle of radius
r. Then the truck should be moving along the concentric circle of radius

√
r2 + 1.

An example is shown in Figure 6.
A related control theory problem is this: how do you get from one specified

configuration to another? Consider this problem: you have your automobile
lined up in the street parallel to and 3 meters from the sidewalk, next to an
empty parking space. The spaces ahead and behind are occupied. You want to
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Figure 5: Determining the required truck path from the trailer path.

Figure 6: To move the trailer on a circle of radius r, drive the truck on a circle
of radius

√
r2 + 1.
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move your vehicle to the side, but of course it can’t jump to the side. So how
do you get it into the space? When we learn to drive an automobile, the skill
of parallel parking is one of the bigger challenges, as illustrated in Figure 7.

Figure 7: Parallel parking. (from officialdrivingschool.com)

To reduce the challenge somewhat, let’s unhitch the trailer — let’s suppose
we just have the truck (or that we’re riding a unicycle). To maneuver into the
space, we should do these four things:

1. Pull forward.

2. Turn to face leftward (assuming the empty space is on the right).

3. Back up.

4. Turn rightward (to be facing forward again).

Mathematically, we’ve just described a commutator FTF−1T−1 of two basic
motions. If we have a truck and a trailer, then a similar parsing into basic
motions (of the truck) will reveal six individual steps.

Now let’s consider what happens if we add additional trailers: after the first
trailer we put a second trailer, following it in the same way that the first trailer
follows the truck; and then a third trailer following the second, etc., forming a
train. See Figure 8. In Lecture 3 we’ll return to this figure; we’ll look at the
configuration space and dynamics for trains.

What we want to observe here is that the position of trailer k is determined
from the path of trailer k + 1 by a process of differentiation: the direction
between the trailers is the slope of the tangent to this path. This probably
sounds familiar! In fact one can show that the configuration space is one of the
spaces in the Semple/monster tower over the plane, or nearly so. The “nearly
so” comes from the fact that the trailers have a direction: they have a front
and a back. Thus, to be precise, one needs to redo the basic construction:
where previously we said “line” we need to say “ray.” It’s easy to see that
if one applies this ray-monster construction, then one obtains an unbranched
two-sheeted cover R2

ray(1) of the usual monster space R2(1). If you apply it
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Figure 8: A train, made up of a truck pulling 5 trailers.

repeatedly, then you learn that the configuration space for the truck with n
trailers is R2

ray(n+1), the (n+1)st ray-monster space over the plane, and that’s
a 2n+1-sheeted cover of the usual monster R2(n+ 1).
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Lecture 2: Combinatorial aspects

Here is an outline of this lecture:

• Charts and coordinates

• Lifting (prolonging)

• Coarse stratification

• Code words

• Moduli

Charts and coordinates

Begin with an open set U on M with coordinates x1, . . . , xm so that at each
point the differentials dx1, . . . , dxm form a basis of the cotangent space. The
monster tower over U is a tower of bundles with fiber Pm−1. We explain here a
systematic way of naming charts and coordinates for the spaces in the tower.

To avoid a cumbersome notation, we do this via an example: we suppose
that M is 3-dimensional. Suppose first that we are just concerned with the
data carried by a nonsingular point of a curve in U , and that at this point dx1
doesn’t vanish. Then the curvilinear data of the point is recorded by the values
of the following quantities:

x1 x2 x3

x′2 :=
dx2
dx1

x′3 :=
dx3
dx1

x′′2 :=
dx′2
dx1

x′′3 :=
dx′3
dx1

x
(3)
2 :=

dx′′2
dx1

x
(3)
3 :=

dx′′3
dx1

etc.

To record the data of singular curves, however, we will need to turn some of
these quantities upside-down, and we may need to work with derivatives with
respect to quantities other than the three coordinates on the base. There will
be 3k charts (where k is the level), and each one is determined by a sequence of
choices. Here we explain one possibility. To begin, we choose one of the three
coordinates, and introduce derivatives of the other two coordinates with respect
to it:

x1 x2 x3

x1(3) :=
dx1
dx3

x2(3) :=
dx2
dx3

x3(3) := x3
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The box indicates that we have introduced a (conveniently) redundant name.
The three coordinates in the bottom row are called active coordinates; we choose
one of them, and differentiate the two other active coordinates with respect to
it:

x1 x2 x3

x1(3) :=
dx1
dx3

x2(3) :=
dx2
dx3

x3(3) := x3

x1(32) :=
dx1(3)

dx2(3)
x2(32) := x2(3) x3(32) :=

dx3(3)

dx2(3)

This shows three more steps:

x1 x2 x3

x1(3) :=
dx1
dx3

x2(3) :=
dx2
dx3

x3(3)

x1(32) :=
dx1(3)

dx2(3)
x2(32) x3(32) :=

dx3(3)

dx2(3)

x1(321) x2(321) :=
dx2(32)

dx1(32)
x3(321) :=

dx3(32)

dx1(32)

x1(3212) :=
dx1(321)

dx2(321)
x2(3212) x3(3212) :=

dx3(321)

dx2(321)

x1(32123) :=
dx1(3212)

dx3(3212)
x2(32123) :=

dx2(3212)

dx3(3212)
x3(32123)

Thus on this chart, called C(32123), we have 13 coordinate functions. Note that
each function extends to a rational function on the entire monster space, and
there are no ambiguities in the names.

These coordinate systems are essentially due to Lejeune-Jalabert [25] (except
for the redundant names).

In the case of a 2-dimensional base, we sometimes prefer a simpler notation,
as follows: Begin with base coordinates x and y, and then use the standard
prime notation for differentiation, e.g.,

y′ =
dy

dx

y′′ =
dy′

dx

x′ =
dx

dy′′

x′′ =
dx′

dy′′

y(3) =
dy′′

dx′′
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This notation carries less information, and is ambiguous: x′′ can mean dif-
ferent things in different charts. Note that at each step our choice can be framed
as follows: either differentiate again with respect to the same coordinate as in
the previous step (make the Regular choice), or differentiate with respect to the
coordinate that has just been introduced (make the Critical choice). Thus in
the example, we could say we are working in a chart of type RRCRC.

Lifting (prolonging)

Robert Bryant: “Intuitively, prolongation is just differentiating the equations
you have and then adjoining those equations as new equations in the system.”

Consider a nonsingular point p of a curve C in M . We can associate to p the
point of PTM representing the tangent direction of C at p. Thus, away from
singularities, we have a curve C(1) in PTM , the prolongation or lift. In turn,
we can lift this curve to the next level (arguing that in fact all of its tangent
directions are focal), and continue upward through the tower, obtaining lifts
C(2), C(3), etc. We also want to lift a singular curve C in M , and we do so by
fiat: we lift at all nonsingular points of C, and then take the closure. This may
give us several points over a singular point of C; even if it gives us a single point,
the nature of the singularity will change, and we may even get a nonsingular
point on the lift. In the mathematical literature, this process goes by at least
three distinct names: prolongation, lifting, and Nash blow-up.

Our examples are all done in the case where M is the plane. First, we work
with a parametrized curve, taking an example from our paper [8]. Suppose that
x = t2 and y = t4 + t5. We calculate as follows:

y′ =
dy

dx
=

4t3 + 5t4

2t
= 2t2 +

5

2
t3

y′′ =
dy′

dx
=

4t+ 15
2 t

2

2t
= 2 +

15

4
t

x′ =
dx

dy′′
=

8

15
t.

These equations parametrize a curve in the third monster. (See Figure 9.)
Setting t = 0, we find one point over the origin,

(x, y, y′, y′′, x′) = (0, 0, 0, 2, 0),

which we can explicate as follows: the (generalized) tangent line is horizontal,
and in fact the point carries the same data up to second order as the parabola
y = x2, but its third-order datum is infinite. Note this implicit equation for the
curve: (y − x2)2 = x5.

Our second example begins with cuspidal cubic curve y2 = x3. By implicit
differentiation we find that

2yy′ = 3x2.
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y = x2

(y – x2)2 = x5

y

x
–1

1

1

Figure 9: A ramphoid cusp.

Note that these two equations don’t give an irreducible curve, since over the
origin they allow any value for y′. See Figure 10, noting the spurious component.
To remove it, we remark that, assuming we are away from the origin, we have

x =
4

9
(y′)2 and y =

8

27
(y′)3.

Thus these equations should also be used in defining the lift. To continue the
calculation for one more step, we use x′ := dx/dy′, and calculate that

x′ =
8

9
y′.

Thus the second-order datum at the origin is infinite. If, loosely speaking, we
think of this as curvature, we’re claiming that as we approach the origin on this
curve, its curvature goes to infinity. See Figure 11.

Going in the opposite direction: given a point on the kth monster, we want
to generate a curve for which it is the curvilinear data. Montgomery and Zhit-
omirskii call this process Legendrization. Here’s a calculation taken from our
very first paper [7]. Using the chart with coordinates

y′ =
dy

dx
x′ =

dx

dy′
x′′ =

dx′

dy′
y′′ =

dy′

dx′′

we consider the point

(x, y, y′, x′, x′′, y′′) = (0, 0, 0, 0, 1, 1).

16



Figure 10: The lift of the cuspidal cubic.

Figure 11: As one approaches the origin on the cuspidal cubic, the osculating
circle shrinks to a point.
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Beginning with two linear parametrizations, we calculate as follows:

y′′ = 1 + t

x′′ = 1 + t

y′ =

∫
y′′dx′′ =

∫
(1 + t) dt = 1

2 (1 + t)2 − 1
2

x′ =

∫
x′′dy′ = 1

3 (1 + t)3 − 1
3

x =

∫
x′dy′ = 1

15 (1 + t)5 − 1
6 (1 + t)2 + 1

10

y =

∫
y′dx = 1

42 (1 + t)7 − 1
30 (1 + t)5 − 1

24 (1 + t)4 + 1
12 (1 + t)2 − 9

280

(Since the last coordinate of the point is nonzero, we could actually have started
with the constant parametrization y′′ = 1, obtaining a somewhat simpler result.)

Coarse stratification

We will now apply the basic construction in a different way. Refer to our one-
page handout for a reminder of this construction. For an alternative explanation
of the following, see [36].

Again suppose that B is a rank b subbundle of the tangent bundle TM ; to
avoid a silly trivial case, assume its rank isn’t zero. Then the relative tangent
bundle V = T (M̃/M) is a subbundle of B̃; its fiber consists of vectors mapping
to zero, sometimes called vertical vectors. Its rank is b− 1. Applying the basic
construction to the bundle V on M̃ , we obtain the space PV carrying its focal
bundle Ṽ, again of rank b − 1. Since V is a subbundle of B̃, the space PV is
naturally a subset of PB̃. In fact, each fiber of PV is a hyperplane inside the
Pb−1-fiber of PB̃. Thus PV is a divisor (codimension one) subvariety of PB̃. We
call it a baby monster.

Here’s where we want to apply the baby monster construction: to the mon-
ster spaces over some base manifold or variety M . We can do this to any
projection map in the monster tower

M(j − 1)
πj−1−−−→M(j − 2),

and what we obtain is a divisor on M(j), which we call the jth divisor at infinity
and denote by Ij . If the dimension of the base is m, then by construction Ij
carries a bundle of rank m − 1. We can iterate this construction, building a
tower of Pm−2-bundles over M(j − 1). Here is our notation:

· · · → Ij [3]→ Ij [2]→ Ij [1]→ Ij [0] = Ij →M(j − 1)

Note that:

• Ij is a divisor on M(j)
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• Ij [1] has codimension 2 in M(j + 1)

• Ij [2] has codimension 3 in M(j + 2)

• etc.

(If m = 2, then all these maps are isomorphisms.)
What’s the geometric meaning of these loci? Using either our interpreta-

tion of the coordinate systems, or reflecting upon how the lift of a curve could
possibly have a vertical tangent, we realize that the divisor at infinity consists
of those curvilinear data points for which we consider the jth-order data to be
infinite.

For example, we have seen that the lift of the cuspidal cubic curve y2 = x3

is tangent to the fiber of the first monster over the origin. Thus the second lift
meets the divisor at infinity. See Figure 12.

Figure 12: The second lift of the cuspidal cubic meets the divisor at infinity.

Let’s also look again at the ramphoid cusp; see Figure 9. Here are our
calculations:

x = t2

y = t4 + t5

y′ = 2t2 +
5

2
t3

y′′ = 2 +
15

4
t.
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These equations give us the second lift of the curve on the base, and it’s tangent
to the fiber of M(2) over M(1). We can compute

y′′′ =
dy′′

dx
=

15

8t

but of course we can’t evaluate this at t = 0; that’s because the third lift hits
I3, and that’s why earlier we chose to compute

x′ =
dx

dy′′
=

8

15
t.

As this example suggests, it’s straightforward to use coordinates to tell when
you’re on a divisor at infinity. We work this out in full detail in [8]. In this
example, the divisor at infinity is the locus x′ = 0.

What about Ij [1]? What’s its geometric meaning? Well, suppose that when
you lift your curve to M(j−1), you are not just tangent to a fiber over M(j−2),
but tangent to second order. Then when you lift to M(j), you won’t just hit
Ij ; you’ll be tangent to it. And when you lift yet again, then you’ll be on Ij [1].

To compare all these divisors at infinity and their associated baby monsters,
let’s pull everything back to our highest level k. The complete inverse image of
Ij will be denoted in the same way, but now it’s a divisor up on M(k). With
this convention, we now have a nest

Ij ⊃ Ij [1] ⊃ Ij [2] ⊃ · · · ⊃ Ij [k − j].

We can also form intersections of spaces taken from different nests: we consider
the intersection locus

IW :=

k⋂
j=2

Ij [nj − 1] (*)

for some specified nonnegative integers nj (with the convention that Ij [−1] is
all of M(k)). The main theorem of [4] tells us this:

• This intersection is transverse.

• Its codimension (if it’s nonempty) is n2 + · · ·+ nk.

• If k ≤ dimM , then it’s nonempty.

It also says more generally when the intersection is nonempty, and that naturally
leads to our next topic.

Code words

Looking back at (*), note that we used a letter W . This indicates the code
word of the intersection locus, which records, in a different way, which spaces
we are intersecting. The alphabet for our code consists of all symbols VA, where
A is a finite subset of the integers strictly greater than 1. Although this is an
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RRR

RR RRV3

R RV2R

RV2 RV2V2

RV2V3

RV2V23

Figure 13: Code words up to length 3 (assuming dimM ≥ 3).

infinite alphabet, the rules for creating a valid word will imply that there are
only finitely many words of each specified length. To be consistent with prior
usage, we will use R in place of V∅. (The symbols R and V have been chosen
to suggest “regular” and “vertical.”) The rules for creating a code word are as
follows:

1. The first symbol must be R.

2. Immediately following the symbol VA, one may put any symbol VB , where
either B is a subset of A, or B is a subset of A ∪ {j}, with j being the
position of the symbol.

3. The cardinality of A is less than m.

Note that j cannot appear in a subscript prior to position j.
To explain how the code word specifies an intersection locus, we present an

example at level 8:
W = RV2V23V23V25V5V5V5.

The number 2 first appears in position 2, and then appears in three subsequent
positions. This means that one of the spaces used in the intersection is I2[3].
Similarly, we use I3[1]. The number 4 never appears in a subscript. Thus we
can omit I4, i.e., write I4[−1]; similarly we can omit I6, I7, and I8. Here is the
result:

IW = I2[3] ∩ I3[1] ∩ I4[−1] ∩ I5[3] ∩ I6[−1] ∩ I7[−1] ∩ I8[−1]

= I2[3] ∩ I3[1] ∩ I5[3].

Is this intersection locus nonempty? The answer depends on the dimension
of the base. Note that the third rule for code words limits the length of the
subscripts. Thus this intersection locus is nonempty if the base has dimension
at least 3; over a surface it’s empty.

Figure 13 shows the code words up to length 3, assuming the dimension of
the base is at least 3. Over a surface, the last code word RV2V23 should not be
used; thus there are five intersection loci at level 3, rather than six.

When the base is a surface, note that at each position j of the code word
there are at most three possibilities:
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1. Use R.

2. Use Vj .

3. Repeat the previous symbol (assumed not to be R).

This leads to the alternative RV T code, originally developed by the differential
geometers. (See [29, Chapter 3]; in [30], it’s called the GST code.)

We illustrate it in Table 1, which gives representative curve germs for each
of the five intersection loci at level 3.

Table 1: The five intersection loci at level 3.

RRR RRV RV R RV V RV T
RRR RRV3 RV2R RV2V3 RV2V2
y = 0 y2 = x5 y2 = x3 y3 = x5 y3 = x4

How many intersection loci are there? To answer this, one can work out a
simple recursion. In the case of a surface, the recursion immediately implies
that the number of code words of specified length is a Fibonacci number: there
are 2 intersection loci at level two, 5 at level three, 13 at level four, etc. Figure
14 shows the codewords up to level four.

RRRR

RRR RRRV

RR RRV R

RRV RRV V

RRV T

R RV RR

RV R RV RV

RV V R

RV RV V RV V V

RV V T

RV TR

RV T RV TV

RV TT

Figure 14: RV T code words up to length 4.
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Moduli

Thus far we have only discussed discrete or coarse aspects of the monster spaces.
A few researchers, most notably Mormul, have devoted considerable attention
to understanding their moduli. (See, e.g., [31].) We find these results deep and
mysterious in comparison to the prior considerations, and we’re just going to give
a few vague remarks. We’re thinking about equivalence classes of plane curve
germs or (for Mormul) equivalence classes of Goursat germs, where (in the case
of curves) we allow arbitrary diffeomorphisms at a point of the base manifold M .
If two curve germs give different code words, then certainly they are inequivalent,
but suppose they have the same code word. We find it surprising that in fact
there are moduli, i.e., there are continuous families of inequivalent curve germs
(or Goursat germs) with the same code word. This is wide-open territory.
Currently we have no general unifying insight as to where and why moduli
should appear.
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Lecture 3: Mechanical aspects

We are not as well acquainted with this aspect, so our reporting may be su-
perficial or misguided. Nevertheless, we think that learning more about this
connection may be helpful in both directions. You’ve just heard from an expert
about the relevant dynamics, Alejandro Bravo-Doddoli. We may cover some of
the same territory, while trying to tie it to the other aspects.

Here is an outline of this lecture:

• The configuration space for a truck with trailers

• Driving the train; rigid trains

• Vector fields (infinitesimal motions)

• Lie brackets

• Singular configurations

• The runaway train

The configuration space for a truck with trailers

We are examining the motion of a truck pulling n trailers of unit length; we
call the entire configuration a train. When convenient, we may also say “trailer
0” instead of “truck.” We idealize each trailer as a point together with a unit
vector pointing in the direction of the previous trailer; the truck’s unit vector
may point in any direction. See Figure 15 for an example with n = 5.

Figure 15: A truck pulling 5 trailers.

The configuration space was described by Jean [22], but we introduce co-
ordinates in a somewhat different way. A somewhat confusing aspect, but one
entrenched in the literature — and actually compatible with the way in which
we think about higher-order data — is that the angles are named from back
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(last trailer) to front (truck). The configuration space is R2 × (S1)n+1, a man-
ifold of dimension n + 3. A point of the configuration space is specified by an
(n+ 3)-tuple

(x, y, ϕ0, ϕ1, . . . , ϕn).

The first two coordinates (x, y) record the position of the last trailer (trailer
n). The coordinates ϕ1, . . . , ϕn record the bending angles formed by successive
trailers, ordered from the back of the train to the front: ϕk records the angle
formed at trailer n − k between the unit vectors associated to trailers n − k
and n− k + 1. We define ϕ0 to be the heading angle formed by the unit vector
associated to the last trailer and the horizontal direction. (See Figure 16.) Note
that the position of the truck, and indeed of all trailers except the last, is not
directly recorded in the coordinates of the configuration space.

Figure 16: Coordinates for the truck-with-trailers configuration space.

Here’s an unrealistic aspect of our model: the trailers can intersect. We
also allow a bending angle to have value π, which leads to numerous “accordion
configurations,” with trailers totally overlapping. See Figure 17. For simplicity,
in the following treatment we will assume that each of the angles is acute:
−π/2 ≤ ϕk ≤ π/2. In particular, this assumes that the truck is pulling the train,
not pushing it. This rules out the accordion configurations, but overlapping may
still happen. Our convention is that bending to the left is positive; in Figure
16, angles ϕ1 and ϕ2 are negative, and the others are positive.

Figure 17: Overlapping trailers and “accordion configurations.”
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In Lecture 1, we noted that this configuration space is R2
ray(n + 1), the

ray-monster space over the plane. The map

R2
ray(n+ 1)→ R2

ray(n)

just strips away the truck, and the first trailer then plays the role of the truck.

Driving the train; rigid trains

The truck can be driven following any differentiable path, subject to the fol-
lowing condition: the velocity vector must point in the direction that the truck
is pointing (as indicated by its unit vector). If the velocity vector is zero, this
is interpreted as a vacuous condition (automatically satisfied). It is thus legal
to drive the truck simply by turning, i.e., by keeping its position fixed while
changing ϕn.

The motion of each trailer is determined by two conditions:

1. The distance between successive trailers must always be the unit length.
(This is a holonomic constraint.)

2. The velocity vector must point in the direction that the trailer is pointing
(as specified by ϕi), i.e., the velocity vector must point in the direction of
the previous trailer. (This is a nonholonomic constraint.)

These constraints imply a certain system of differential equations, which,
given the path of the truck, can be solved to determine the paths of the trailers.

Going in the other direction, if we are given the path of a trailer, then the
process of obtaining the path of the previous trailer is a geometric process involv-
ing derivatives. As we noted in Lecture 1, there’s a nice geometric description:
Suppose we specify a differentiable path for the last trailer. At each point, draw
the unit tangent vector, and then mark the head of this vector. The heads of all
these vectors trace out the path of the prior trailer. Now repeat the procedure,
moving forward in the train until you reach the truck.

As an example, suppose you want to move the last trailer along a circle
of radius r. Then the prior trailer should be moving along a circle of radius√
r2 + 1. Working forward, we obtain a sequence of concentric circles, with the

truck driving along the outer circle. As a special case of this construction, take
r = 0. Then the bending angles are

ϕk = sin−1
1√
k

as shown on the left in Figure 18. Observe that the entire train will move
rigidly, as if the angles between the successive trailers were welded at certain
fixed angle. The last trailer isn’t moving; it’s just turning.

Now note what we could do to embellish this example: we could attach
additional trailers to the end, as shown on the right in Figure 18. Since the
end isn’t moving, we can satisfy the motion constraints by not moving these
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Figure 18: A rigid train and an embellishment.

additional trailers at all. The overall motion then looks like this: the rear of the
train isn’t moving at all, while the front of the train is moving rigidly. Just one
angle is changing.

Vector fields (infinitesimal motions)

To probe the dynamics of the train, we will look at infinitesimal motions, i.e.,
vector fields on the configuration space. We want to distinguish two sorts of
infinitesimal motions:

• motions that simply preserve the distance between the trailers,

• motions that correspond to legal ways of moving the train.

The latter sort of motion is quite restrictive, since the only available infinitesimal
motions of the truck are linear combinations of these two:

1. v = infinitesimally turn the truck leftward;

2. f = infinitesimally drive the truck forward.

The first motion v extends to a legal motion vn of the train in a trivial way: the
trailers don’t move at all. In coordinates, we have

vn =
∂

∂ϕn
.

The second motion f likewise extends to a legal motion fn of the entire train.
If we drive the truck forward, however, then we certainly expect the trailers to
move. Thus the coordinate expression for fn is more complicated, and we omit
it.
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Our choice of notation comes from the connection with the monster spaces:
When we regard the configuration space as the ray-monster R2

ray(n + 1), the
vector field vn is a field of vertical vectors. Physically, this means that when we
forget about the truck, the remainder of the train is stationary. Taking both vn
and fn, they everywhere span a rank 2 subbundle of the tangent bundle of the
configuration space; in fact it’s the focal bundle. (In the present context, the
words “veer” and “forward” may also be memorable.)

Jean introduces two sorts of vector fields on the configuration space, for a
total of 2(n+ 1) vector fields. We have already met vn and fn. For 0 ≤ k ≤ n,
we define two vector fields as follows:

• The vector field fk treats trailer n − k as a truck, driving it forward
infinitesimally and pulling the following trailers behind it; in doing so,
it does not change the angles ϕi at the earlier trailers (i > k). This
is of course not a legitimate way of driving the train; we are treating the
previous trailers as if they were a hood ornament, with the wheels removed
and all angles welded. See Figure 19.

• The vector field vk also treats trailer n−k as a truck, turning it infinitesi-
mally to the left; thus the following trailers don’t move. To compensate for
this turning, turn the prior trailer infinitesimally to the right, and again
treat all trailers forward of that as a hood ornament. See Figure 20.

Figure 19: The infinitesimal motion (vector field) fk. (Here n = 5 and k = 2.)

One has this basic formula:

fk = vk−1 sinϕk + fk−1 cosϕk.

By repeated use of this formula, one can express vector fn, as a linear combi-
nation of f0 and v0, v1, . . . , vn. (If you noticed that the total number of vector
fields doesn’t quite reach the dimension n+ 3 of the configuration space, that’s
because none of these vector fields moves the last trailer sideways. You could
introduce one more vector field v−1 to handle this possibility.)
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Figure 20: The infinitesimal motion (vector field) vk. (Here n = 5 and k = 2.)

Lie brackets

In Lecture 1, we looked at the problem of parallel parking: maneuvering a
vehicle sideways into a location. This led us to the notion of a commutator of
two motions. We also encountered the notion of Lie bracket of vector fields.
The following standard formula relates the two notions:

[X,Y ] =
1

2

∂2

∂t2

∣∣∣
0

(
FlY−t ◦FlX−t ◦FlYt ◦FlXt

)
.

(We took this formulation from [26].) Here X and Y are two vector fields on a
smooth manifold. The motion FlXt is the flow along X: starting at each point
of X, integrate the vector field from time 0 to time t; this determines where the
point should be moved. Observe that FlX−t is its inverse. Thus the expression
in parentheses is a commutator. The formula says that Lie bracket is akin to
an “infinitesimal commutator.” See Figure 21.

Figure 21: The Lie bracket is an “infinitesimal commutator.”

Thus Lie brackets are an important idea in control theory. One natural
question to ask is: if we are given a distribution D on a manifold (a subbundle
of the tangent bundle) what other vector fields can we generate from the ones
in the distribution? We think of the vector fields within the distribution as the
ones we can realize directly by single motions, and the ones we obtain via Lie
bracketing are those which we can obtain by combining motions.
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Recall that in Lecture 1 we considered the Lie squares sequence

D = D1 ⊂ D2 ⊂ D3 ⊂ · · ·

in which each bundle is the Lie square of the previous bundle:

Di = (Di−1)2 = Di−1 + [Di−1,Di−1].

Also recall that a Goursat distribution is one for which all of these are subbundles
(i.e., the rank is constant on the manifold), with the rank increasing by one at
each step until we reach the tangent bundle.

This is exactly the situation on the configuration space for a truck with n
trailers. At each point of the configuration space we have two vectors vn and fn,
the infinitesimal motions of the train caused by turning and driving the truck,
respectively. They fit together into a rank 2 distribution. Here is an intuition
for why this is a Goursat distribution: By bracketing vn and fn, we obtain a
third independent vector field; in the distribution spanned by the three vector
fields we find both vn−1 and fn−1. Thus we now have control of the first trailer,
and as if it were the truck. Repeat this argument for n steps.

Note that when we’re working in D3, we’re allowed to input four vector fields
into calculations, e.g., [

[vn, fn], [vn, fn]
]

is a vector field in D3 (when D is the focal bundle on the configuration space).
We can represent this calculation by a tree, as shown on the left in Figure 22. A
more restrictive sort of calculation is represented by the tree on the right, and
this leads us to the idea of the slow growth sequence

D = D0 ⊂ D1 ⊂ D2 ⊂ D3 ⊂ · · ·

in which
Di = Di−1 + [Di−1,D].

• •

• • • fn

vn fn vn fn vn fn

Figure 22: Lie bracketing trees.

We don’t want to assume that these are subbundles; that would be too
restrictive. They are subsheaves of the sheaf of the tangent bundle. In fact the
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idea is to study the distribution by studying the associated sequence of ranks,
which is a function on the manifold.

Let’s do this for the focal bundle on the configuration space. One can show
that there is a generic behavior, for all points representing configurations with-
out any right angles; the generic behavior is that Di = Di at such points, and
thus the slow growth vector is simply (2, 3, 4, . . . , n + 3). The other extreme
was pointed out by Luca and Risler in [32]: for configurations in which all the
bending angles are right angles, the slow growth vector is

(2, 3, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, . . . ),

where the number of repetitions is a Fibonacci number. The same information
is recorded by Jean’s beta vector, which here is

(1, 2, 3, 5, 8, . . . ).

Its entries tell us when we first reach rank 2, then rank 3, etc. This worst-case
growth is telling us, in some sense, that this particular train configuration is the
hardest to control.

Singular configurations

Jean [22] calls a configuration singular if the slow growth vector is something
other than the generic (2, 3, 4, . . . , n+ 3), and he provides an elegant recursion
for computing the slow growth vector at all points.

To explain his analysis, we need to delve into how the trigonometric coor-
dinates of the configuration space relate to the algebro-geometric coordinates
on the monster space over R2. On the second monster we have a chart with
coordinates (x, y, y′, y′′), whereas for the configuration space of the truck with
one trailer we use coordinates (x, y, ϕ0, ϕ1). For simplicity let’s assume ϕ1 ≥ 0
and ϕ2 ≥ 0. The relations between these coordinate systems will look familiar:

tanϕ0 = y′

tanϕ1 =
y′′

(1 + (y′)2)
3/2

Adding another trailer, here is a formula relating ϕ2 to third-order data:

tanϕ2 =
y(3) + y′′ + (y′′)3

(1 + (y′′)2)
3/2

Here we assume that y′ = 0. If we use the chart in which

x′ =
dx

dy′
and x′′ =

dx′

dy′

then here are the relations:

cotϕ1 = x′(1 + (y′)2)3/2

tanϕ2 =
−x′′ + 1 + (x′)2

((x′)2 + 1)
3/2
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(again assuming for the latter that y′ = 0).
One could continue in this fashion, but the formulas are not particularly

illuminating. More important is to understand how the coarse stratification
developed in Lecture 2 is interpreted on the configuration space. The divisor at
infinity I2 is defined by the vanishing of x′, and thus by ϕ1 = π/2. Its baby-
monster prolongation I2[1] is defined by the vanishing of both x′ and x′′, and
thus by the additional condition ϕ2 = π/4. Similarly, at all levels, we can see
what configurations are singular, meaning that they aren’t on the open dense
locus with code word RRR . . . , and we can see what code words they give.

Given a configuration of the train, here’s how to read its RV T code word
from its bending angles. If ϕi = ±π/2, then write V in position i. If you see
the sequence of special bending angles

±
(
π/2, π/4, sin−1(1/

√
3), sin−1(1/

√
4), · · ·

)
starting at position i, then write V in position i followed by a sequence of T ’s
for the other special angles. In all other cases write R. For example, the trains
shown in Figure 18 have code words RV TTTT and RRRRRV TTTT ; the train
shown in Figure 23 has code word RV RV TTV R.

Figure 23: A train with code word RV RV TTV R.

The code word W of a configuration determines its slow growth vector. Jean
expresses his recursion using his beta vector

β(W ) = (β1(W ), β2(W ), . . . , βk(W )).

The first two entries are always 1 and 2. He proves this recursion (valid for
j ≥ 3, and with X indicating a single symbol):

βj(WR) = βj−1(W )

βj(WXV ) = βj−2(W ) + βj−1(WX)

βj(WXT ) = 2βj−1(WX)− βj−2(W )
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Figure 24: Recursive calculation of Jean’s beta and the slow growth vector.

Figure 24 presents three examples.
Now remember that the context for these calculations is on the configuration

space. We believe that the same rules should apply in the wider context of
the monster over any surface, and that probably is an easy consequence of
Jean’s work. We would prefer, however, to give a fresh proof of this fact, not
invoking bending angles. Together with Corey Shanbrom, we’re in the midst of
a project which we think will explain Jean’s recursion by developing a theory
of calculational trees like those we saw in Figure 22. For example, we speculate
that the tree shown in Figure 25 should be associated to the code word RRV T ,
and we are developing a recursion for trees which should yield Jean’s numerical
recursion. Note in this example that the number of leaves is 7, which is the last
entry in Jean’s beta vector.

The runaway train

Alejandro Bravo-Doddoli has reported to you about his paper with Garćıa-
Naranjo [2], and we won’t attempt to repeat the details. We’ll just point out
how the special strata on the monster come up in their construction.

We consider a physically-motivated problem. Suppose that each trailer in-
cluding the truck) has an equal point mass. We assume that the train is in a
certain configuration, and that the truck is set into motion with a certain initial
velocity and initial angular velocity. Thereafter the truck and trailers move ac-
cording to Newtonian mechanics: they form a runaway train. We want to know
how it moves. This is an initial value problem, and not really a control theory
problem. In fact it’s an example of out-of-control theory!
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Figure 25: Speculative tree associated to the code word RRV T .

Figure 26: These configurations lead to periodic solutions.

In Newtonian mechanics, the energy is conserved, so in our analysis it makes
sense to specify the level of energy and then to examine the possible trajectories
at that level. Bravo-Doddoli and Garćıa-Naranjo show that, on a trajectory,
the angular velocity of the truck is constant, so let’s also fix that constant and
assume it’s not zero.

In this sort of analysis, one would like to look for periodic solutions, and we
actually know some already. The relevant configurations were depicted back in
Figure 18, which we repeat in Figure 26. Recall that such a train moves just by
rotating around one of its trailers, while the back of the train remains motionless.
The rigid train leads to a single periodic trajectory, while the embellishments
lead to entire tori of periodic trajectories. Thus there are n + 1 critical values
of the energy for which we find this abundance of periodic solutions. Bravo-
Doddoli and Garćıa-Naranjo do a bifurcation analysis, showing that at each of
these critical values, there is a change in the dynamics of the system.
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Lecture 4: Enumerative aspects

Thanks to Ferran Dachs Cadefau for his preliminary talk.

Here is an outline of this lecture:

• Enumerative geometry

• Contact formulas

• A strategy for proving a contact formula

• Intersection theory

• A higher-order contact formula

• Orbits and strata

• Prolongation in families

Enumerative geometry

Enumerative geometry is a branch of algebraic geometry. It is concerned with
problems of counting objects of a specified type, in situations where one expects
the answer to be finite.

Example. Given a nonsingular cubic surface in P3 (the locus of solutions to a
degree 3 homogeneous equation in w, x, y, z), how many lines does it contain?

The answer is: 27.
Actually, since this is algebraic geometry, one ought to be asking “Over what

field is the surface defined?” The default answer in enumerative geometry is C,
the field of complex numbers. But in this problem, the answer is correct even
for a real cubic surface: it contains 27 real lines. Figure 27 shows an example.

Example. Let C be an algebraic curve of degree d in the complex projective
plane. Its class is

d∨ := the number of tangents to C through a general point of P2.

For a nonsingular curve d∨ = d(d−1), but for a singular curve we need correction
terms. Suppose that C has (ordinary) nodes and cusps, but no more complicated
singularities. Then

d∨ = d(d− 1)− 2δ − 3κ,

where δ is the number of nodes and κ is the number of cusps. If we define two
additional quantities

β := the number of bitangent lines to C,

ϕ := the number of inflection points (flexes) on C,
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Figure 27: A real cubic surface and its 27 lines (figure by Greg Egan).

then there are three additional equations:

ϕ = 3d(d− 2)− 6δ − 8κ;

d = d∨(d∨ − 1)− 2β − 3ϕ;

κ = 3d∨(d∨ − 2)− 6β − 8ϕ.

Collectively, the four equations are known as the Plücker formulas. According to
Kleiman [24, pp. 307–308], the nonsingular case dates back to a 1756 anonymous
work on plane curves, and the idea of having “correction terms” for singularities
was apparently due to Poncelet. The formulas above — and the original theory
of projective duality that facilitates obtaining them — are due to Plücker.

To discover and prove such formulas, one works with appropriate parameter
spaces, i.e., spaces whose points represent objects of a certain type, in such a
way that “moving continuously through the space has the effect of continuously
varying the object.” If you’re wondering about lines on a cubic surface, then
it’s natural to work with the Grassmannian of lines in P3, which is a beautiful
4-dimensional algebraic variety. If you want to understand the Plücker formulas,
you want an object already mentioned in these lectures; it’s the first monster
space over the projective plane, which is also the total space of the projectivized
tangent bundle:

P2(1) = PTP2.

Classically this space was understood as the incidence correspondence of points
and lines:

I = {(p, `) : p ∈ `}.

This point of view reflects an understanding of projective duality : the lines in P2
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are naturally parametrized by another projective plane (P2)∨, and the incidence
correspondence naturally maps to both planes.

I

�� !!
P2 (P2)∨

Given our algebraic curve C in P2, we can lift it up to I and then project it
down to (P2)∨, obtaining its dual curve C∨. Under this beautiful duality, the
nodes on C correspond to bitangent lines on C∨, and vice versa. The cusps on
C correspond to flexes on C∨, and vice versa. Furthermore, the class of C is the
degree of C∨, and vice versa. Thus the Plücker formulas record an elaborate
interplay between the geometry of the two curves, via the intermediary I.

Contact formulas

To establish our conventions:

Transverse intersection Tangency Osculation

1st-order contact 2nd-order contact 3rd-order contact
(Ordinary contact)

Data agree to order 0. Data agree to order 1. Data agree to order 2.

To justify these conventions, we remark that a tangency can be thought of
as what happens when two intersection points coalesce. Alternatively, one can
do a calculation in local commutative algebra, such as this one:

〈y − x2〉 ∩ 〈y〉 = 〈y, x2〉.

Example. Bézout’s Theorem says that two plane curves of degrees d and e meet
in de points. See Figure 28 for an example.

To have a completely correct statement, we need to invoke several provisos:

• We’re working over C.

• To capture possible “intersections at infinity,” we’re working in the pro-
jective plane.
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Figure 28: A quartic curve and a conic meeting in 8 points.

• We must assume that the two curves don’t have any components in com-
mon, e.g., that they don’t both contain the same line. (We could utter
the magic word “general.”)

• If necessary, we count intersections with multiplicity, e.g., a point where
the curves are tangent should be counted twice. (We could avoid this by
uttering the magic word.)

There is a natural generalization to hypersurfaces in projective space Pn:
the intersection of hypersurfaces of degree d1, d2, . . . , dn consists of d1d2 · · · dn
points; there are similar (somewhat more elaborate) provisos. This is also called
Bézout’s Theorem.

Example. Given five general conics in the plane, how many conics are tangent
to each of them? The first answer to this was given in 1848 by J. Steiner [37].
The equation of a conic

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0

uses six coefficients, and multiplying them all by the same constant preserves
the curve. Thus the parameter space for conics is P5. (More generally, the
parameter space for degree d plane curves is PN , where N =

(
d+2
2

)
− 1.) It’s

pretty easy to see that the condition of being tangent to some specified conic
is an equation of degree 6 in A, B, C, D, E, F , i.e., it defines a hypersurface
of this degree in P5. Since there are five specified conics, this gives us five
hypersurfaces. According to (the generalized) Bézout’s Theorem, they intersect
in 65 = 7776 points. Thus the answer to the enumerative problem is 7776.

However, this answer is wrong! The difficulty involves one of the provisos of
Bézout’s Theorem. The parameter space for conics includes all curves of degree
2. Most conics are nonsingular, but some of them are pairs of lines, and, even
worse, some of them are just a single line counted twice, e.g.,

x2 + 2xy + y2 = 0.
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If we examine the equation of degree 6 specifying conics tangent to a specified
conic, we’ll see that all of these double lines satisfy it. Thus those five hyper-
surfaces don’t meet in a finite set of points at all! In fact they meet along the
2-dimensional locus of double lines, and at a finite number of additional points.
This problem was pointed out circa 1859 by de Jonquières (who did not pub-
lish) and in 1864 by Chasles. They also gave the correct count of 3264. We
don’t want to go into how they did this, except to say—to those who know this
notion—that they taught us to use a different parameter space, obtained by
blowing up P5 along the locus of double lines. This clever construction removes
all the intersections except those we really want to count.

Example. Let X = {Xs} denote a 2-parameter family of curves in P2, and let
Y be a fixed plane curve of degree d, of class d∨, and having e flexes. Define
the following characteristic numbers for the family X :

M := # of Xs tangent to a specified line at a specified point on it,

K := # of Xs with a specified general point as cusp,

K∨ := # of Xs with a specified general line as inflectional tangent.

In 1880, Schubert [34] gave the following formula for the number of triple con-
tacts between Y and members of X :

dK∨ + d∨K + (3d+ e)M.

The formula was verified by Roberts and Speiser in [33], and in [8] we gave an
alternative proof that uses the second monster.

When is this formula valid? Hilbert asked the same question, in a much
broader way, in the fifteenth of his famous 23 problems of 1900. Hilbert [21]
wrote:

The problem consists in this: To establish rigorously and with an
exact determination of the limits of their validity those geometrical
numbers which Schubert especially has determined on the basis of
the so-called principle of special position, or conservation of number,
by means of the enumerative calculus developed by him.

For this particular formula, the required hypotheses are quite mild; one
should assume:

• Y doesn’t contain a line.

• The general member of X doesn’t contain a line. (Special members may,
however.)

• X and Y are in general position with respect to the action of the group
PGL(3) of projective motions of the plane.
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A strategy for proving a contact formula

We’re considering a situation involving specified plane curves or families of
curves, and asking an enumerative question involving contacts among the curves
or members of the family. We’re looking for a formula whose output is the an-
swer to the question.

Here’s a strategy for finding such a formula:

• The inputs should be numbers measuring some aspect of the curves or
families. Following Chasles, we call them characteristic numbers. As Ful-
ton, Kleiman, and MacPherson say [17, p. 161], “The word ‘characteristic’
reflects the fact that these numbers suffice to characterize the family in
enumeration of contacts.” In practice, the exact sort of characteristic
numbers that are needed, and what they really measure, emerge from the
next steps in the strategy.

• Construct an appropriate parameter space.

• Develop its intersection theory. We’ll say more about this in a moment.

• Apply the intersection theory to the curves or families, obtaining a proto-
contact formula.

• Establish the enumerative significance of the inputs and outputs. In other
words, explain under what conditions they have their intended meanings.
Thus the proto-contact becomes an actual contact formula.

Intersection theory

What is intersection theory? We give a breezy explanation. It’s a type of
cohomology theory appropriate to the study of an algebraic variety X. The basic
objects are certain equivalence classes of subvarieties of X; linear combinations
of these objects are called algebraic cycle classes. If X is nonsingular, then there
is an intersection ring A∗X whose product reflects the way in which subvarieties
intersect. If V and W are nonsingular subvarieties intersecting transversally, i.e.,
if wherever they meet their tangent spaces span the entire tangent space of X,
then

[V ] · [W ] = [V ∩W ].

For both intersection theory and enumerative geometry, we recommend the
textbook [13]. The standard advanced treatise is [16]. The development of the
subject stretches back to the 19th century, and is entwined with the development
of homology and cohomology in algebraic topology.

Example. The intersection ring of n-dimensional projective space is

A∗(Pn) =
Z[h]

〈hn+1〉
,

where h is the class of a hyperplane. In this ring, the class of a hypersurface of
degree d is dh and the class of a point is hn. The ring is graded by codimension,
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and there is a degree homomorphism from the nth graded piece to the integers;
it counts, with multiplicity, the number of points, and it’s traditionally denoted
by
∫

. Here’s Bézout’s theorem:∫
(d1h) · (d2h) · · · (dnh) = d1d2 · · · dn.

Example. Recall the incidence correspondence of points and lines in the plane:

I

�� !!
P2 (P2)∨

For the intersection rings, the arrows are reversed: we can “pull back” classes.

A∗(I)

A∗(P2)

::

A∗((P2)∨)

ee

Let h ∈ A∗(P2) be the class of a line. Let h∨ ∈ A∗((P2)∨) be the class of all
lines through a specified point of P2 (any point). Then

A∗(I) =
Z[h, h∨]

〈h3, (h∨)3, h2 − hh∨ + (h∨)2〉
.

In fact, we could omit either of the first two relations, but we prefer to retain
them all in order to display the symmetry, which is a consequence of projective
duality.

Example. Suppose we have a variety X carrying a rank two bundle B. Let PB
denote the total space of the projectivization of B. Then

A∗(PB) ∼=
A∗(X)[ϕ]

〈ϕ2 − c1(B)ϕ+ c2(B)〉

where c1(B) and c2(B) are certain cycle classes on X called the Chern classes of
B. This is part of the theory of characteristic classes, explained in [27] or [13].

Example. Of course this applies to the construction of the monster tower. In all
our subsequent examples, we will work with the tower over the projective plane
P2, and we confine our remarks to that case. We denote by ik the cycle class of
the divisor at infinity:

ik = [Ik].

From the previous formula, a simple change of variables tells us this:

A∗(P2(k)) =
A∗(P2(k − 1))[ik]

〈explicit quadratic in ik〉
.
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Thus as one works out the intersection rings of the monster spaces, at each level
one needs to adjoin a single new indeterminate satisfying a single new quadratic
relation. Table 2 shows our presentation for A∗(P2(4)). To obtain a presentation
for A∗(P2(3)), simply omit the last row.

Table 2: Presentation for A∗(P2(4)).

P2 h h3

P2(1) h∨ (h∨)2 − hh∨ + h2

P2(2) i2 i2(i2 + 3h∨ − 3h)

P2(3) i3 i3(i3 + 3i2 + 4h∨ − 5h)

P2(4) i4 i4(i4 + 3i3 + 4i2 + 5h∨ − 7h)

From these presentations, one can immediately infer the ranks of the graded
pieces, for example:

rankA0(P2(3)) = 1

rankA1(P2(3)) = 4

rankA2(P2(3)) = 7

rankA3(P2(3)) = 7

rankA4(P2(3)) = 4

rankA5(P2(3)) = 1

The elements of A1(P2(3)) are called divisor classes.

A higher-order contact formula

Here we present one formula of our own, taken from our paper [8]. Suppose that
Y is a curve in the projective plane. Suppose we have a 3-parameter family of
plane curves

X ⊂ P2 × S → S;

here S is a 3-dimensional variety, and each fiber of X → S is a plane curve. We
want to know the number of members of X having quadruple contact with Y .

Now where does one look for quadruple contacts? Our answer is: on P2(3),
the third monster over the projective plane. This is a nonsingular variety of
dimension 5. The curve Y has a lift Y (3). There is a also a lift X (3) → S; for
a general member of the family we just use its lift, but for certain members the
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lifts may have additional components. (We will discuss this more carefully at
the end of the lecture.) We have

X (3) ⊂ P2(3)× S σ−→ P2(3).

According to our strategy, we need to work with the intersection ring of
P2(3). Our aim is to find

Q =

∫
σ∗[X (3)] · [Y (3)],

which we feel ought to calculate the number we want.
In addition to the divisor classes h, h∨, i2, and i3, we find it convenient

to work with a class that we call z3: it is the class of the points of P2(3)
representing the data of lines in the plane. This is a cycle class of codimension
2. The following matrix shows bases for the pieces of the intersection ring in
codimensions 1 and 4, together with all their intersection numbers:

h2h∨i2 h2h∨i3 h2i2i3 (h∨)2z3

h 0 0 0 1
h∨ 0 0 1 0
i2 0 1 −3 0
i3 1 −3 5 0 .

We will need the inverse transpose of this intersection matrix:
0 0 0 1
4 3 1 0
3 1 0 0
1 0 0 0

 .
Using the displayed bases, we define characteristic numbers for the curve Y

and the family X in a formal way, as follows. We also indicate their intended
geometric meanings:
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intended meaning

d :=

∫
h[Y (3)] degree of Y

d∨ :=

∫
h∨[Y (3)] class of Y

k2 :=

∫
i2[Y (3)] # of cusps on Y

k3 :=

∫
i3[Y (3)] # of 3rd-order cusps (y2 = x5) on Y

# of members of X having . . .

γ3 :=

∫
h2h∨i2 · σ∗[X (3)] . . . cusp at specified point with specified tangent

γ2 :=

∫
h2h∨i3 · σ∗[X (3)] . . . 3rd-order cusp at specified point with specified tangent

γ1 :=

∫
h2i2i3 · σ∗[X (3)] . . . profound cusp (y3 = x5) at specified point

λ :=

∫
(h∨)2z3 · σ∗[X (3)] . . . 3rd-order flex (y = x4) with specified tangent

From these definitions and the inverse transpose matrix, we obtain the proto-
contact formula

Q = dλ+ d∨γ1 + (3d∨ + k2)γ2 + (4d∨ + 3k2 + k3)γ3.

To finish, we need to say when the quantities appearing in it have their intended
meanings. We have done this quite thoroughly in our cited paper, but we want
to avoid the details here. Very roughly, the required assumptions are of these
types:

• Y has no line components, nor does the general member of X .

• Restrictions on the types of more complicated singularities, for both Y
and the general member of X

• General position with respect to the action of PGL(3).

Orbits and strata

In the previous section, we defined a proto-contact number

Q =

∫
P2(3)

σ∗[X (3)] · [Y (3)],

and claimed that we could elucidate conditions under which it counted the
intended contact number, namely the number of members of X having quadruple
contact with Y . Here we want to explain how one analyzes this situation and
comes up with appropriate conditions. The basic idea is that PGL(3) acts on
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P2(3), and that this action has an open dense orbit. We say that X and Y
are suitably transverse if σ(X (3)) and Y (3) meet only in the dense orbit, and
if this is a transverse intersection. The basic reference for this sort of analysis
is [23]; the theory developed there is often called Kleiman transversality theory.
With this theory in hand, we need to simply carry out dimension counts of the
intersections of σ(X (3)) and Y (3) with the various orbits.

Table 3, taken mostly from our earlier paper [8, p. 45], describes the eight
orbits of P2(3) under the action of PGL(3). Figure 29, which is a repeat of
Figure 9, show the representative germ of the orbit O(−,∞).

Table 3: The eight PGL(3)-orbits of P2(3).

Orbit Stratum Dimension Represented by Parametrization
O(0, 0) RRR 3 y = 0 x = t, y = 0
O(0,∞) RRV 3 y2 = x5 x = t2, y = t5

O(0,−) RRR 4 y = x3 x = t, y = t3

O(∞, 0) RVT 3 y3 = x4 x = t3, y = t4

O(∞,∞) RVV 3 y3 = x5 x = t3, y = t5

O(∞,−) RVR 4 y2 = x3 x = t2, y = t3

O(−,∞) RRV 4 (y − x2)2 = x5 x = t2, y = t4 + t5

O(−, ∗) RRR 5 y = x2 x = t, y = t2

y = x2

(y – x2)2 = x5

y

x
–1

1

1

Figure 29: The ramphoid cusp is a representative germ of the orbit O(−,∞).

The column on the left uses a code we developed in our enumerative work; it
describes a finer stratification than the RV T stratification that we described in
Lecture 2. This stratification takes into account not only the divisors at infinity
but also the special locus of data of lines in the plane; since PGL(3) preserves
lines, this locus is likewise preserved. Alternatively, this locus can be obtained
by observing that the incidence correspondence I can be interpreted as the first
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monster of both P2 and (P2)∨. The spaces P2(2) and (P2)∨(2) are the same, but
the two divisors at infinity are disjoint. In fact the locus of tangency to lines is
just the divisor at infinity for the monster over (P2)∨.

P2(2) = (P2)∨(2)

��
I

xx ''
P2 (P2)∨

If we compare the orbit structure with the strata associated to the two sorts
of code words, here’s what we find:

Level # of RV T strata # of 0− ∗∞ strata # of PGL(3) orbits

0 1 1 1
1 1 1 1
2 2 3 3
3 5 8 8
4 13 21 21
5 34 55 ≥ 56
6 89 144 ∞
7 233 377 ∞

Some of the values in the right column were first obtained by Oberlin College
students in unpublished work circa 1991–1995. Dan Frankowski found the value
21 and we later confirmed it. Since PGL(3) has dimension 8, there are infinitely
many orbits on P2(n), none of them dense, when n ≥ 7. Ian Robertson and
Sue Sierra, however, showed that there are infinitely many orbits even on P2(6).
We believe that the value 56 is correct; the extra orbit comes from the points
of P2(5) representing the data of nonsingular points of conics. These form the
sextactic locus, this classical terminology stems from [6].

Prolongation in families

Understanding how to lift (prolong) a family of curves is a subtle part of the
analysis, and we’d like to finish by saying a bit more about this topic. If you
consider a singular curve all by itself, the recipe for lifting says: lift at all
nonsingular points, and then take the closure. Trying this out on the pair of
coordinate axes xy = 0, we find that the lift is disconnected: it’s the disjoint
union of two lines:{

y = 0

y′ = 0
(in one chart)

⋃ {
x = 0

x′ = 0
(in another chart)

But if this curve is the central member of the family X consisting of the
curves xy = t, one should lift it first by lifting all nonsingular members and
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then taking the closure: this gives the two components we’ve already seen,
together with a third component {

x = 0

y = 0

representing the data of all directions over the origin. This component appears
because, on any nearby curve of the family, we do see all possible directions
(except the strictly horizontal and vertical). Note that the lift of the central
member fits into a nice family X (1) of lifts, whose other members are just the
usual lifts of the other curves in the family.

For precise work in algebraic geometry, one would like to demand even more:
one wants the family to be flat. This is a technical condition which gives the
best analogue of a continuous family in topology, but it carries more information:
each member of the family is a scheme, meaning that locally it is cut out by
equations. The middle component of the lift of xy = 0 within the family xy = t
is cut out by these equations: 

x2 = 0

xy = 0

y2 = 0

xy′ + y = 0.

As a point set it’s just the line x = y = 0, but the elements x and y aren’t
in the ideal we’ve just described, so as a scheme it’s a “thickened line,” and in
fact one can measure its thickness; it’s 2. The fact that the family is flat means
that when we do intersection calculations with members of the family, the result
doesn’t suddenly change when t = 0. For example, suppose one intersects the
members of the family with the class h∨ (represented by the set of all lifts of
lines through one specified point). For a nonsingular member xy = t 6= 0 one
obtains 2, which we have called the class of the curve; it’s the number of tangent
lines passing through the specified point. For the central member xy = 0 the
intersection occurs on the middle component, and it counts twice.

This kind of thinking is what led us to our most recent published project
[10], an analysis of the lifts of this family to a an arbitrary level k of the monster
tower. We give an explicit recursive recipe for deriving all the equations of X (k)
in all relevant charts of the monster, and show how they cut out a chain of 2k+1
component curves, each of which is a projective line; we call them twigs. Figure
30 depicts X (3), showing the multiplicities (thicknesses) of each twig. The end
twigs are the lifts of the two individual axes; the twig right in the middle is the
lift of the component we saw at level 1.

The thesis of Swaminathan [38] carried out a similar project, as applied to
a single-branched curve with local parametrization{

x = f(t)

y = g(t).
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4 3 5 2 5 3 4

Figure 30: The third prolongation of the nodal curve.

This was simply a topological analysis, and took no account of scheme structures
or flat families. The main result is this: one gets the same result as one does
by blowing up at an appropriate sequence of points. Let us note that one
is comparing objects that live in different ambient spaces: the prolongation
(iterated Nash blow-up) naturally lives in the monster space, whereas the curve
obtained by blowing up still lives in a surface, namely the plane blown up at
the same series of points. We intend to repeat this refined analysis for more
complicated curves in the context of algebraic geometry.
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