
Enum. geometry Contact formulas Proving a formula Int. theory Higher-order contact Orbits & strata Families

Aspects of the Monster Tower Construction:
Geometric, Combinatorial, Mechanical, Enumerative

Lecture 4: Enumerative Aspects

Susan Colley Gary Kennedy

June 2019

Susan Colley, Gary Kennedy Enumerative Aspects June 2019 1 / 44

Enum. geometry Contact formulas Proving a formula Int. theory Higher-order contact Orbits & strata Families

Table of Contents

1 Enumerative geometry

2 Contact formulas

3 Proving a contact formula

4 Intersection theory

5 Higher-order contact

6 Orbits & strata

7 Prolongation in families

Susan Colley, Gary Kennedy Enumerative Aspects June 2019 2 / 44

Enum. geometry Contact formulas Proving a formula Int. theory Higher-order contact Orbits & strata Families

Thanks to Ferran Dachs Cadefau for his preliminary talk.
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Enumerative geometry

Enumerative geometry is a branch of algebraic geometry. It is concerned
with problems of counting objects of a specified type, in situations where
one expects the answer to be finite.

We’ll give the flavor of the subject via two examples.
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Given a nonsingular cubic surface in P3 (the locus of solutions to a
degree 3 homogeneous equation in w, x, y, z), how many lines does it
contain?
Answer: 27
Since this is algebraic geometry, one ought to be asking “Over what field
is the surface defined?” The default answer in enumerative geometry is
C, the field of complex numbers.
But in this problem, the answer is correct even for a real cubic surface: it
contains 27 real lines.

(figure by Greg Egan)
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Let C be an algebraic curve of degree d in the complex projective plane.
Its class is

d∨ := the number of tangents to C through a general point of P2.

For a nonsingular curve d∨ = d(d − 1), but for a singular curve we need
correction terms.
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Suppose that C has (ordinary) nodes and cusps, but no more complicated
singularities. Then

d∨ = d(d − 1)− 2δ − 3κ,

where δ is the number of nodes and κ is the number of cusps.
If we define two additional quantities

β := the number of bitangent lines to C,

ϕ := the number of inflection points (flexes) on C,

then there are three additional equations:

ϕ = 3d(d − 2)− 6δ − 8κ;

d = d∨(d∨ − 1)− 2β − 3ϕ;

κ = 3d∨(d∨ − 2)− 6β − 8ϕ.
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Collectively, the four equations are known as the Plücker formulas.

According to Kleiman (“The enumerative theory of singularities”), the
nonsingular case dates back to a 1756 anonymous work on plane curves,
and the idea of having “correction terms” for singularities was apparently
due to Poncelet. The formulas above — and the theory of projective
duality that facilitates obtaining them — are due to Plücker.
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To discover and prove such formulas, one works with an appropriate
parameter space.

Its points represent objects of a certain type.
Moving continuously through the space has the effect of continuously
varying the object.

If you’re wondering about lines on a cubic surface, then it’s natural to
work with the Grassmannian of lines in P3.

To understand the Plücker formulas, you want to work with the first
monster space over the projective plane, which is also the total space of
the projectivized tangent bundle:

P2(1) = PTP2.
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Classically this space was understood as the incidence correspondence of
points and lines:

I = {(p, `) : p ∈ `}.

This point of view reflects an understanding of projective duality: the
lines in P2 are naturally parametrized by another projective plane (P2)∨,
and the incidence correspondence naturally maps to both planes.

I

�� !!
P2 (P2)∨
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Given our algebraic curve C in P2, we can lift it up to I and then project
it down to (P2)∨, obtaining its dual curve C∨.

I

�� !!
P2 (P2)∨

Under this beautiful duality, the nodes on C correspond to bitangent lines
on C∨, and vice versa. The cusps on C correspond to flexes on C∨, and
vice versa. Furthermore, the class of C is the degree of C∨, and vice
versa.

Thus the Plücker formulas record an elaborate interplay between the
geometry of the two curves, via the intermediary I.
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Contact formulas

To establish our conventions:

Transverse intersection Tangency Osculation

1st-order contact 2nd-order contact 3rd-order contact
(Ordinary contact)

Data agree to order 0. Data agree to order 1. Data agree to order 2.
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Bézout’s Theorem says that two plane curves of degrees d and e meet in
de points.
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To have a completely correct statement, we need to invoke several
provisos:

We’re working over C.
To capture possible “intersections at infinity,” we’re working in the
projective plane.
We must assume that the two curves don’t have any components in
common, e.g., that they don’t both contain the same line.
If necessary, we count intersections with multiplicity, e.g., a point where
the curves are tangent should be counted twice.

There is a natural generalization to hypersurfaces in projective space Pn:
the intersection of hypersurfaces of degree d1, d2, . . . , dn consists of
d1d2 · · · dn points; there are similar (somewhat more elaborate) provisos.
This is also called Bézout’s Theorem.
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Given five general conics in the plane, how many conics are tangent to
each of them?

The first answer to this was given in 1848 by J. Steiner, as follows.

The equation of a conic

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

uses six coefficients. Thus the parameter space for conics is P5.

The condition of being tangent to some specified conic is an equation of
degree 6 in A, B, C, D, E, F, i.e., it defines a hypersurface of this degree
in P5.

Since there are five specified conics, this gives us five hypersurfaces.

According to Bézout’s Theorem, they intersect in 65 = 7776 points.
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However, this answer is wrong!

The parameter space for conics includes all curves of degree 2. Most
conics are nonsingular, but some of them are pairs of lines, and, even
worse, some of them are just a single line counted twice, e.g.,

x2 + 2xy + y2 = 0.

If we examine the equation of degree 6 specifying conics tangent to a
specified conic, we’ll see that all of these double lines satisfy it.

Thus those five hypersurfaces don’t meet in a finite set of points at all! In
fact they meet along the 2-dimensional locus of double lines, and at a
finite number of additional points.
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This problem was pointed out circa 1859 by de Jonquières and in 1864
by Chasles. They also gave the correct count of 3264.
We don’t want to go into how they did this, except to say — to those who
know this notion — that they taught us to use a different parameter
space, obtained by blowing up P5 along the locus of double lines. This
clever construction removes all the intersections except those we really
want to count.

(cartoon by Eduardo Casas-Alvero)
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Let Y be a fixed plane curve of degree d, of class d∨, and having e flexes.

Let X = {Xs} denote a 2-parameter family of curves in P2. Define the
following characteristic numbers for the family X :

M := # of Xs tangent to a specified line at a specified point on it,

K := # of Xs with a specified general point as cusp,

K∨ := # of Xs with a specified general line as inflectional tangent.

In 1880, Schubert gave the following formula for the number of triple
contacts between Y and members of X :

dK∨ + d∨K + (3d + e)M
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When is this formula valid?

Hilbert asked the same question, in a much broader way, in the fifteenth
of his famous 23 problems of 1900.

The problem consists in this: To establish rigorously and with an
exact determination of the limits of their validity those geometrical
numbers which Schubert especially has determined on the basis of
the so-called principle of special position, or conservation of num-
ber, by means of the enumerative calculus developed by him.

For this particular formula, the required hypotheses are quite mild; one
should assume:

Y doesn’t contain a line.
The general member of X doesn’t contain a line.
X and Y are in general position with respect to the action of the group
PGL(3) of projective motions of the plane.
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A strategy for proving a contact formula

We’re considering a situation involving specified plane curves or families
of curves, and asking an enumerative question involving contacts among
the curves or members of the family.

We’re looking for a formula whose output is the answer to the question.
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Here’s a strategy for finding such a formula:
The inputs should be numbers measuring some aspect of the curves or
families, called characteristic numbers. (In practice, the exact sort of
characteristic numbers that are needed, and what they really measure,
emerge from the next steps in the strategy.)
Construct an appropriate parameter space.
Develop its intersection theory. (We’ll say more about this in a moment.)
Apply the intersection theory to the curves or families, obtaining a
proto-contact formula.
Establish the enumerative significance of the inputs and outputs. In other
words, explain under what conditions they have their intended meanings.
Thus the proto-contact becomes an actual contact formula.

Susan Colley, Gary Kennedy Enumerative Aspects June 2019 21 / 44

Enum. geometry Contact formulas Proving a formula Int. theory Higher-order contact Orbits & strata Families

Intersection theory

Intersection theory is a type of cohomology theory appropriate to the
study of an algebraic variety X.

The basic objects are certain equivalence classes of subvarieties of X;
linear combinations of these objects are called algebraic cycle classes.

The development of the subject stretches back to the 19th century, and is
entwined with the development of homology and cohomology in
algebraic topology.
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If X is nonsingular, then there is an intersection ring A∗X whose product
reflects the way in which subvarieties intersect.

If V and W are nonsingular subvarieties intersecting transversally, i.e., if
wherever they meet their tangent spaces span the entire tangent space of
X, then

[V] · [W] = [V ∩W].
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The intersection ring of n-dimensional projective space is

A∗(Pn) =
Z[h]
〈hn+1〉

where h is the class of a hyperplane.

In this ring, the class of a hypersurface of degree d is dh and the class of
a point is hn.

The ring is graded by codimension, and there is a degree homomorphism
from the nth graded piece to the integers; it counts, with multiplicity, the
number of points, and it’s traditionally denoted by

∫
.

Here’s Bézout’s theorem:∫
(d1h) · (d2h) · · · (dnh) = d1d2 · · · dn.
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Recall the incidence correspondence of points and lines in the plane. For
the intersection rings, the arrows are reversed: we can “pull back”
classes.

A∗(I)

A∗(P2)

::

A∗((P2)∨)

ee

Let h ∈ A∗(P2) be the class of a line. Let h∨ ∈ A∗((P2)∨) be the class of
all lines through a specified point of P2 (any point). Then

A∗(I) = Z[h, h∨]
〈h3, (h∨)3, h2 − hh∨ + (h∨)2〉

.
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Suppose we have a variety X carrying a rank two bundle B. Let PB
denote the total space of the projectivization of B. Then

A∗(PB) ∼=
A∗(X)[ϕ]

〈ϕ2 − c1(B)ϕ+ c2(B)〉

where c1(B) and c2(B) are certain cycle classes on X called the Chern
classes of B and ϕ is the tautological class c1(OPB(1)).
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For the kth monster over the plane, let ik denote the cycle class of the
divisor at infinity: ik = [Ik].

Then

A∗(P2(k)) =
A∗(P2(k − 1))[ik]

〈explicit quadratic in ik〉
.
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This table shows a presentation for A∗(P2(4)):

P2 h h3

P2(1) h∨ (h∨)2 − hh∨ + h2

P2(2) i2 i2(i2 + 3h∨ − 3h)

P2(3) i3 i3(i3 + 3i2 + 4h∨ − 5h)

P2(4) i4 i4(i4 + 3i3 + 4i2 + 5h∨ − 7h)
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A higher-order contact formula

Here we present one formula of our own, taken from a 1991 paper.
Suppose

Y is a curve in the projective plane.
We have a 3-parameter family of plane curves:

X ⊂ P2 × S→ S

We want to know the number of members of X having quadruple contact
with Y .
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Now where does one look for quadruple contacts? Our answer is: on
P2(3), the third monster over the projective plane. This is a nonsingular
variety of dimension 5.
The curve Y has a lift Y(3).
There is a also a lift X (3)→ S; for a general member of the family we
just use its lift, but for certain members the lifts may have additional
components. We have

X (3) ⊂ P2(3)× S σ−→ P2(3).

According to our strategy, we need to work with the intersection ring of
P2(3). Our aim is to find

Q =

∫
σ∗[X (3)] · [Y(3)],

which we feel ought to calculate the number we want.
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In addition to h, h∨, i2, and i3, we work with a class

z3 = [locus of points of P2(3) representing the data of lines].

Pairing of A1(P2(3)) and A4(P2(3))

h2h∨i2 h2h∨i3 h2i2i3 (h∨)2z3

h 0 0 0 1
h∨ 0 0 1 0
i2 0 1 −3 0
i3 1 −3 5 0 .
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Characteristic numbers
intended meaning

d :=

∫
h[Y(3)] degree of Y

d∨ :=

∫
h∨[Y(3)] class of Y

k2 :=

∫
i2[Y(3)] # of cusps on Y

k3 :=

∫
i3[Y(3)] # of 3rd-order cusps (y2 = x5) on Y

# of members of X having . . .

γ3 :=

∫
h2h∨i2 · σ∗[X (3)] . . . cusp at specified point with specified tangent

γ2 :=

∫
h2h∨i3 · σ∗[X (3)] . . . 3rd-order cusp at spec.’d point with spec.’d tangent

γ1 :=

∫
h2i2i3 · σ∗[X (3)] . . . profound cusp (y3 = x5) at specified point

λ :=

∫
(h∨)2z3 · σ∗[X (3)] . . . 3rd-order flex (y = x4) with specified tangent
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From these definitions and the inverse transpose matrix, we obtain the
proto-contact formula

Q = dλ+ d∨γ1 + (3d∨ + k2)γ2 + (4d∨ + 3k2 + k3)γ3.

When do the quantities appearing in it have their intended meanings?
The required assumptions are of these types:

Y has no line components, nor does the general member of X .
Restrictions on the types of more complicated singularities, for both Y and
the general member of X .
General position with respect to the action of PGL(3).
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Orbits and strata

PGL(3) acts on P2(3), and this action has an open dense orbit.

In the situation just considered, we say that X and Y are suitably
transverse if σ(X (3)) and Y(3) meet only in the dense orbit, and if this
is a transverse intersection.

The basic tool for this sort of analysis is Kleiman transversality theory.
With this theory in hand, we need to simply carry out dimension counts
of the intersections of σ(X (3)) and Y(3) with the various orbits.
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The eight orbits of P2(3) under the action of PGL(3)
Orbit Stratum Dimension Represented by Parametrization
O(0, 0) RRR 3 y = 0 x = t, y = 0
O(0,∞) RRV 3 y2 = x5 x = t2, y = t5

O(0,−) RRR 4 y = x3 x = t, y = t3

O(∞, 0) RVT 3 y3 = x4 x = t3, y = t4

O(∞,∞) RVV 3 y3 = x5 x = t3, y = t5

O(∞,−) RVR 4 y2 = x3 x = t2, y = t3

O(−,∞) RRV 4 (y− x2)2 = x5 x = t2, y = t4 + t5

O(−, ∗) RRR 5 y = x2 x = t, y = t2

y = x2

(y – x2)2 = x5

y

x
–1

1

1
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The column on the left uses a code we developed in our enumerative
work; it describes a finer stratification than the RVT stratification that we
described in Lecture 2. This stratification takes into account not only the
divisors at infinity but also the special locus of data of lines in the plane;
since PGL(3) preserves lines, this locus is likewise preserved. It can also
be interpreted as the “dual divisor at infinity.”

P2(2) = (P2)∨(2)

��
I

ww ''
P2 (P2)∨
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Level # of RVT strata # of 0− ∗∞ strata # of PGL(3) orbits
0 1 1 1
1 1 1 1
2 2 3 3
3 5 8 8
4 13 21 21
5 34 55 ≥ 56
6 89 144 ∞
7 233 377 ∞
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Prolongation in families

Understanding how to lift (prolong) a family of curves is a subtle part of
the analysis.

If you consider a singular curve all by itself, the recipe for lifting says:
lift at all nonsingular points, and then take the closure.
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Trying this out on the pair of coordinate axes xy = 0, we find that the lift
is disconnected: it’s the disjoint union of two lines:{

y = 0
y′ = 0

(in one chart)
⋃ {

x = 0
x′ = 0

(in another chart)

But if this curve is the central member of the family X consisting of the
curves xy = t, one should lift it first by lifting all nonsingular members
and then taking the closure: this gives the two components we’ve already
seen, together with a third component{

x = 0
y = 0

representing the data of all directions over the origin.
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This component appears because, on any nearby curve of the family, we
do see all possible directions (except the strictly horizontal and vertical).

This lift of the central member fits into a nice family X (1) of lifts, whose
other members are just the usual lifts of the other curves in the family.
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For precise work in algebraic geometry, one would like to demand even
more: one wants the family to be flat. This is a technical condition which
gives the best analogue of a continuous family in topology, but it carries
more information: each member of the family is a scheme, meaning that
locally it is cut out by equations.

The middle component of the lift of xy = 0 within the family xy = t is
cut out by these equations: 

x2 = 0
xy = 0
y2 = 0
xy′ + y = 0.
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x2 = 0
xy = 0
y2 = 0
xy′ + y = 0.

As a point set it’s just the line x = y = 0.

But the elements x and y aren’t in the ideal we’ve just described, so as a
scheme it’s a “thickened line,” and in fact one can measure its thickness;
it’s 2.

The fact that the family is flat means that when we do intersection
calculations with members of the family, the result doesn’t suddenly
change when t = 0.
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For example, suppose one intersects the members of the family with the
class h∨ represented by the set of all lifts of lines through one specified
point).

For a nonsingular member xy = t 6= 0 one obtains 2, which we have
called the class of the curve; it’s the number of tangent lines passing
through the specified point.

For the central member xy = 0 the intersection occurs on the middle
component, and it counts twice.
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Lifting the same family to a higher level, what happens? We analyze this
in a 2018 paper. We give an explicit recursive recipe for deriving all the
equations of X (k) in all relevant charts of the monster, and show how
they cut out a chain of 2k + 1 component curves, each of which is a
projective line; we call them twigs.

Here’s a picture of X (3), showing the multiplicities (thicknesses) of each
twig. The end twigs are the lifts of the two individual axes; the twig right
in the middle is the lift of the component we saw at level 1.

4 3 5 2 5 3 4
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