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ABSTRACT

The optical and electronic properties of two-dimensional (2D) materials make them attractive for a variety of
applications in quantum information processing, solar-energy harvesting, and catalysis. However, the dynamics
of electrons, holes, and excitons formed after photo-excitation are often complex and involve many states that
are optically dark, making their characterization with optical spectroscopy alone difficult. We present our recent
work imaging the quantum states of 2D materials and their heterostructures in momentum space using time-
and angle-resolved photoemission. A unique combination of tunable ultrashort extreme ultraviolet (XUV) pulses
with 61 MHz repetition rate and time-of-flight momentum microscopy (ToF k-mic) enables the parallel recording
of electron dynamics in all states across the full Brillouin zone after perturbative excitation. We will present
results on pseudospin dynamics in graphene, valley circular dichroism in monolayer WS2, and hybridized excitons
in MoSe2/WS2 bilayers.

Keywords: Photoelectron spectroscopy, high-order harmonic generation, frequency combs, momentum mi-
croscopy.

1. INTRODUCTION

The language of condensed-matter physics and quantum materials lives in momentum space, both conceptually
and in computational methods. Even for complex highly-correlated systems that are not described well with
one-particle pictures, we formulate the problem and the relevant interactions in a momentum-space basis using
each participating quasiparticle’s energy, momentum, and spin as quantum numbers.

Spectroscopy using ultrashort laser pulses can track dynamics after excitation with light, and in principle this
can be used to dissect the complex interactions between spin, lattice, charge, and valley degrees of freedom in
quantum materials.1 However, unfortunately most ultrafast spectroscopy observables involve drastic integrations
over momentum and spin which reduces their information content and obscures their meaning. Most ultrafast
spectroscopy methods are also blind to “dark states” that cannot be probed due to selection rules.

For characterizing ground states of quantum materials, angle-resolved photoelectron spectroscopy (ARPES)
has emerged as the premier method for momentum-space measurements, and is sometimes called the “gold
standard” for measuring electronic structure. From a clean surface, the photoemission process preserves an
electron’s momentum parallel to the surface, k∥, such that measuring the angle a photoelectron is emitted from
the surface and its kinetic energy directly reports on the electron’s energy and momentum in the solid. More
formally, ARPES measurements give the one-particle spectral function, which reduces to the band structure ε(k)
in the absence of strong interactions.2

The extension of ARPES to the time domain using pump/probe methods with ultrashort pulses then seems
quite natural and obvious: To understand non-trivial excited states or complicated dynamics initiated by optical
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excitation, use the “gold standard” observable. However, the implementation of time-resolved ARPES (tr-
ARPES) has always been very challenging. The fundamental issue at the root of all difficulties is data rate.
Adding pump pulses to the ARPES experiment adds 4 dimensions to the data set, namely pump-probe delay,
pump wavelength, pump fluence, and pump polarization. Furthermore, the signal size in an excited-state ARPES
measurement is inherently much smaller than in ground-state measurements, since only a fraction of the sample’s
electrons are excited by the pump pulse. Together, these factors create a severe data-rate challenge for tr-ARPES
experiments, and this severe data rate problem has forced practitioners of tr-ARPES to make correspondingly
severe compromises in order to perform experiments. For example, the highest performing tr-ARPES setups in
terms of sensitivity and resolution achieve this using probe pulses with 6 eV photon energy,3,4 which are easier to
produce than the extreme-ultraviolet (XUV) photons used at synchrotrons and produce less secondary electrons,
but also only give access to just a tiny fraction of the Brillouin zone near Γ.

The data rate in a time-resolved ARPES experiment can be expressed using the simple formula

Data Rate ∝ (repetition rate) × (e− collection efficiency) × (pump fluence) × (probe fluence) (1)

The physics of the sample dynamics and XUV photoemisson present intrinsic limitations on the last two factors.
The probe fluence, or number of XUV photons per pulse that can be applied to the sample, is limited by the
so-called vacuum space charge effect, wherein the mutual repulsion of photoelectrons created at the surface can
cause severe broadening, shifts, and other distortions of the photoelectron spectrum.5–7 ∗ The pump fluence
is dictated by the sample physics under study. To study laser-induced phase transitions, for example ultrafast
demagnetization12 or structural phase transitions,13 strong pump fluences in the mJ/cm2 regime can be used,
which produces large and easily discernible changes in the sample’s electronic structure. In contrast, to study
the intrinsic quasi-particle dynamics of optically excited electrons, holes, and/or excitons as might occur in
optoelectronic devices, excitation fluences must be in the ∼µJ/cm2 regime or smaller,1,14 giving signal sizes
orders of magintude lower. Indeed, for this reason, most tr-ARPES studies using XUV photons have been
restricted to studying strongly excited samples until recently.

The experimentalist has more control over the first two factors of repetition rate and electron collection
efficiency, and recently large gains have been achieved on both. High repetition rate ultrashort XUV pulses
suitable for tr-ARPES can be achieved using high harmonic generation (HHG) of femtosecond pulse trains with
high average power. HHG sources for ARPES with repetition rates ≳1 MHz have been achieved either using
high-power Yb-based laser systems and “single-pass” HHG with tight focusing15–18 or the technique of cavity-
enhanced high harmonic generation (CE-HHG),5,19 in which harmonics are produced in a resonant enhancement
cavity.20,21 Single-pass systems can operate with commercial lasers and also commercial optical parametric
amplifiers for generating tunable pump pulses. CE-HHG offers higher repetition rates and photon energies, and
can be accomplished with a laser with lower average power and thus less cost, however it requires expertise in
frequency combs and laser stabilization, and creating tunable pump pulses is less straightforward. Given these
subtleties, practitioners in the field continue to develop new instruments using both approaches.

In contrast to the different approaches taken for MHz HHG light sources, most high-performance tr-ARPES
systems have now adopted time-of-flight momentum microscopy (ToF k-mic)22,23 for the photoelectron analyzer.
ToF k-mic provides full 2π collection efficiency and detection of the full (kx, ky, E) data cube in parallel. Fur-
thermore, by inserting an aperture in a real-space image plane of the microscope, photoelectron signals from a
micron-sized region of interest (ROI) on the sample surface can be selected, enabling micro-ARPES even with
large XUV spot sizes.

Over the past 10 years, at Stony Brook we have developed a unique beamline for high-performance tr-
ARPES measurements combining cavity-enhanced HHG and ToF k-mic, with data rates more than 4 orders of
magnitude larger than what could be achieved just a few years ago. With this instrument, informative ground-
state photoemission signals covering the full Brillouin zone can now be acquired in seconds and pump-probe

∗The space charge constraints are particularly acute using the new generation of photoelectron analyzers based on
momentum microscopy, restricting photoemission to just 10s of electrons per pulse at the sample for high resolution
work,8–10 although this can be improved somewhat for experiments using high-energy photons in the x-ray regime with
new analyzer front lens configurations.11
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experiments in the pertubative excitation regime in just a few minutes. This high data rate enables performing
experiments under a wide range of conditions to explore the large parameter space of pump/probe ARPES on
non-trivial systems, as exemplified by ref. 24, where we reported the first momentum-space observations of valley
circular dichroism in a monolayer material in a series of systematic pump/probe measurements, all taken in the
perturbative excitation limit with pump fluences < 10 µJ/cm2, even from an exfoliated flake only 10 microns in
size!

In this article we describe this unique instrumentation and give several exampes of measurements in 2D
materials produced by exfoliation. Section 2 gives an overview of the Stony Brook ARPES beamline, including
the endstation and time-of-flight momentum microscope. Section 3 describes momentum-space measurements of
valley circular dichroism in monolayer WS2. Section 4 describes momentum-space visualization of pseudospin
selection rules in monolayer graphene, and section 5 describes experiments in transition-metal dichalcogenide
(TMD) heterostructures.

2. THE STONY BROOK TIME-RESOLVED ARPES BEAMLINE

The Stony Brook tr-ARPES beamline is shown in figure 1. An 80 W, 155 fs frequency comb laser25 with a
repetition rate of 61 MHz and a center wavelength of 1.035 µm (hν = 1.2 eV) is passively amplified in a six-
mirror enhancement cavity with a 1% transmission input coupler. Typical intracavity powers for generating
harmonics range from 5-11 kW, depending on the generating gas and desired harmonic spectrum. We lock the
laser to the cavity using a two-point Pound-Drever-Hall lock as described in refs. 26,27. Harmonics are generated
at an intracavity focus and reflected from a sapphire wafer placed at Brewster’s angle for the resonant 1.035 µm
light. When generating harmonics, we flow a mix of ozone and O2 from a commercial ozone generator on each
intracavity optic to prevent hydrocarbon contamination, allowing continuous operation.

The outcoupled harmonics are collimated by an f = 350 mm toroidal mirror at 3 degrees grazing angle (TM1)
that forms the first part of a pulse-preserving monochromator similar to the design of Frassetto et al.28 The
harmonics then strike a motorized grating at a 4 degree grazing angle and are refocused by a second f = 350
mm toroidal mirror (TM2) at an adjustable slit. The exit slit plane of the monochromator is 1:1 imaged to
the sample using another 350 mm focal length toroid at 3 degrees grazing angle (TM3). Photoelectrons from
the sample are imaged to a delay-line detector (DLD) using a custom time-of-flight momentum microscope with

Figure 1. The Stony Brook tr-ARPES beamline. High-order harmonics are generated in a gas jet (GJ) at the focus
of a six-mirror enhancement cavity and reflected out of the cavity using a sapphire plate at Brewster’s angle (BP). A
pulse-preserving monochromator consisting of two toroidal mirrors (TM1 and TM2), an off-plane diffraction grating, and
an exit slit, selects a single harmonic for delivery to a sample at the focus of time-of-flight momentum microscope. More
details in the text.
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adjustable apertures at both real-space and momentum-space image planes for selecting regions of interest to
pass to the detector in both real and momentum space.

We routinely attain a flux of ∼1 × 1011 photons/second delivered to the sample in a single harmonic and
spot sizes less than 30 µm. This flux produces > 109 photoelectrons/second (500 pA) at the sample, or 10s of
electrons per pulse. Under these conditions, broadening of the photoelectron spectra due to space charge is less
than 50 meV.9 We use two grids in front of the DLD to prevent low-energy electrons (mostly secondaries) from
reaching the detector, reducing the count rate at the detector to less than 106 electrons per second for electrons
near or above the Fermi level. Including ToF resolution, voltage fluctuations, and dispersion of the high-pass
filter, we have obtained an overall resolution of 100 meV.9 The time resolution, measured via cross-correlation
of pump and probe pulses using fast-relaxing tr-ARPES signals, is 200 fs FWHM.

3. VALLEY CIRCULAR DICHROISM IN MONOLAYER WS2

The discovery of valley-selective circular dichroism in monolayer TMDs29–36 has sparked enormous interest in
these materials as platforms for novel optoelectronic devices. Right (σ+) and left (σ−) circularly polarized light
selectively excites interband transitions in the inequivalent K+ and K− valleys, respectively, where the band
extrema are located.37,38 Strong Coulomb forces and spin-orbit coupling in these materials yield tightly bound
exciton states of definite spin character, with the potential for long-lived, spin-valley locked excitons.39–44 Many
optical spectroscopy techniques have been employed to investigate valley lifetimes and depolarization mechanisms
in monolayer TMDs, including photoluminescence,33,45–48 differential transmission,49,50 time-resolved Kerr and
Faraday rotation,51–58 and multidimensional spectroscopies,59–63 among others.64 Valley polarization lifetimes
ranging from a few picoseconds46,47,50 to hundreds49,52,54 or tens62 of femtoseconds have been reported, de-
pending on the system under study and the spectroscopy method. Interpreting this body of work has been the
subject of considerable debate.50,62,65–68 In particular, it has been debated whether the dominant mechanism of
valley depolarization is due to the direct or exchange terms of the Coulomb-interaction Hamiltonian that couples
excitons in different valleys.50,59,68–78

We set out to resolve this debate with momentum-resolved measurements as illustrated in figure 2a). Pump
pulses with hν = 2.4 eV and variable polarization illuminate an exfoliated monolayer WS2 sample followed by
p-polarized probe pulses with hν = 25.2 eV. The monolayer WS2 sample is isolated from the silicon substrate
via a ∼10 nm thick hexagonal boron nitride (hBN) layer. Figure 2b) shows the raw momentum-space signal,
with signals in the K+ and K− valleys recorded in parallel using the ToF k-mic. Figure 2c) shows time-resolved
traces of the signals in the K+ and K− valleys after excitation with σ+-polarized light. We observed rapid
depolarization within 50 fs. Furthermore, comparing the energy and momentum distributions in the K+ and

c)b)a)

Figure 2. Monolayer WS2 results. a) Experimental setup. A monolayer WS2 sample supported on ∼10 nm thick hBN
is illuminated by 517 nm pump pulses with variable polarization (green) and p-polarized XUV pulses. Photoelectrons are
collected with the time-of-fight momentum microscope (gray). b) Raw momentum-space exciton signals after photoex-
citation. c) Valley-resolved signal vs. pump/probe delay recorded with circularly polarized light. The σ+ polarization
preferentially excites the K+ valleys, but excitons rapidly depolarize within 50 fs. Figure is adapted from ref. 24, where
more data and detailed analysis can be found.
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K− valleys, we observe conservation of energy and momentum in the valley depolarization process,24 consistent
with the intervalley Coulomb-exchange driven depolarization mechanism and inconsistent with depolarization
driven by the Coulomb-direct interaction.

4. PSEUDOSPIN DYNAMICS IN GRAPHENE

The first 2D material realized was graphene, and monolayer and few-layer graphene still play a major role in 2D
materials research. In optoelectronics, the broadband absorption and ultrafast relaxation of excited electrons in
graphene make it an ideal material for saturable absorbers in mode-locked lasers,79 and the long spin lifetime
make it attractive for spintronic devices.80

Graphene presents an additional quantum number called pseudospin. The pseudospin ϕ refers to the relative
phase of the Bloch wavefunction on the two equivalent carbon sublattices A and B in its honeycomb lattice via
ψ = ψA +eiϕψB . It also corresponds to the angular position of Bloch states around the K points in the Brillouin
zone, as illustrated in figure 3b). Photoexcitation of electrons from the valence band to the conduction band
creates pseudospin polarization via the k-dependence (and thus ϕ-dependence) of the optical matrix elements.81

This phenomena has been previously studied using optical spectroscopy82–84 and also using tr-ARPES.85,86

However, the previous tr-ARPES studies were carried out on either graphite or heavily doped graphene, such
that there is a large occupied density of states at the Fermi level, and also with very high excitation fluence, such
that all observed dynamics and distributions are dominated by rapid electron-electron scattering/thermalization
and pseudospin anisotropy is rapidly lost. In contrast, at lower excitation fluence in neutral graphene, complete
thermalization of the electrons is slowed and a non-thermal pseudospin-polarized distribution is expected to
persist longer.87

In our measurements with a fluence of only 45 µJ/cm2, and in neutral (i.e., undoped) graphene, we observe
a nonthermal distribution of electrons that persists within our 200 fs instrument response time. Figure 3 shows
momentum distributions of pseudospin-polarized electrons around one of the K points excited by 2.4 eV photons
polarized in either the x or y direction, along with simulations of the signal using band structure and matrix
elements for both pump and probe steps of the experiment derived from tight binding theory.81,88 Inclusion of the
k-dependence of the probe photoemission matrix element is essential in modeling the signals. Overall excellent
agreement is seen between our experiment and this simple theory, indicating the nascent excited distribution

a) b)

c)

d) e)

f)

𝜙

Figure 3. Pseudospin polarization in graphene. a) Raw experimental momentum-space image of electrons around a
graphene K point between 1.05 and 1.21 eV above the Fermi level after excitation with 2.4 eV photons polarized in the y
direction. b) Simulation of the signal using band structures and matrix elements. c) Comparison of the angle-dependent
signals between theory and experiment. d)-f) Same as a)-c) except for x-polarized excitation.
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at ε = hν/2 above the Fermi level persists for a substantial fraction of our instrument response time. Further
analysis of this data including the energy- and fluence-dependence of the anisotropy will appear in a forthcoming
publication.89

5. EXCITON STATES IN TWISTED HETEROSTRUCTURES

Vertically stacking heterobilayers of TMDs with a finite twist angle leads to the emergence of new, tunable
excitonic properties due to the moiré superlattice that is formed. MoSe2/WS2 heterobilayers present a special
case among TMD heterobilayers as the conduction band alignment of the two layers is nearly degenerate, leading
to hybridization between intralayer and spatially-indirect interlayer excitons. Optical measurements have shown
emerging angle- and temperature-dependent features in MoSe2/WS2 structures proposed to correspond to the
formation of hybridized excitons,90,91 but these momentum-integrated measurements do not allow for the direct
observation of electron sharing between the two layers.

While small twist angles θ and 60◦−θ are expected to lead to strong hybridization due to the overlap of KMoSe2

and KWS2 in momentum space, larger angles exhibit weaker or absent spectral signatures of hybridization.91

However, recent work has suggested that near 40◦ twist angle should exhibit a revival of hybridization due to
the moiré reciprocal lattice wavevector becoming commensurate with the momentum mismatch of KMoSe2 and
K ′

WS2
.90

The electron sharing between the two layers (or lack thereof) and the dynamics of exciton formation can
be directly visualized with our high-performance tr-ARPES instrument. Figure 4 shows exciton signals in
MoSe2/WS2 heterobilayers at twist angles of a) 40.2 ± 0.9◦ and b) 58.0 ± 0.3◦ at 90 K. In 40.2◦ twisted
MoSe2/WS2, our measurements resolve the occupation of both of the monolayer Brillouin zones up to few ps
timescales. The dynamics suggest that intralayer MoSe2 excitons rather than hybridized excitons ultimately
persist at longer timescales. In the 58.0◦ twisted heterobilayer, we observe the prominent formation of higher
energy K −Q dark excitons in the interior of the Brillouin zone.

Figure 4. MoSe2/WS2 bilayer results. Exciton signal measured at 90K for MoSe2/WS2 twisted heterobilayers at twist
angles of a) 40.2◦ (hνprobe = 27.6 eV) and b) 58.0◦ (hνprobe = 25.2 eV). Red (blue) dashed lines indicate the MoSe2 (WS2)
Brillouin zone.

6. CONCLUSION

The combination of MHz-repetition rate fs XUV pulses from HHG and ToF k-mic enables tr-ARPES measure-
ments that are qualitatively different than what was possible just a few years ago. The two main qualitative
differences are 1) tr-ARPES experiments can now be performed with excitation fluences in the few µJ/cm2

regime, such that the intrinsic quasi-particle dynamics of materials after perturbative excitation can now be
studied, and 2) tr-ARPES experiments can now be performed on micron-sized samples, such as those produced
via exfoliation, dramatically expanding the types of materials that can be studied. We have illustrated what
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can be done in this qualitatively new regime here with our results on bound excitons in monolayers and bilayers
and there is additionally much work from other research groups in this area as well.16,92–94 Together, this work
represents a new paradigm in ultrafast spectroscopy, wherein electronic wave functions and electronic motion are
directly visualized in momentum space.
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[18] Keunecke, M., Möller, C., Schmitt, D., Nolte, H., Jansen, G. S. M., Reutzel, M., Gutberlet, M., Halasi, G.,
Steil, D., Steil, S., and Mathias, S., “Time-resolved momentum microscopy with a 1 mhz high-harmonic
extreme ultraviolet beamline,” Review of Scientific Instruments 91(6), 063905 (2020).

[19] Mills, A. K., Zhdanovich, S., Na, M. X., Boschini, F., Razzoli, E., Michiardi, M., Sheyerman, A., Schneider,
M., Hammond, T. J., Süss, V., Felser, C., Damascelli, A., and Jones, D. J., “Cavity-enhanced high harmonic
generation for extreme ultraviolet time- and angle-resolved photoemission spectroscopy,” Review of Scientific
Instruments 90(8), 083001 (2019).

[20] Mills, A. K., Hammond, T. J., Lam, M. H. C., and Jones, D. J., “XUV frequency combs via femtosecond
enhancement cavities,” J. Phys. B: At., Mol. Opt. Phys. 45(14), 142001 (2012).
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Soubatch, S., Kumpf, C., Bocquet, F. C., Tautz, F. S., and Höfer, U., “Tracing Orbital Images on Ultrafast
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