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Abstract

In large-scale distributed linear transform prob-
lems, coded computation plays an important role
to reduce the delay caused by slow machines.
However, existing coded schemes could end up
destroying the significant sparsity that exists in
large-scale machine learning problems, and in
turn increase the computational delay. In this
paper, we propose a coded computation strategy,
referred to as diagonal code, that achieves the opti-
mum recovery threshold and the optimum compu-
tation load. Furthermore, by leveraging the ideas
from random proposal graph theory, we design
a random code that achieves a constant compu-
tation load, which significantly outperforms the
existing best known result. We apply our schemes
to the distributed gradient descent problem and
demonstrate the advantage of the approach over
current fastest coded schemes.

1 Introduction

In this paper, we consider a distributed linear transformation
problem, where we aim to compute y = Ax from input
matrix A € R™*? and vector x € R’. This problem is
the key building block in machine learning and signal pro-
cessing problems, and has been used in a large variety of
application areas. Optimization-based training algorithms
such as gradient descent in regression and classification
problems and backpropagation algorithms in deep neural
networks, require the computation of large linear transforms
of high-dimensional data. It is also the critical step in the
dimensionality reduction techniques such as principal com-
ponent analysis and linear discriminant analysis. Many such
applications have large-scale datasets and massive compu-
tational tasks that force practitioners to adopt distributed
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computing frameworks such as Hadoop [Dean and Ghe/{
mawatl, 2008]] and Spark [Zaharia et al.,[2010]] to increase
the learning speed.

Classical approaches of distributed linear transforms rely
on dividing the input matrix A equally among all available
worker nodes, and the master node has to collect the results
from all workers to output y. As a result, a major perfor-
mance bottleneck is the latency incurred in waiting for a
few slow or faulty processors — called “stragglers” to finish
their tasks [Dean et al., 2012, Dean and Barroso, [2013|]. Re-
cently, forward error correction and other coding techniques
have shown to be effective in dealing with the stragglers
in distributed computation tasks [Dutta et al., [2016| [Lee
et al.,[2017alb, [Tandon et al.,[2017, [Yu et al.| 2017, [Karakus
et al., 2017, |Yang et al.,|2017, [Wang et al.]. By exploiting
coding redundancy, the vector y is recoverable even if all
workers have not finished their computations, thus reducing
the delay caused by straggler nodes. For example, con-
sider a distributed system with 3 worker nodes, the coding
scheme first splits the matrix A into two submatrices, i.e.,
A = [A;; A,]. Then each worker computes Ax, Aox and
(A1 + A2)x. The master node can compute Ax as soon
as any 2 out of the 3 workers finish, and can overcome one
straggler (slow worker).

In a general setting with m workers, the input matrix A is
evenly divided into n (n < m) submatrices A; € R#*?
along the row side. Each worker computes a partially coded
linear transform and returns the result to the master node.
Given a computation strategy, the recovery threshold is de-
fined as the minimum number of workers that the master
needs to wait for in order to compute Ax. The above MDS
coded scheme is shown to achieve a recovery threshold
©(m) [Lee et al.,[2017a]. An improved scheme proposed
in [Dutta et al., [2016], referred to as the short dot code, can
offer a larger recovery threshold ©(m(1+¢€)) but with a con-
stant reduction of the computation load by imposing some
sparsity of the encoded submatrices. More recently, the
work in [Yu et al.,2017]] designs a type of polynomial code,
which achieves the information-theoretical optimal recovery
threshold n. However, many problems in machine learn-
ing exhibit both extremely large-scale and sparse targeting
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Table 1: Comparison of Existing Schemes in Coded Computation.

MDS Short-dot Polynomial s-MDS Sparse s-diagonal | (d,ds)-cross
Scheme
code code code code code code code
Recovery threshold | ©(m) | O(m(1 +¢)) n n’ O(n)” n n’
Computation load/m | O(n) | O(n(1l —e€)) n O(log(n))"| ©(log(n))” O(s) o(1)"

—cn

* The result holds with high probability, i.e., 1 — e

data, i.e., nnz(A) < rt. The key question that arises in
this scenario is: is coding really an efficient way to mitigate
the straggler in the distributed sparse linear transformation
problem?

1.1 Motivation: Coded Computation Overhead

To answer the aforementioned question, we use the PageR-
ank problem [Page et al., [1999] and existing polynomial
code [Yu et al.l [2017] as an example. This problem aims
to measure the importance score of the nodes on a graph,
which is typically solved by the following power-iteration,

x =cr+ (1 —c)Ax;_1. (D

where ¢ = 0.15 is a constant and A is the graph adjacency
matrix. In practical applications such as web searching, the
graph adjacent matrix A is extremely large and sparse. The
naive way to solve (1) is to partition A into n equal blocks
{A,;}"_, and store them in the memory of several workers.
In each iteration, the master node broadcasts the x; into all
workers, each worker computes a partial linear transform
A, x; and sends it back to the master node. Then the master
node collects all the partial results and updates the vector.
The polynomial code [Yu et al.||2017] works as follows: in
each iteration, the kth worker essentially computes

ye=A2 (37 Awl)x, 2

and zi, is a given integer. One can observe that, due to the
sparsity of matrix A and matrices additions, the density of
the coded submatrices A, will increase at most n times, and
the time of sublinear transform A ;x will increase roughly
O(n) times of the simple uncoded one.
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Figure 1: Measured local computation time per worker.

In the Figure Eka), we show measurements on local com-
putation and communication time required for m = 20
workers to operate the polynomial code and naive uncoded
distributed scheme for the above problem with dimension
roughly equal to 10° and number of nonzero elements equal

to 107. Our observation is that the final job completion time
of the polynomial code is significantly increased compared
to that of the uncoded scheme. The main reason is that the
increased density of input matrix leads to increased compu-
tation time. In the Figure b), we generate a 10° random
square Bernoulli matrix with different densities p. We plot
the ratio of the average local computation time between the
polynomial code and the uncoded scheme versus the matrix
density p. It can be observed that this ratio is generally large
and equal to the order of O(n), when the matrix is sparse.

Therefore, inspired by this phenomenon, we propose a new
metric, named as computation load, which is defined as
total number of submatrices the local works access (for-
mal definition can be seen in Section E]) For example, the
polynomial code achieves optimal recovery threshold but a
large computation load of mn. In certain suboptimal codes
such as short-dot code, they achieve slightly lower computa-
tion load but still on the order of O(mn). Specifically, we
are interested in the following key problem: can we find a
coded linear transformation scheme that achieves optimal
recovery threshold and low computation load?

1.2 Main Contribution

In this paper, we provide a fundamental limit of the mini-
mum computation load: given n partitions and s stragglers,
the minimum computation load of any coded computation
scheme is n(s + 1). We then design a novel scheme, we
call s-diagonal code, that achieves both the optimum recov-
ery threshold and the minimum computation load. We also
exploit the diagonal structure to design a hybrid decoding
algorithm between peeling decoding and Gaussian elimi-
nation that achieves the nearly linear decoding time of the
output dimension O(r).

We further show that, under random code designs, the com-
putation time can be reduced even lower to a constant
with high probability. Specifically, we define a perfor-
mance metric probabilistic recovery threshold that allows
the coded computation scheme to provide the decodabil-
ity with high probability. Based on this metric, there exist
several schemes, i.e., sparse MDS code [Lee et al.,[2017b|]
and sparse code [Wang et al.] achieving the optimal prob-
abilistic recovery threshold but a small computation load
©(nlog(n)). In this work, we construct a new (dy,ds)-
cross code with optimal probabilistic recovery threshold
but constant computation load ©(n). The comparison of
existing and our results are listed in TABLE[T}

The theoretical analysis to show the optimality of the re-
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covery threshold is based on a determinant analysis of a
random matrix in R”*". The state-of-the-art in this field
is limited to the Bernoulli case [Tao and Vu, 2007, Bour
gain et al.,[2010], in which each element is identically and
independently distributed random variable. However, in
our proposed (d1, ds)-cross code, the underlying coding
matrix is generated based on a hypergeometric degree dis-
tribution, which leads to dependencies among the elements
in the same row. To overcome this difficulty, we propose
a new technical path: we first utilize the Schwartz-Zeppel
Lemma [Schwartz, [1980] to reduce the determinant analysis
problem to the analysis of the probability that a random
bipartite graph contains a perfect matching. Then we com-
bine the random proposal graph theory and the probabilistic
method to show that when n tasks are collected, the coeffi-
cient matrix is full rank with high probability.

Further, we apply our proposed random codes to the gradi-
ent coding problem. This problem has wide applicability
in mitigating the stragglers of distributed machine learn-
ing, and was first investigated in [Tandon et al., 2017]. It
designs a cyclic code that achieves the optimum recovery
threshold n and computation load s + 1 per worker. The
work [Maity et al., 2018|] proposes an LDPC code to further
reduce the average computation load to ©(log(n)). Another
line of works [Karakus et al.l 2017, |Charles et al., 2017,
Wang et al.| 2019] try to reduce the computation load by
approximated gradient computation. In this paper, we show
that our constructed (dy, da)-cross code can not only exactly
recover the gradient (sum of functions) but also provides a
constant computation load O(1).

Finally, we implement the constructed codes and demon-
strate their improvement compared with existing strategies.

2 Problem Formulation

We are interested in distributedly computing a linear trans-
form with matrix A € R"** and input vector x € R? for
some integers 7, t. The matrix A is evenly divided along the
row side into n submatrices.

AT =[AT AT AT .. A]] 3)
Suppose that we have a master node and m worker nodes.
Worker 1 first stores 1/n fraction of matrix A, defined as
A; € R#**, Then it can compute a partial linear trans-
form y; = Aix and return it to the master node. The
master node waits only for the results of a subset of workers
{A;x|i € I C [m]} to recover the final output y using
certain decoding algorithms. The main framework is illus-
trated in Figure 2] Given the above system model, we can
formulate the coded distributed linear transform problem
based on the following definitions.

Definition 1. (Coded computation strategy) A coded com-
putation strategy is an m X n coding matrix M =

Data matrix Data encoding
Ay
A, ' master
Az
A1 + A.2 n—2 + An
.
8 Az +As+ As
A
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A, . .
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Figure 2: Framework of coded distributed linear transform.

[Mijlicm],jc[n) that is used to compute each A,

A; =Y myA;Vie m], €

Jj=1
Then each worker i computes y; = Aix.

This is a general definition of a large class of coded compu-
tation schemes. For example, in the polynomial code [Yu
et al.l 2017, the coding matrix M is the Vandermonde ma-
trix. In the MDS type of codes [Dutta et al.;, 2016, [Lee et al.
2017alb], M is a specific form of corresponding generator
matrices.

Definition 2. (Recovery threshold) A coded computation
strategy M is k-recoverable if for any subset I C [m] with
|I| = k, the master node can recover Ax from {y;|i € I}.
The recovery threshold k(M) is defined as the minimum
integer k such that strategy M is k-recoverable.

Regarding the recovery threshold, the existing work [Yu
et al., 2017]] has applied a cut-set type argument to show
that the minimum recovery threshold of any scheme is

*

kK© = min

k(M) > n. 5)
MeR’V?‘LX’IZ

Definition 3. (Computation load) The computation load of
strategy M is defined as [(M) = ||M||o, the number of the
nonzero elements of coding matrix.

The goal of this paper is to design a coded computation
strategy M that achieves optimal recovery threshold n with
low computation load {(IM). Due to the space limit, all the
technical proofs in the sequel are provided in the Appendix.
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3 Fundamental Limits and Diagonal Code

In this section, we will describe the optimum computation
load and the s-diagonal code that exactly matches such
lower bound. Then we will provide a fast decoding algo-
rithm with nearly linear decoding time.

3.1 Fundamental Limits on Computation Load

We first establish the lower bound on the computation load,
i.e., the density of coding matrix M.

Theorem 1. (Optimum computation load) For any coded
computation scheme M € R™*™ using m workers that can
each store % fraction of A, to resist s stragglers, we have

I(M) > n(s + 1). ©6)

The polynomial code [Yu et al., 2017] achieves the optimum
recover threshold of n. However, the coding matrix (Van-
dermonde matrix) is fully dense, i.e., {(IM) = nm, and far
beyond the above bound. The short-dot code [Dutta et al.,
2016| can reduce the computation load but sacrifices the
recovery threshold. Therefore, a natural question that arises
is, can we design a code that achieves such lower bound?
We will answer this question in the sequel of this paper.

3.2 Diagonal Code

We now present the s-diagonal code that achieves both the
optimum recovery threshold and optimum computation load
for any given parameter values of n, m and s.

Definition 4. (s-diagonal code) Given parameters m,n and
s, the s-diagonal code is defined as

~ min{i,n}
A=) o mi;Aj, Vi € [m],  (7)

j=max{1,i—s}

where each coefficient m;; is chosen from a finite set S
independently and uniformly at random.

The reason we name this code as the s-diagonal code is that
the nonzero positions of the coding matrix M exhibit the
following block diagonal structure.

s+1
—
* ke * 0 0 0 0
0 = * * 0 0 0
MT = |0 0 =« * x* 0 of

where * indicates the nonzero entries of M. Before we
analyze the recovery threshold of the diagonal code, the
following example provides an instantiation for n = 4,
s=1landm =5.

Example 1: (1-Diagonal code) Consider a distributed lin-
ear transform task Ax using m = 5 workers. We evenly

divide the matrix A along the row side into 4 submatri-
ces: AT = [AT AT AT AT]. Given this notation, we
need to compute the following 4 uncoded components
{A1x,Aox, Asx, Ayx}. Based on the definition of the
1-diagonal code, each worker stores the following submatri-
Ces: Al = AAl7 AQ = A1 +A2, A3 = AQ —|—A3, A4 =
As+ Ay, A5 = Ay Suppose that the first worker is a
straggler and the master node receives results from worker
{2,3,4,5}. According to the above coded computation
strategy, we have

Vo 1 1 0 0] [Ax
S’g o 01 1 0 A2X (8)
5’4 0 0 1 1 A3X
Vs 00 0 1| |Asx

The coefficient matrix is an upper diagonal matrix, which
is invertible since the elements in the main diagonal are
nonzero. Then we can recover the uncoded components
{A;x} by direct inversion of the above coefficient matrix.
The decodability for the other 4 possible scenarios can be
proved similarly. Therefore, this code achieves the optimum
recovery threshold of 4.

Obviously, the computation load of the s-diagonal code is
optimal and can be easily obtained by counting the number
of nonzero elements of coding matrix M. The following
result gives us the recovery threshold of the s-diagonal code.

Theorem 2. Let finite set S satisfy |S| > 2n2C". Then
there exists an s-diagonal code that achieves the recovery
threshold n, and can be constructed, on average, in 2 trails.

The theoretical framework on analyzing the recovery thresh-
old is provided in Section 4}

3.3 Fast Decoding Algorithm

The original decoding algorithm of s-diagonal code is based
on inverting the coding matrix, and the mappings from
[¥i1sYioy- -5 ¥4, ] to vector [y1,ys,-..,¥n] incurs a com-
plexity of O(nr). We next show that it can be further re-
duced by a hybrid decoding algorithm between the peeling
decoding and Gaussian elimination. The key idea is to
utilize the peeling decoding algorithm to reduce the num-
ber of blocks recovered by above mapping, and Gaussian
elimination to guarantee the existence of the ripple node.

Suppose that the master node receives results from work-
ers indexed by U = {i1,...,in} C [n+ s] with 1 <
i1 < -+ <4, <n+s Let MY be an x n sub-
matrix consisting of rows of M index by U. Let the in-
dex k € [n] be iy, < n < ig41.Then recover the blocks
indexed by [n]\{i1,...,ix} from the following rooting
step, and add the recovered results into the ripples set
R = {AiX}icn)\{ir,....in}-

Lemma 1. (Rooting step) If rank(MV) = n, then for any
ko € {1,2,...,n}, we can recover a particular block A;x
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Algorithm 1 Fast decoding algorithm for s-diagonal code

Receive n results with coefficient matrix. Find the index
k € [n] with i, < n < igyq.
Recover the blocks indexed by [n]\{i1, ..., i} by (16).
Construct ripples set R = {AiX}ic[n)\{i1,....ir}
repeat
if R is not empty then
Choose a result A;x from R.
for each computation results y; do
if M, is nonzero then
yj = 5/]' — mjiAix and set mj; = 0.
end if
end for
else
Find a row MY in matrix MY with | MY ||o = 1.
R=RUy;.
end if
until every block of vector y is recovered.

with column index ko in matrix MY via the following linear
combination.

Ax=) w ©)

The vector u = [uy, ..., uy] can be determined by solving
u™™ = ey,, where ey, € R'™™ is a unit vector with
unique 1 locating at the index k.

Then the master node goes to a peeling decoding process:
the master node first finds a ripple in set R, i.e., A;x. For
each collected results ¥ ;, it subtracts this block if the com-
putation task A ;x contains this block (M;; # 0). If the set
‘R is empty, the master node finds a new ripple that com-
putes a uncoded task in the rest workers, add it to set R and
continue above process.

Example 2: (Fast decoding algorithm) Consider a similar
setup with Example 1. Suppose that we receive the re-
sults from workers index by U = {2,3,4,5}. The naive
inverse decoding algorithm will lead to decoding complex-
ity 4r (complexity of inverse mapping of (8)). In the
fast decoding algorithm, we first recover the block A;x
({1,2,3,4}\{2,3,4}) by rooting step A1x = y1 — y2 +
Y3 — Y4. Then we start the peeling decoding process: (i)
recover the block Asx by y2 — A1x, add the result to set R;
(ii) recover the block Asx by y3 — Asx, add the result to
set R; (iii) recover the block A 4x by y4 — Asx. Obviously,
the whole procedure of new algorithm leads to complexity
7r /4, which is smaller than 4r.

The main procedure is listed in Algorithm[I} and the decod-
ing complexity is given by the following theorem.

Theorem 3. (Nearly linear time decoding of s-diagonal
codes) The Algorithm |l| uses the at most s times of the
rooting steps @) and the total decoding time is O(rs).

4 Graph-based Analysis of Recovery
Threshold

In this section, we will present our main technical tool to
analyze the recovery threshold of proposed code, which
is also the basis in our random code construction of next
section.

For each subset U C [m] with |U| = n, let MY be ann x n
submatrix consisting of rows of M index by U. To prove
that our s-diagonal code achieves the recovery threshold of
n, we need to show that all the n x n submatrices MV are
full rank. The basic idea is to reduce the full rank analysis
to the analysis of the existence of perfect matching in the
corresponding bipartite graph. We first define the following
bipartite graph model between the set of m workers indexed
by [m] and the set of n data partitions indexed by [n].

Definition 5. Let GP(Vy,Vs) be a bipartite graph with
Vi = [m] and V4 = [n]. Each node i € Vi is connected to
nodes j C Vo if M;; # 0.

Definition 6. Define an Edmonds matrix M(x) €
R(x)™ " of graph GP(V1,Va) with [M(x)]i; = wij if
nodes i € Vi and j € V3 are connected; [M(x)];; = 0,
otherwise.

Based on this notation, our main result is given by the fol-
lowing theorem.

Theorem 4. For a coded computation scheme M € R™*",
if every subgraph GP (U, V) of GP (Vy, Vo) with U C [m]
and |U| = n contain a perfect matching, the recovery thresh-
old k(M) = n with probability at least 1 — n* (") /|S|.

Proof. Based on the above definition, the coding matrix M
of the s-diagonal code can be obtained by assigning each
intermediate x;; of the Edmonds matrix M(x) a value from
set .S independently and uniformly at random. Given a sub-
graph GP (U, V) of GP(V1, V3), let MY (x) be the corre-
sponding Edmonds matrix. Then the probability that matrix
MV is full rank is equal to the probability that the determi-
nant of the Edmonds matrix MY (x) is nonzero at the given
value x. The following technical lemma from [Schwartz,
1980] provides a simple lower bound of such an event.

Lemma 2. (Schwartz-Zeppel Lemma) Let f(x1,...,2Z,2)
be a nonzero polynomial with degree n®. Let S be a fi-
nite set in R. If we assign each variable a value from S
independently and uniformly at random, then

Jan) #0) = 1—n?/S].

]P)(f(iﬂl,xz,... (10)

A classical result in graph theory is that a bipartite graph
GP (U, V3) contains a perfect matching if and only if the
determinant of the Edmonds matrix, i.e., [MY(x)|, is a
nonzero polynomial. Combining this result with Schwartz-
Zeppel Lemma, we can reduce the analysis of the full rank
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probability of the submatrix MY to the probability that the
subgraph G (U, V) contains a perfect matching.

P(MY| #0) =
P(IMY] # 0[|M" ()| # 0) - P(M" ()| # 0) +
S-Z Lemma: >1—1/2Cm
P(IM7| # 0[[M"(2)| = 0) -P(IM" ()] = 0) (1)

0

contains perfect matching

Therefore, utilizing the union bound, we conclude that the
probability that there exists a submatrix MV is not full rank
is upper bound by n? (") /|S5|. O

The next technical lemma shows that for all subsets U C
[m] with |U| = n, the subgraph G (U, V4) exactly contains
a perfect matching for diagonal code. Therefore, let |S| >
2n?(™), we conclude that, with probability at least 1/2, all
the n x n submatrices of M are full rank. Since we can
generate the coding matrix M offline, with a few rounds of
trials (2 on average), we can find a coding matrix with all
n X n submatrices being full rank. Therefore, we arrive the
Theorem 2

Lemma 3. Let M be constructed as Definition H| and the
bipartite graph GP (V1, Vy) be constructed as Deﬁnition@
For each U C [m] with |U| = n, the subgraph GP (U, Vy)
contains a perfect matching.

One special case of the s-diagonal code is that, when we
are required to resist only one straggler, all the nonzero
elements of matrix M can be equal to 1.

Corollary 1. Given the parameters n and m = n—+1, define
the 1-diagonal code:

A+ AL2<i<n
It achieves the optimum computation load 2n and optimum
recovery threshold n.

5 Random Code: “Break” the Limits

In this section, we utilize our proposed theoretical frame-
work in Theorem ] to construct a random code that achieve
the optimal recovery threshold with high probability but
with constant computation load.

5.1 Probabilistic Recovery Threshold

In practice, the stragglers randomly occur in each worker,
and any specific straggling configuration happens with very
low probability. We first demonstrate the main idea through
the following motivating examples.

Example 3: Consider a distributed linear transform task
with n = 20 data partitions, s = 5 stragglers and m = 25

workers. The recovery threshold of 20 implies that all
C3Y = 53130 square 20 x 20 submatrices of coding matrix
are full rank. Suppose that a worker being a straggler is
identically and independently Bernoulli random variable
with probability 10%. Then, the probability that workers
{1,2,3,4,5} are all stragglers is 10~°. Now, if there exists
a scheme that can guarantee that the master can decode the
results in all configurations except the straggling configura-
tion {1,2,3,4, 5}, we can argue that this scheme achieves a
recovery threshold 20 with probability 1 — 1075,

Example 4: Consider the same scenario of Example 1
(n =4,s =1, m = 5). We change the coded computation
strategy of the second worker from Ag =A;+A5t0 Ag =
A,. Based on the similar analysis, we can show that the new
strategy can recover the final result from 4 workers except
the scenario that the first worker is a straggler. Therefore, the
new strategy achieves recovery threshold 4 with probability
0.75, and reduces the computation load by 1.

Based on the above two examples, we observe that the com-
putation load can be reduced when we allow the coded com-
putation strategy to fail in some specific scenarios. Formally,
it motivates us to define the following metric.

Definition 7. (Probabilistic recovery threshold) A coded
computation strategy M is probabilistic k-recoverable if for
each subset I C [m] with |I| = k(M), the master node can
recover Ax from {A2x|z € I} with high probability, i.e.,
1 — O(2™™). The probabilistic recovery threshold k(M) is
defined as the minimum integer k such that strategy M is
probabilistic k-recoverable.

The new definition provides a probabilistic relaxation such
that a small vanishing percentage (as n — oo) of all strag-
giling configurations, are allowed to be unrecoverable. In
the sequel, we show that, under such a relaxation, one can
construct a coded computation scheme that achieves a prob-
abilistic recovery threshold n and a constant (regarding
parameter s) computation load.

5.2 Construction of the Random Code

Based on our previous analysis of the recovery threshold of
the s—diagonal code, we show that, for any subset U C [m)]
with |U| = n, the probability that MV is full rank is lower
bounded by the probability (multiplied by 1 — o(1)) that
the corresponding subgraph G(U, V3) contains a perfect
matching. This technical path motivates us to utilize the
random proposal graph to construct the coded computation
scheme. The first one is the following p-Bernoulli code,
which is constructed from the ER random bipartite graph
model [Erdos and Renyil |1964].

Definition 8. (p-Bernoulli code) Given parameters m,n,
construct the coding matrix M as follows:

12)

ti;, with probability p
m;; = .
! 0, with probability 1 — p



Sinong Wang®, Jiashang Liu’, Ness Shroff":? Pengyu Yang®

where t;; is picked independently and uniformly from the
finite set S.

Theorem 5. For any parameters m,n and s, if p =
2log(n)/n, the p-Bernoulli code achieves the probabilistic
recovery threshold n.

This result implies that each worker of the p-Bernoulli code
requires accessing 2 log(n) submatrices on average, which
is independent of number of the stragglers. Note that the ex-
isting work in distributed functional computation [Lee et al.,
2017b] proposes a random sparse code that also utilizes
Bernoulli random variables to construct the coding matrix.
There exist two key differences: (i) the elements of our ma-
trix can be integer valued, while the random sparse code
adopts real-valued matrix; (ii) the density of the p-Bernoulli
code is 2log(n), while the density of the random sparse
code is an unknown constant. The second random code is
the following (d;, d2)-cross code.

Definition 9. ((d;, d2)-cross code) Given parameters m,n,
construct the coding matrix M as follows: (1) Each row
(column) independently and uniformly chooses dy (ds)
nonzero positions; (2) For those nonzero positions, assign
the value independently and uniformly from the finite set S.

The computation load of (dj,ds)-cross code is upper
bounded by dym + don. The numerical analysis of pro-
posed random codes can be seen in Appendix. The next
theorem shows that a constant choice of d; and dy can guar-
antee the probabilistic recovery threshold n.

Theorem 6. For any parameters m,n, if s = poly(log(n)),
the (2, 3)-cross code achieves the probabilistic recovery
threshold n. If s = ©(n%), a < 1, the (2,2/(1 — a))-cross
code achieves the probabilistic recovery threshold n.

The proof of this theorem is based on analyzing the existence
of perfect matching in a random bipartite graph constructed
as follows: (i) each node in the left partition randomly and
uniformly connects to d; nodes in the opposite class; (ii)
each node in the right partition randomly and uniformly
connects to [ nodes in the opposite class, where [ is chosen
under a specific degree distribution. This random graph
model can be regarded as a generalization of Walkup’s 2-out
bipartite graph model [Walkup| |1980]. The main technical
difficulty in this case derives from the intrinsic complicated
statistical model of the node degree of the right partition.

6 Applications to Gradient Coding

In this section, we discuss the application of proposed
coded schemes into the distributed gradient descent problem.
Given data sets {(x1,y1); - - -, (Xn, Yn) }» where each block
(xi,y:) € RFP x R¥ consists of k data samples. Several
machine learning tasks aim to solve the following problem

w" = argvgréiﬂg Z Uwixi,y:) + AR(W), (13)
i=1

where [(+) is a task-specific loss function and R(-) is the
regularization function. Typically, this problem is solved by
the following gradient-based approaches.

W1 = hpg (wt - ntZW(wt;xi,yi)> ;a4

i=1

where hp(+) is the proximal mapping, which depends on
the regularization function. Several methods such as gra-
dient descent, accelerated gradient, Frank-Wolfe, proximal
methods, LBFGS, and bundle methods fits in this frame-
work. The gradient coding framework is: (i) Initially, each
data blocks are assigned to each worker based on the given
coefficient matrix; (ii) In each iteration ¢, the master node
broadcasts the vector w; to each worker, and each worker 7
calculates a single linear combination of gradient vectors

& =Y miVi(wi;x;,y;),¥i € [m]. (15

Jj=1

(>iii) The master node collects a subset of results from m
workers, decodes the full gradient, and update the weight
vector based on the proximal gradient descent step (14). The
algorithm is terminated until converged, i.e., the gradient
vanishes. One instantiation of this framework is the linear
regression problem that is provided in subsection[H.2] We
can see that, in this problem, the defined computation load
I(M) is exactly the number of partial gradients evaluations
locally. Using the proposed (d, ds)-cross code, we can ob-
tain a gradient coding scheme that each worker only requires
to store a constant number of data blocks, and the recovery
threshold is n with high probability. The straightforward in-
verse decoding will lead to a complexity of O(n?r) (decode
n partial gradients from the results of n workers). However,
the following technical lemma shows that we can actually
decode in O(nr) time.

Lemma 4. (gradient decoding) Assume received coding
matrix MY. If rank(MY) = n, then we can recover full
gradient Y, Vl(wy;x;,y;) via the following linear com-
bination.

n n B
Zi:l Vl(Wt; X, yz) = Z¢:1 UG (16)

The vector u = [uy, .. ., u,] can be determined by solving
u™™V = 1,, where 1,, € RY*™ is an all one vector.

The basic intuition is to find a linear combination of row
vectors of matrix MY such that the row vectors span the all
one vector 1,,.

7 Experimental Results

In this section, we present the experimental results on Ohio
Supercomputer Center |Center| [|[I987]]. We compare our pro-
posed coding schemes including the s—diagonal code and
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Figure 4: Magnitude of gradient versus time for number of data partitions n = 12, 20 and number of stragglers s = 2,4.

(d1, da)-cross codes against the following existing schemes
in both single matrix vector multiplication and gradient
coding problem: (i) uncoded scheme: the input matrix is
divided uniformly across all workers without replication
and the master waits for all workers to send their results; (ii)

sparse MDS code [Lee et al.l[2017b]: the generator matrix

is a sparse random Bernoulli matrix with average computa-
tion overhead ©(log(n)); (iii) polynomial code
2017]]: coded matrix multiplication scheme with optimum
recovery threshold and nearly linear decoding time; (iv)
short dot code 2016]): appending the dummy
vectors to data matrix A before applying the MDS code,
which provides certain sparsity of encoded data matrix with
cost of increased recovery threshold; (v) LT code
2002]|: rateless code widely used in broadcast communica-
tion. It achieves an average computation load of ©(log(n))
and a nearly linear decoding time using peeling decoder.
To simulate straggler effects in large-scale system, we ran-
domly pick s workers that are running a background thread.
More details can be seen in Appendix.

We first use a matrix with r = ¢t = 1048576 and nnz(A) =
89239674 from data sets [Davis and Hul, 2011]] , and evenly
divide this matrix into n = 12 and 20 partitions. In Figure[7]
(a)(b), we report the job completion time under s = 2 and
s = 4, based on 20 experimental runs. It can be observed
that both (2, 2)-cross code outperforms uncoded scheme (in
50% the time), LT code (in 70% the time), sparse MDS code
(in 60% the time), polynomial code (in 20% the time) and
our s-diagonal code. Moreover, we compare our proposed
s-diagonal code with (2, 2)-cross code versus the number of
stragglers s. As shown in Figure[/|(a)(b), when the number
of stragglers s increases, the job completion time of the
s-diagonal code increases while that of (2, 2)-cross code
does not change. Another interesting observation is that the

irregularity of the work load can decrease the I/O contention.
For example, when s = 2, the computation load of the 2-
diagonal code is similar as (2, 2)-cross code, which is equal
to 36 in the case of n = 12. However, the (2, 2)-cross code
cost less time due to the random worker load.

We finally compare our proposed codes with existing
schemes in a gradient coding problems. Details can be seen
in the Appendix. We use data from LIBSVM dataset reposi-
tory with r = 19264097 samples and ¢ = 1163024 features.
We evenly divide the data matrix A into n = 12 subma-
trices. In Fig. |Z| (c)(d) , we plot the magnitude of scaled
gradient ||nAT(Ax — b)|| versus the running time of the
above seven different schemes under n = 12 and s = 2, 4.
Among all experiments, we can see that the (2, 2)-cross
code converges at least 30% faster than sparse MDS code,
2 times faster than both uncoded scheme and LT code and
at least 4 times faster than short dot and polynomial code.
The (2, 2)-cross code performs similar with s-diagonal code
when s = 2 and converges 30% faster than s-diagonal code
when number of stragglers increases to s = 4.

8 Conclusion

In this paper, we characterized the fundamental limits of
the minimum computation load in the coded computation
schemes, and proposed a new code, we call s-diagonal code,
exactly achieves such lower bound and optimal recovery
threshold. Furthermore, we exploited our proposed theoreti-
cal framework to design two random codes that achieves the
optimal recovery threshold with high probability but with
constant computation load. We implemented our proposed
schemes in the distributed gradient descent problem and
demonstrated the advantages over existing fastest schemes.
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