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Abstract—The energy consumption of cellular networks has
increased dramatically due to high demand for wireless commu-
nication. Base-stations (BSs) use about 60% to 80% of the energy
consumed by these networks. An attractive way to reduce energy
consumption is to turn the BSs off during periods of under-
utilization. However, turning a BS back on typically consumes
a lot of energy, which has not been considered in previous
works, but critical to good energy management strategies. In
this work, we dynamically determine the on-off schedule of
these base-stations by taking both operation-cost and turn-on-
cost into account. We develop the first online algorithm that
only uses future information to decide the on-off status of each
BS and characterize its performance using competitive ratio
analysis. We extend it by utilizing history information which
helps improve the competitive ratio. A heuristic adaptive online
algorithm is then designed to balance the utilization of history
and future information. We then show via simulation results that
the adaptive algorithm works well under a wide range of traffic
intensities.

I. INTRODUCTION

The ever increasing traffic demand created by the pro-
liferation of wireless devices and the development of new
applications and services have made cellular networks a non-
trivial source of energy consumption. Base-stations use about
60% to 80% of the energy consumed by cellular networks [1].
Base-stations are often deployed with a high density to handle
peak load demands, which also means that during off-peak
periods, the base-stations are highly underutilized [2]. Since
the amount of energy consumed by these base-stations is large
even when they are underutilized [3], an easy way to reduce
energy consumption is to turn them off during off-peak period.
Increasingly, base-stations with small setup times (time from
off till they are operational) are becoming popular [4], which
opens up the possibility of switching the base-station states
more frequently and reduce the overall energy consumption.

Many prior works have focused on reducing the energy
consumption of cellular networks. For example, [5] and [6]
have proposed base-station on-off strategies by exploiting the
energy-delay tradeoffs in cellular network. Another approach
has been to equip base-stations with renewable energy. [7]
and [8] have designed both a resource allocation scheme
and an energy control scheme in green cellular networks
with renewable energy. However, none of these works have
considered the turn-on-cost of base-stations [9], which is a key
factor in modeling the energy consumption. The key question
here is: how should the control plane decide on the on-off
sequence of each base-station when both operation-cost and

turn-on-cost are considered, while at the same time meeting
the user traffic demand.

In this work, we consider a multi-cell network, where a
user may be in range of multiple base-stations. We focus on
the problem of determining the status of these base-stations by
taking both operation-cost and turn-on-cost into consideration.
The objective is to reduce energy consumption of base-stations
in the system, with the constraint that the traffic demands are
met in each time-slot.

The contributions of this work are as follows:
• We develop the first online algorithm and evaluate its

competitive ratio, a metric that captures the worst case
performance, for any topology of the cellular network
with any number of base-stations and users.

• We extend the first algorithm by adding a count-down
scheme that utilizes history information, and surprisingly
show that in a limited setting, history information can
actually help improve the competitive ratio when limited
future information is available.

• Inspired by the theoretical results, we develop a heuris-
tic adaptive version of the first algorithm with count-
down scheme, which strikes the right balance between
the utilization of history and future information when
making on-off decisions, and shows good performance
via simulations under a wide range of loads.

• We show how the core component of all the three
algorithms are reduced to solving a minimum weighted
set cover problem, which can be solved by well-known
approximation algorithms with low complexity.

Our paper is organized as follows. In Section II we discuss
our system model and formulate our problem. In Section III
we develop two online algorithms and present their competi-
tive ratio analysis. Our heuristic adaptive online algorithm is
discussed in Section IV. Detailed simulation results are shown
in Section V. Finally we conclude our paper in Section VI.

II. SYSTEM MODEL

A. Network Model

We consider a cellular network system with J base-stations
and I users. The base-station to user connectivity is captured
by U , {Uj}1≤j≤J , with Uj denoting the subset of users that
base-station j can associate with.

Let us assume a time-slotted system, where the base-station-
user association can evolve on a per time-slot basis. Let matrix



A(t) = [Aij(t)]1≤i≤I,1≤j≤J denote the association decision
in time-slot t, with Aij(t) = 1 if user i is associated with
base-station j and Aij(t) = 0 otherwise. For each user i, it
needs to be associated with a base-station in a given time-slot
if there is a traffic request for user i in that time-slot. We use
a binary variable Wi(t) ∈ {0, 1} to indicate the traffic status
of user i in time-slot t, with Wi(t) = 1 if user i needs to be
served in time-slot t. For the rest of the paper, we refer to
{Wi(t)}t∈N,1≤i≤I as the traffic arrival process of the system.
Based on the above discussion, an associate decision A(t) is
valid if it satisfies the following conditions:

For any j and any i 6∈ Uj , Aij(t) = 0. (1a)

For any i,
∑J
j=1Aij(t) ∈ {0, 1}, and

(1−
∑J
j=1Aij(t))Wi(t) = 0. (1b)

The last equation indicates that a user needs to be associated
with some base-station in a certain time-slot if there is traffic
arrival for that user in that time-slot.

B. Energy Model

Each base-station can be turned off in some time-slots to
reduce energy consumption if there is no user for it to associate
with. Let Oj(t) ∈ {1, 0} denote the on-off status of base-
station j in time-slot t, with Oj(t) = 1 indicating that base-
station j is in the on-state in time-slot t. Then the following
conditions must be satisfied:

For any j, Oj(t) ∈ {0, 1}, and

(1−Oj(t))
∑I
i=1Aij(t) = 0. (2)

The last equation indicates that a base-station needs to be
turned on if it is associated with some users. Let O(t1, t2) ,
[Oj(t)]∀j,t1≤t≤t2 , and O(t) , O(t, t). For any base-station,
if it is in an on-state in time-slot t, then it incurs one unit
of energy consumption, also referred to as the operation-cost.
To better capture the energy consumption in the system, we
also consider the turn-on-cost of the base-station, i.e., the cost
incurred when a base-station is switched from the off-state to
the on-state. Let the turn-on-cost for each base-station be K
unit(s) of energy. Since the energy required for turning on a
base-station is normally much larger than the energy required
to keep the base-station in operating mode [3], we assume that
K > 1. Further, for ease of analysis, we assume that K is an
integer, although all the analysis can be easily generalized to
the case when K is not an integer.

Given a base-station on-off decision O(1, T ) and an initial
condition O(0), the energy cost of the system from time-slot 1
to time-slot T , denoted as c (O(0),O(1, T )), can be expressed
as

c (O(0),O(1, T ))

=

T∑
t=1

J∑
j=1

Oj(t)︸ ︷︷ ︸
operation-cost

+

T∑
t=1

J∑
j=1

K(Oj(t)−Oj(t− 1))+︸ ︷︷ ︸
turn-on-cost

,

where x+ , max{x, 0}. So, in time-slot t a turn-on-cost is
incurred only when Oj(t) = 1 and Oj(t− 1) = 0.

C. Problem Formulation

Let us first define the feasibility conditions of on-off deci-
sions based on the discussions in the previous two subsections.

Definition 1 (Feasibility of the base-station on-off decision).
A base-station on-off decision O(t1, t2) is said to be feasible
if for any t1 ≤ t ≤ t2, there exists A(t) such that (1) and (2)
are satisfied.

The objective of this work is to design algorithms that
control the base-station on-off decision, with the aim of
achieving the minimum energy cost, which we formally state
below.
Problem(1, T ):

argmin
O(1,T )

c (O(0),O(1, T ))

s.t. O(1, T ) is a feasible on-off decision.

Note that the problem itself is parameterized by the time-
horizon T , and the optimal solution can only be found when
the traffic arrival pattern {Wi(t)}t∈N,1≤i≤I for the entire time-
horizon, i.e., 1 ≤ t ≤ T , is known a prior. However, in
a practical system, base-stations may only know the traffic
arrival pattern of the users up to a limited number of time-
slots in the future, and thus in this work our assumption is
that the system can only foresee the traffic pattern of all users
up to M time-slots in the future. More precisely, at the start
of any time-slot τ , the system only knows {Wi(t)}1≤i≤I for
t = τ, τ + 1, τ + 2, . . . , τ +M − 1, which, for the ease of
exposition, is denoted as W(τ, τ +M − 1).

III. DESIGN OF ONLINE ALGORITHMS WITH
COMPETITIVE RATIO ANALYSIS

In this section, we develop the first online algorithm only
utilizing future information and extend it to the second algo-
rithm which also consider history information. We evaluate
their performance in terms of their competitive ratios, which
we formally define as the following.

Definition 2 (Competitive Ratio). The competitive ratio of
an online algorithm α is defined as the maximum ratio of its
energy cost over that of the offline optimal solution across all
possible arrival patterns, which is formally stated as

max
T,W(1,T ),O(0)

c(O(0),Oα(1, T ))

c(O(0),O∗(1, T ))
,

where Oα(1, T ) denotes the solution of algorithm α.

As can be seen from the definition above, the competitive
ratio captures the worst-case performance of an online algo-
rithm across all possible arrival patterns.

A. Sliding-Window-Algorithm

Our first online algorithm utilizes the traffic information
from the future M time-slots. The algorithm works in a sliding



window fashion. It focuses on a window of M consecutive
time-slots at a time. For each window, it calculates the on-off
decision of the first L ≤M time-slots in the window, utilizing
the arrival pattern of the entire M time-slots. After the on-off
decision for the first L time-slots in the window are made, the
algorithm advances the window by L time-slots and repeats
the procedure. L is the step size of the algorithm. The detailed
procedure of the algorithm on a window starting from time-
slot τ to time-slot τ +M − 1 is defined in Algorithm 1. We
denote the output of the Sliding-Window-Algorithm with step
size L as Os(L).

Algorithm 1: Sliding-Window-Algorithm with step size L
Input: W(τ, τ +M − 1),O(τ − 1).
Output: O(τ, τ + L− 1).

1 Find the optimal solution to Problem(τ, τ +M − 1)
given the initial condition O(τ − 1), which we denote as
O∗(τ, τ +M − 1);

2 for t = τ to τ + L− 1 do
3 assign O(t) = O∗(t);

The total computation overhead is directly dependent on L.
We obtain the following result for L =M .

Theorem 1. The competitive ratio of the Sliding-Window-
Algorithm with step size L =M is no larger than max {1 +
K/M, 2}.

Proof: Based on the Definition 2, it suffices to show
that for any W(1, T ) and any feasible on-off decision un-
der W(1, T ), which we denote as Of (1, T ), the following
equation holds.

c
(
O(0),Os(M)(1, T )

)
c (O(0),Of (1, T ))

≤ max

{
1 +

K

M
, 2

}
.

We divide the proof in two steps. In the first step, we construct
a feasible on-off decision Om(1, T ) by modifying Of (1, T )
and show that

c (O(0),Om(1, T ))

c (O(0),Of (1, T ))
≤ max

{
1 +

K

M
, 2

}
. (3)

In the second step, we argue that

c
(
O(0),Os(M)(1, T )

)
≤ c (O(0),Om(1, T )) ,

which together with Equation (3), completes the proof.
Step 1: For any given Of (1, T ), we focus on the ith

consecutive on period of base-station j, and suppose this
period lasts from sji to eji , that is, base-station j is turned
on at the beginning of sji and is kept on until the end of eji .

Let pji = sji − e
j
i + 1, then we have

c
(
Ofj (s

j
i − 1), Ofj (s

j
i , e

j
i )
)
= pi +K.

We divide the whole time horizon into blocks where each
block has length M (where the last block can have size less

M
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Fig. 1: On-off decision for base-station j and l, with blue solid-line
indicating the energy cost of one consecutive on-period in the given
feasible on-off decision Of (1, T ) and red dash-line indicating the
additional turn-on-cost in Om(1, T ).

than M ). Suppose from sji to eji these time-slots are spread
across qji (q

j
i ≥ 1) blocks. Then, we have,

max{M(qji − 2) + 2, 1} ≤ pji ≤Mqji .

We modify Ofj (s
j
i , e

j
i ) by turning base-station j off right

before the first time-slot of each block, and turning it on again.
For example, Fig. 1 shows a feasible on-off decision for two
base-stations. Before the first time-slot of the second and third
blocks, we force base-station j off and turn it on again. By
doing this, we can get a new feasible solution Omj (sji , e

j
i )

based on the previous feasible solution by adding turn-on-cost
times (qi − 1), and

c
(
Omj (sji − 1), Omj (sji , e

j
i )
)
= pi +K + (qi − 1)K

= pi + qiK.

When qi ≥ 2,

c
(
Omj (sji − 1), Omj (sji , e

j
i )
)

c
(
Ofj (s

j
i − 1), Ofj (s

j
i , e

j
i )
) =

pi + qiK

pi +K

≤ 1 +
(qi − 1)K

M(qi − 2) + 2 +K
≤
{

1 + K
M if M ≤ K

2 if M > K

= max{1 + K

M
, 2}.

When qi = 1, we do not modify Ofj (s
j
i , e

j
i ), and thus

c
(
Omj (sji − 1), Omj (sji , e

j
i )
)

c
(
Ofj (s

j
i − 1), Ofj (s

j
i , e

j
i )
) = 1 ≤ max

{
1 +

K

M
, 2

}
.

Then for all base-stations across all the time-slots from 1 to
T , by doing such modifications, the cost of modified on-off
decision becomes,

c (O(0),Om(1, T )) =
∑
j

∑
i

c
(
Omj (sji − 1), Omj (sji , e

j
i )
)

≤
∑
j

∑
i

c
(
Ofj (s

j
i − 1), Ofj (s

j
i , e

j
i )
)
×max

{
1 +

K

M
, 2

}
= c

(
O(0),Of (1, T )

)
×max

{
1 +

K

M
, 2

}
.



Step 2: According to Step 1, Om(1, T ) is constructed from
Of (1, T ) by dividing the time horizon into blocks of size M ,
turning all the base stations off at the end of each block, and
turning on the base-stations that are in the on-state at the begin-
ning of each block as specified in Of (1, T ). Meanwhile, since
Sliding-Window-Algorithm with step size M finds the local
optimal solution for the whole block considering both base-
stations on-off status at the beginning of each block and the
user arrivals during the whole block, c

(
O(0),Os(M)(1, T )

)
should not be greater than c (O(0),Om(1, T )). Thus we have

c
(
O(0),Os(M)(1, T )

)
≤ c (O(0),Om(1, T )) ,

which completes the proof of Step 2.

B. Sliding-Window-Algorithm with Count-Down
Intuitively, one may think that in order to make an informed

base-station on-off decision for the current time-slot, only the
future information regarding the user traffic would be helpful.
In other words, to make the on-off decision for the current
time-slot, the decisions that have already been made in the
previous time-slots seem quite irrelevant and are perhaps not
useful. One may even tend to think that it is unlikely that there
is a way to improve the competitive ratio of Algorithm 1, as
it already tries to exploit all the future traffic information.

Surprisingly, neither conjecture is true. In this subsection,
we will introduce a new algorithm, namely Sliding-Window-
Algorithm with Count-Down, which utilizes history decision
information and contains Algorithm 1 as a special case, and
show that it can achieve a smaller competitive ratio than
Algorithm 1.

The new algorithm basically modifies the base-station on-
off decisions of Algorithm 1. In the new algorithm, each base-
station keeps track of the number of time-slots since it was last
decided to be in the on-state by Algorithm 1. If it is no more
than a fixed threshold C, then the base-station will be kept on
under the new algorithm for the current time-slot, otherwise
it will be turned off.

To implement this new algorithm, we add a count-down
timer for each base-station, which will be reset to C whenever
it is decided to be in the on-state by Algorithm 1, and
decremented by 1 for each time-slot that it is decided to be
in the off-state by Algorithm 1, until it reaches zero. Under
the new algorithm, a base-station is in the on-state whenever
the count-down timer is non-zero. We let Hj(t) denote the
value of the count-down timer of base-station j in time-slot
t, and refer to C as the count-down threshold. The detailed
procedure of the algorithm on a window starting from time-
slot τ to time-slot τ +M − 1 is shown in Algorithm 2.

In Algorithm 2, the history information for each base-station
j in time-slot t is captured in its timer Hj(t). The larger
the value of C, the more history information is utilized. In
the extreme case when C = 1, it is easy to check that the
algorithm reduces to Algorithm 1. In a simplified network
where there is only one base-station, we are able to obtain
the competitive ratio of the Sliding-Window-Algorithm with
step size L = 1 and any count-down threshold C.

Algorithm 2: Sliding-Window-Algorithm with step size L
and count-down threshold C
Input: W(τ, τ +M − 1), O(τ − 1), H(τ − 1).
Output: O(τ, τ + L− 1), H(τ + L− 1).

1 O(τ, τ + L− 1) = Os(L)(τ, τ + L− 1)
2 for t = τ to τ + L− 1 do

/* Update count-down timer */

3 for j = 1 to J do
4 if Oj(t) = 1 then
5 Hj(t) = C
6 else if Oj(t) = 0 then
7 Hj(t) = max{Hj(t− 1)− 1, 0}

/* Modify the on-off decision */

8 for j = 1 to J do
9 if Hj(t) > 0 then

10 Oj(t) = 1

Theorem 2. In the single-base-station network (J = 1),
Sliding-Window-Algorithm with step size L = 1 and fixed
count-down threshold C achieves the competitive ratio of{

1 + (C − 1)/(K + 1) when C ≥ max{K −M + 1, 1}
max{(C +K)/(C +M), 1} otherwise

Proof: See technical report [10].

Corollary 2.1. In the single-base-station network (J = 1),
Sliding-Window-Algorithm with step size L = 1 and fixed
count-down threshold C achieves lowest possible competitive
ratio when C = max{K −M + 1, 1}.

The above corollary indicates that in the case when K is
larger than M , Algorithm 2 can achieve a better worse-case
guarantee when compared to Algorithm 1.

IV. HEURISTIC AND PRACTICAL ALGORITHM DESIGN

A. Insight from theoretical results

In Section III, we evaluated the performance of two online
algorithms in terms of their competitive ratios, which considers
their worst case performance across all possible arrival pat-
terns. Theorem 2 shows that in the Sliding-Window-Algorithm
with Count-Down, the count-down threshold C = max{K −
M + 1, 1} achieves the lowest competitive ratio in a single-
base-station system. However, it remains unknown whether
C = max{K − M + 1, 1} yields good performance in the
average case, especially when the traffic statistics information
can be derived. Indeed, the optimal count-down threshold may
vary as a function of the traffic intensity of the users in the
system. To gain some insight, let us consider a single-user
single base-station scenario. If the user has a very low traffic
rate, it is more likely that the time interval between two arrivals
is large, in which case it is better to reduce C so that the
base-station can be shut off soon after serving the user, in
order to avoid additional operation-cost. On the other hand,
if the traffic intensity for that user is high, we should have



a larger count-down threshold C such that the base-station is
kept on for a longer time after it finishes serving the user,
to help avoid any turn-on-cost that may be incurred when
the user has another traffic request soon after its last one.
In real systems, traffic statistics information can be derived
from history. In the next subsection, we introduce a heuristic
adaptive algorithm that exploits traffic statistics and through
numerical simulation, it is shown that it can achieve better
performance than Algorithms 1 and 2.

B. Sliding-Window-Algorithm with Adaptive Count-Down

Sliding-Window-Algorithm with Adaptive Count-Down
adaptively chooses the count-down threshold for each base-
station. Similar to Algorithm 2, it is designed by modifying
the decision of Algorithm 1. For each base-station, it keeps
track of the fraction of time-slots in which the base-station
is to be kept on as decided by Algorithm 1, and determines
the count-down threshold of each base-station based on this
fraction. When the fraction is small, it indicates that user traffic
served by this base-station is low, and the threshold should be
set to a small value. For base-station j, let Cj(t) denote the
count-down threshold and TFj (t) denote the number of time-
slots in which it is decided to be in the on-state by Algorithm
1 in the previous F time-slots. In our proposed algorithm, we
set Cj(t) to be

Cj(t) =

{
(K −M + 1)ρ

γ(M)
j when M < K

1 otherwise
(4)

where ρj = TFj (t)/F and γ(M) = 1/(1− M
K ). The detailed

procedure of the algorithm on a window starting from time-
slot τ to time-slot τ +M − 1 is shown in Algorithm 3.

Note that we use γ(M) to force Cj(t) to approach 1 when
M is large. Below we provide some intuitive reasons for why
this should help reduce energy cost.

There are two types of information that we can exploit in
the system: future traffic information for the next M time-slots
and the observed traffic statistics in the past. As M increases,
meaning that more future information is readily available, we
should lean towards the decision from Algorithm 1, which
utilizes the future information. On the hand, when there is a
lack of future traffic information, i.e., when M is small, we
should rely more on the decision from Algorithm 2 with a
count-down threshold that is optimized for the worst case.

C. Revisiting Sliding-Window-Algorithm

One problem remaining to be solved is how do we find
the optimal solution of Problem(1,M ), which is needed in
line 1 of Algorithm 1. In this subsection, we show that
Problem(1,M ) can be reduced to the well-known minimum
weighted set cover problem [11]. First, let us focus on the
simple case when M = 1.

Lemma 1. O(1) is a feasible on-off decision if and only if

{1 ≤ i ≤ I|Wi(1) = 1} ⊆ ∪j:Oj(1)=1{Uj}

Proof: See technical report [10]

Algorithm 3: Sliding-Window-Algorithm with step size L
and adaptive count-down threshold
Input: W(τ, τ +M − 1),O(τ − 1), H(τ − 1).
Output: O(τ, τ + L− 1), H(τ + L− 1).

1 O(τ, τ + L− 1) = Os(L)(τ, τ + L− 1)
2 for t = τ to τ + L− 1 do
3 for j = 1 to J do
4 Update Cj(t) using Equation (4)
5 if Oj(t) = 1 then
6 Hj(t) = Cj(t)
7 else if Oj(t) = 0 then
8 Hj(t) = max{Hj(t− 1)− 1, 0}

9 for j = 1 to J do
10 if Hj(t) > 0 then
11 Oj(t) = 1

Based on Lemma 1, we can rewrite Problem(1,1) as the
following,

argmin
O(1)

J∑
j=1

(
Oj(1) +K(Oj(1)−Oj(0))+

)
s.t. {1 ≤ i ≤ I|Wi(1) = 1} ⊆ ∪j:Oj(1)=1Uj .

It is not hard to see that the above problem falls in the format
of the classic minimum weighted set cover problem. The set
to be covered is the set of users that need to be served in
time-slot 1. Each base-station j covers a subset Uj of users.
The weight on each base-station is (1 +K(1−Oj(0))+). The
on-off decision O(1) describes the set of base-stations to be
selected to cover {1 ≤ i ≤ I|Wi(1) = 1}.

Similarly, we can show that Problem(1,M ) with M > 1
can also be mapped into a minimum weighted set cover
problem (see our technical report [10]).

V. NUMERICAL RESULT

A. Simulation Setup

We conduct simulations on a network topology with 10
base-stations and 35 users. Traffic requests are independent
across different time-slots and across all users. In each time-
slot, traffic arrival of user i is Bernoulli distributed with
parameter p. We define three user traffic scenarios: in low
traffic case p = 0.01, in heavy traffic case p = 0.1 and in
mixed traffic case p is unbiased chosen between 0.01 and 0.1.
For any base-station j and user i, whether i ∈ Uj depends
on their physical distance, with threshold 11.89m. The turn-
on-cost K is set to be 10 and the length of past period F to
be 1000. We use greedy-approximation algorithm to solve the
minimum weighted set cover problem [11].

B. Performance Evaluation and Analysis

We study the performance of four different algorithms:
Algorithm 1 (L = M ), Algorithm 1 (L = 1), Algorithm 2
(L = 1, C = max{K −M +1, 1}) and Algorithm 3 (L = 1).
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Fig. 2: Energy consumption of the whole system as a function of the number of future information.

Notice that when M ≥ K, the count-down thresholds for the
last two algorithms are at most 1, and the last three algorithms
tend to the same algorithm.

(1) The impact of step size L: Fig 2 shows that Algorithm 1
(L = 1) is much better than Algorithm 1 (L =M ) in all three
cases. The reason is that as L decreases, we make the decision
more frequently and utilize more future information. However,
a small L leads to higher computational complexity.

Although in the simulation result Algorithm 1 (L = 1)
performs better than Algorithm 1 (L = M ), it is not true
for all arrival patterns. A counterexample can be found in our
technical report [10].

(2) The impact of count-down scheme: Fig 2a and Fig 2b
show that with L = 1, when the traffic is low, Algorithm 2
performs worse than Algorithm 1. This is because when the
traffic is low, it is more likely that the time interval between
two arrivals is large, and operation-cost can be avoided if
the base-station can be shut off soon after serving the user.
However, when the traffic is heavy, the count-down scheme
of Algorithm 2 actually helps avoid turn-on-cost that may be
incurred when a user has another traffic request soon after its
last one, especially when M is small.

(3) The impact of the value M : When M is small, as
M increases, the performance of Algorithm 1 (L = 1) and
Algorithm 1 (L = M ) improves dramatically. The reason is
that with small M , it is likely that Algorithm 1 turns off some
base-stations which will probably be used in the next few
time-slots. It avoids operation-cost but incurs expensive turn-
on-cost. As M increases, more future information becomes
available, and additional turn-on-cost due to the decisions
made when M is small can be reduced. When M is large,
such additional turn-on-cost is not much and increasing M
only brings small gains.

VI. CONCLUSION

In this work, we focus on the on-off control scheme design
of base-stations in multi-cell networks, with the objective
of reducing energy consumption of base-stations by both
considering the operation-cost as well as turn-on-cost in the
energy model. We propose two online algorithms and study
their competitive ratios. An adaptive online heuristic based

on them has also been proposed to deal with performance in
the average case. Simulation results show that our adaptive
algorithm is capable of lowering the energy consumption for
a wide range of traffic intensities.
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