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In memory of Maurice Auslander

Let R be a ring (associative, with identity) and denote by mod-R the category of
finitely presented right (unital) modules over R. The prototype of a locally
coherent Grothendieck category is the category

r€:=(mod-R, Ab)

whose objects are the additive functors F: mod-R— Ab (Ab denotes the
category of abelian groups) and whose morphisms are the natural transforma-
tions. The methods of this paper will illustrate how the category %€ is used to
study left R-modules. Indeed, we refer to the category € as the category of
generalized left R-modules on account of the right exact, fully faithful functor
rM — —®r M from the category R-Mod of all left R-modules to z €.

Let fp-(zx€) denote the full subcategory of the finitely presented objects of z%.
For example (cf. [1, Lemma 6.1]), if xM is a finitely presented left R-module,
then —®; M is an object of fp-(z€). It is a key observation of Auslander [1,
Theorem 2.2] that the category fp-(z€) is abelian. Equivalently (cf. Theorem
1.6), every finitely presented object B € €6 is coherent, that is, B is finitely
presented and every finitely generated subobject of B is also finitely presented. It
follows from Yoneda’s Lemma that z € is locally finitely presented and therefore
locally coherent (see definition below).

Ziegler [37] associates to the ring R a topological space whose points are the
isomorphism types of the pure-injective indecomposable left R-modules zU. This
space is homeomorphic, via the function U — — ®y U, to the topological space
Zg(z%6) whose points are the isomorphism types of the injective indecomposable
objects of the category ;% and an open basis of Zg(z %) is given by the collection
of subsets

O(C):={E € Zg(x€): Hom, (C, E)# 0}

as C ranges over the coherent objects of €. This topological space is called the
Ziegler spectrum of €.

The notion of a coherent object makes sense in any Grothendieck category €
and such a category is said to be locally coherent if every object X € € may be
represented as a direct limit

X =lim G;
—_—

of coherent objects C; of €. Locally coherent categories were introduced by Roos
[31]. The full subcategory of coherent objects of 4 is denoted by coh-€¢. The
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Ziegler spectrum Zg(%) of a locally coherent Grothendieck category € is defined
as for z%.

Although this paper contains no model theory per se, the point is to survey in
the category-theoretic idiom model-theoretic methods (cf. [27,37]) used in the
study of modules. The categorical setting for these methods is that of a locally
coherent Grothendieck category. As part of this paper’s introduction, we shall
recall a portion of Gabriel’s theory [12] of localization for this special case. In the
latter sections, we apply the methods developed in the paper to treat recent
results of Crawley-Boevey [8].

The main result of this paper is a Nullstellensatz for locally coherent
Grothendieck categories. To understand its statement, recall that a full sub-
category & < coh-€ is called a Serre subcategory if for every short exact sequence

0-A—-B—-C—0

in coh-%, we have that B € & if and only if A, C € & Serre subcategories of
coh-€ arise in the following way. An object X of € is called coh-injective if
Ext(C, X) =0 for every coherent object C. (In this setting, coh-injectivity is
equivalent to the more familiar notion of fp-injectivity [19].) Then the sub-
category of coh-€,

F(X):={C e coh-€: Hom(C, X) =0},

is a Serre subcategory. In %, the coh-injective objects have been characterized
[19, Theorem B.15] as precisely the objects of the form — ®; M where M is a left
R-module. In this way R-Mod is recovered within € and a Serre subcategory of
coh-¥ is associated to every left R-module.

TueoreM 3.8. Let € be a locally coherent Grothendieck category. There is an
inclusion-preserving bijective correspondence between the Serre subcategories & of
coh-€ and the open subsets O of Zg(€). This correspondence is given by the
functions

S 0(%)= U 6(C)

and
O0— Fy:={C e coh-€¢: 0(C) < 0}

which are mutual inverses.

The advantage of working in the context of locally coherent Grothendieck
categories is that one can show that every locally closed subset /N O (here I
denotes a closed set) of the Ziegler spectrum Zg(€) of a locally coherent
Grothendieck category % is homeomorphic to the Ziegler spectrum of a
subcategory of € which is also locally coherent Grothendieck. For the case of an
open set O or a closed set I, this is done as follows.

0. By Theorem 3.8, there is a Serre subcategory & =coh-€ such that
0= 0(%). Let & [9] denote the full subcategory of € of those objects Y which
may be represented as a direct limit

Y =lim S;
—
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of objects from &. Then Zis a locally coherent category whose Ziegler spectrum
Zg(¥) is homeomorphic to O(¥).

I If 1= Zg(¥€) is closed, let &¥ < coh-€ be such that O(¥) =Zg(€)\1. To the
subcategory F < € is associated the torsion functor

which assigns to an object X of € its maximal subobject from % The functor ty is
left exact and the object X is called ¥-closed if t(X)=1t,4+(X)=0 where t,
denotes first higher derived functor of r,. The full subcategory €/ of ¥-closed
objects is a locally coherent Grothendieck category whose Ziegler spectrum
Zg(%/ %) is homeomorphic to I.

Thus every Serre subcateogry & of coh-€ gives a partition of the Ziegler
spectrum of €,
Zg(6)=7g(F) UV Zg(617),

into an open and a closed set.

We shall consider three general sets of points of the left Ziegler spectrum
Zg(z %) of the ring R.

(1) The injective indecomposables, that is, the points —® E where zE is an
indecomposable injective R-module.

(2) If xM is a finitely presented R-module with local endomorphism ring, then
the injective envelope E(—®z M) of —®; M is a point of Zg(z%€). If the ring R
contains a complete local noetherian ring in its centre and R is finitely generated
as a module over this subring, then - ®z M = E(-®z M) is already an injective
object of z€. The set of such points is dense in the left Ziegler spectrum of such
an R.

Similar considerations apply to an artin algebra A, so that if yM is a finitely
generated indecomposable A-module, then — &, M is a point of Zg(, 6). By [27,
Corollary 13.4], these are precisely the isolated points of Zg(, €).

(3) An endofinite R-module M is one that has finite length as a module over
its endomorphism ring Endz M. This finite length is called the endolength of M.
Every endofinite indecomposable R-module is a point of the left Ziegler spectrum
of R. We prove (cf. Corollary 9.4) that for every natural number n, the set
Zg,(r6) of points of endolength at most # is closed. In Theorem 9.5, the closed
subset Zg,(z€) is shown to be the field spectrum of R in the sense of Cohn [7]
endowed with the constructible topology. The work [8] of Crawley-Boevey shows
that for an infinite artin algebra A, the Second Brauer—Thrall Conjecture is
equivalent to the existence of a non-isolated endofinite point in Zg(, 6).

The Nullstellensatz (Theorem 3.8) assumes the rdle of Ziegler’s [37, Lemma
4.7] which is, in the model theory of modules, the most often applied form of
Godel’s Compactness Theorem. The following is an example of such an
application.

CoroLLARY 3.9 (Ziegler [37, Theorem 4.9]). Let € be a locally coherent
Grothendieck category. An open subset O of Zg(6) is quasi-compact if and only if
it is one of the basic open subsets O(C) where C is a coherent object of €.

For the ring R, the forgetful functor - ®; R: mod-R — Ab is a coherent object
of % and therefore the left Ziegler spectrum of R, Zg(x%)= O0(-®xR), is a
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quasi-compact topological space. Quasi-compactness is the property of the
Ziegler spectrum of a ring used in proving the existence of large (not finitely
generated) modules. If the ring is an artin algebra A, which is not of finite
representation type, then an accumulation point of the set of isolated points
witnesses the following result of Auslander.

ProrosiTioN 7.9 (Auslander [3; 27, Corollary 13.4]). If A is an artin algebra
that is not of finite representation type, then there exists a (pure-injective)
indecomposable A-module which is not finitely generated.

Similarly, an accumulation point of the isolated points of Zg,(, 6) witnesses the
following result of Crawley-Boevey.

THEOREM 9.6 (Crawley-Boevey [8, Theorem 9.6]). Let A be an artin algebra and
n a natural number. If there are infinitely many finitely generated indecomposable
A-modules of endolength at most n, then there is an indecomposable A-module of
endolength at most n which is not finitely generated.

The categorical duality D: (coh-z6)°®—coh-%; of Auslander [4] and
Gruson and Jensen [16] is described in §5. In the model theory of modules,
this corresponds to elementary duality, introduced by Prest [27, Chapter 8]
and developed in [17]. If ¥ <=coh-;% is a Serre subcategory, we let D¥ =
{DS: § € ¥} = coh-€y denote the dual Serre subcategory of 6.

THEOREM 5.5 [17, Proposition 4.4]. Let R be a ring. There is an inclusion-
preserving bijective correspondence between the Serre subcategories of coh-(z%)
and those of coh-(€6y) given by

F—DY.

The induced map O(¥)— O(DY) gives an isomorphism between the topologies,
that is, the respective algebras of open sets, of the left and right Ziegler spectra
of R.

In the final section, Theorem 3.8 is applied to the characters [8] of Crawley-
Boevey. These generalize the Sylvester rank functions of Schofield [33]. The
Grothendieck group Ky(coh-€) is endowed with a pre-order and a character
& Ko(coh-€)— Z (the integers) is defined to be any order-preserving group
homomorphism. An irreducible character is one that is not the sum of two
non-zero characters. We give a proof of the following result of Crawley-Boevey.

THEOREM 8.6 (Crawley-Boevey [8, Theorem 5.2]). Every character
& Ko(Coh-€)— Z

is expressible uniquely as a sum X;_;n;& of (possibly infinitely many) irreducible
characters &
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The paper is organized as follows. The first two sections are preliminary,
collecting the necessary category-theoretic background. The Ziegler spectrum is
defined in the third section where its main properties are described. The
remaining sections are devoted to the Ziegler spectrum of a ring R. Examples are
given in the fourth section. Duality is treated in the fifth section. In the sixth
section, we briefly discuss finite matrix subgroups. In the following section,
examples of Serre subcategories are given and we show how they are used in the
analysis of R-modules. In the final two sections, we study the Grothendieck group
Ky(coh-€) and its characters.

Throughout this article, R will denote an associative ring with identity. By the
unqualified term R-module is meant a unital left R-module. The category of
R-modules is denoted by R-Mod; the category of right (unital) R-modules by
Mod-R. If R is the ring of integers, then R-Mod is abbreviated to Ab. The full
subcategory of R-Mod (Mod-R) of the finitely presented (right) R-modules is
denoted by R-mod (mod-R).

Throughout this article, € will denote a Grothendieck category. By that we
mean that € is an abelian category with a generator, that colimits exist in € and
that direct limits are exact. We shall freely invoke the fact [34, Corollary X.4.3]
that every object X e % has an injective envelope E(X) € €.

If A is a category, then by a subcategory &/ of % we shall always mean a full
subcategory of 9. For concepts such as subobject, epimorphism, injectivity, etc.
we shall use the prefix &f/-subobject or AB-subobject to indicate the context. This
prefix may be omitted if the concept in question is absolute with respect to the
inclusion & = . To indicate the context of an operation, for example Ker 7,
E(X) or lln)X,-, we shall use a subscript, for example, Ker,, 1, E,(X), etc. which
may also be omitted in case of absoluteness.

The principal section of the paper is the third, in which the Ziegler spectrum is
defined. Most of the results are categorical variants of results of Ziegler [37]. The
present point of view, which stresses Serre subcategories is best encapsulated by
Theorem 3.8 which adapts a result [26, Theorem 3.3] of Prest to the Ziegler
spectrum. The model-theoretic variant of Theorem 3.8 was announced and
proved in the Autumn of 1991 before a seminar at Brandeis University. I am
grateful to the late Professor M. Auslander for giving me such an opportunity.
His encouragement and generous contribution of ideas to this paper were a great
inspiration. I also wish to thank W. W. Crawley-Boevey for many helpful
suggestions.

1. Preliminaries

In this preliminary section, locally coherent categories are defined and we
gather the information about such categories necessary for the sequel. To begin,
we describe the subcategories of a Grothendieck category € which consist of the
finitely generated objects, the finitely presented objects and the coherent objects
respectively. These categories are ordered by the inclusions

€ = fg-€ = fp-€ = coh-€.

Given objects A, B € €, the notation A < B signifies that A is a subobject of B; a
representative monomorphism w will be denoted by w: A < B. For notation, we
tend to adhere to the reference [34].
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1.1. Finitely presented objects
An object A € € is finitely generated if whenever there are subobjects A; <A
for i e I satisfying
A= 2 Ai:
iel

then there is already a finite subset J = [ such that

A = E Ai'
iel
The subcategory of finitely generated objects is denoted by fg-€. The category 6
is locally7 finitely generated if every object X e 4 is a directed sum

X=X
iel
of finitely generated subobjects X;. Clearly, the category R-Mod is locally finitely
generated. All Grothendieck categories encountered in the sequel will be locally
finitely generated.

A finitely generated object B e fg-€ is finitely presented [34, § 1.3] if every
epimorphism n: A— B with A finitely generated has a finitely generated kernel
Ker 1. The subcategory of finitely presented objects of € is denoted by fp-€. The
respective categories of finitely presented R-modules are denoted by R-mod = fp-
(R-Mod) and mod-R = fp-(Mod-R). The subcategory fp-% of € is closed under
extensions, that is, if

0>X—->Y—>Z-0

is a short exact sequence in € with X and Z finitely presented, then Y is also
finitely presented. If, on the other hand, the object Y is finitely presented, then Z
is finitely presented if and only if X is finitely generated.

The most obvious example of a finitely presented object of € is a finitely
generated projective object P. One says that € has enough finitely generated
projectives if every finitely generated object A € € admits an epimorphism
n: P— A with P a finitely generated projective object. For example, the category
R-Mod of left R-modules has enough finitely generated projectives. If € has
enough finitely generated projectives, then by the remarks above, every finitely
presented object B € € is isomorphic to the cokernel of a morphism between
finitely generated projective objects. This is expressed by an exact sequence

P—P,—B—0

called a projective presentation of B. In the case of R-modules, these projectives
may be taken free of finite rank.
The category € is locally finitely presented if every object X e € is a direct limit

X =lim B;
—

of finitely presented objects B,. In such a category, every finitely generated object
A € € admits an epimorphism 7n: B — A from a finitely presented object B.

tIf p is a property of an object of €, then € is said to be locally p if there is a class of generators
with the property p. As p varies, we shall opt for more operative definitions, but in each instance, the
reader may check that the definition we give is equivalent to the standard.
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ProrosiTion 1.1 [23, Appendice]. If the Grothendieck category € is locally
finitely generated with enough finitely generated projectives, then € is locally
finitely presented.

In particular, the category R-Mod of left R-modules is locally finitely
presented.

ProposiTioN 1.2 [34, Proposition V.3.4]. Let € be locally finitely generated. An
object B € € is finitely presented if and only if the functor

Home(B, -): €— Ab

commutes with direct limits.

1.2. Functor categories

Let % be a small preadditive category. We denote by (%, Ab) (cf. [34, § IV.7])
the category whose objects are the additive functors F: B— Ab and whose
morphisms are the natural transformations between functors. In this section we
shall apply Proposition 1.1 to show that such a category is a locally finitely
presented Grothendieck category. That it is Grothendieck follows from [34,
Example V.2.2].

For F, G € (8, Ab), we say that F is subfunctor of G, or F < G, if for each
X e %, there is given an inclusion F(X) < G(X) of abelian groups and whenever
f+ X — Y is a B-morphism, then F(f) = G(f)|rx) For example, if @: F—Gisa
(%, Ab)-morphism, then the kernel of «, defined for each X € % by

(Ker @)(X) := Ker ay,
is a subfunctor of F. Similarly, the image of «, defined by
(Im @)(X) :=Im ay,

is a subfunctor of G. Finally, the cokernel of « is defined as the quotient functor
Coker a := G/Im a. It is readily verified that the diagram

B

F2 62, H

of (%, Ab)-morphisms is exact if and only if Im a = Ker 3, that is, if and only if
for each X e %, the sequence of Ab-morphisms

FOX) 25 60 P5 v

is exact.
A functor F e (%, Ab) is called representable if it is isomorphic to one of the
functors

(X, -):= Homg(X, -)

where X e %B. Every representable functor is an example of a finitely generated
functor. For, suppose that

(X: _)22 E

iel
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There is a finite subset J of I such that 1, e (3., F)(X) =3, E(X) = (X, X). It
is easy to check that then (X, -)=2X,_, F.

YoNEDA’S LEMMA. Let X € B and F € (B, Ab). There is an isomorphism of
abelian groups

@X'F: Hom(%,Ab)[(X, —), F] —> F(X)
defined by Oy r(n) = nx(lx) which is natural in both X and F.

It is immediate from Yoneda’s Lemma that the functor X — (X, -) is full, that
is, that every (%, Ab)-morphism 7: (X, -)— (Y, -) is of the form n = (f, -) for
some AB-morphism f: Y — X.

Another consequence is that every representable functor is projective. For, let

@ B

0 F G H 0

be a short exact sequence in (%, Ab). Applying the functor Hom g ap)[(X, -), ?]
gives a sequence which, by Yoneda’s Lemma, is isomorphic to the exact sequence

0 FOXO) 25 60 25 mooy — o,

ProrosiTioN 1.3 [34, Corollary IV.7.5]. Let B be a small preadditive category.
The functor category (B, Ab) is locally finitely generated with enough finitely
generated projectives. Therefore (B, Ab) is a locally finitely presented Grothen-
dieck category.

Proof. First, we will note that (%, Ab) is locally finitely generated. Let
F € (%, Ab). For every X € @ and x € F(X), there is, by Yoneda’s Lemma, a
morphism 1 = Oy (x): (X, =) — F such that x = ny(1y). As @ is small,

F=3 (3 meyw)

XeRB xeF(X)

and each Im ©x'%(x), a quotient functor of (X, -), is finitely generated. If F is
finitely generated, then F is already the sum of finitely many of the factors and is
therefore a quotient functor of a finite coproduct of representable functors. But
then it is a quotient of a finitely generated projective object.

1.3. Coherent objects
A subcategory &f = € is exact if it is abelian and the inclusion functor of & into
€ is exact.

ProrosiTion 1.4 [11, Theorem 3.41]. A subcategory & of € is an exact
subcategory if and only if the following two conditions hold.

(1) If Ay, A, € A then the coproduct A, 11 A, is an object of HA.

(2) If 3: A;— A, is a morphism in s, then both the 6-kernel and 6-cokernel of
m are objects of .

Since the subcategory fp-€ of € is closed under extensions, Condition (1) of
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Proposition 1.4 is satisfied. And if n: B;— B, is a morphism in fp-€¢, then
Coker 7 is also finitely presented. However, the kernel Ker n is not necessarily
finitely presented. Because the category fp-% is not always an exact subcategory
of €, we will restrict our attention to a smaller category which is exact.

A finitely presented object C e € is coherent if every finitely generated
subobject B < C is finitely presented. Equivalently, every epimorphism n: C— A
with A finitely presented has a finitely presented kernel. Evidently, a finitely
generated subobject of a coherent object is also coherent. The subcategory of
coherent objects of € is denoted by coh-€.

ProposiTioN 1.5 [1, p. 199]. The category coh-€ is an exact subcategory of €
closed under extensions.

Proof. Let m: C;— C, be a morphism in coh-€. Since Imn is a finitely
generated subobject of C,, it is finitely presented. Then Kern is a finitely
generated subobject of C; and is therefore coherent. To check that Coker n =
C,/Im 7 is coherent, let Y be a finitely generated subobject of C,/Im n. Its
preimage in C; is a finitely generated subobject Y, of C, containing Im 5. By the
hypothesis, Y is then finitely presented and therefore so is Y = Yy/Im 7.

Now we verify that coh-% is closed under extensions. Let

0 C, Y C, 0

be a short exact sequence with C; and C, coherent. If X < Y is finitely generated,
we get a commutative diagram

0 — A X A, > 0
0 Cl a Y B Cz_-_—)o

with exact rows and each of the vertical morphisms is monic (A, =Im [B|x]).
Now A, is a finitely generated subobject of the coherent object C, and is
therefore finitely presented. But since X is finitely generated, so is A;. Now A, is
a finitely generated subobject of the coherent object C, and is therefore finitely
presented. As fp-€ is closed under extensions, X € fp-%.

The Grothendieck category € is locally coherent if every object of € is a direct
limit of coherent objects.

THEOREM 1.6 [31, § 2]. The following conditions on a locally finitely presented
Grothendieck category € are equivalent:

(1) € is locally coherent;
(2) fp-€ = coh-%;
(3) fp-€ is an exact subcategory of €;
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(4) fp-€ is an abelian category.

Proof. 1t is clear from Proposition 1.5 that Condition (2) implies the others. To
see that (1) = (2), note that if € is locally coherent, then every finitely presented
B is the quotient of a coherent object and is therefore coherent. Thus Conditions
(1) and (2) are equivalent. The implication (3) => (4) is just part of the definition
of an exact subcategory, so it remains to prove that (4)= (2). Let B e fp-% and
let A < B be finitely generated. The quotient map /. B— B/A is a morphism in
the category fp-6. Let k: A'— B be the (fp-€)-kernel of 7 We shall prove that
k is the €-kernel of 7T Then k is a €-monomorphism and A= A" e fp-€.

Suppose that y: X — B satisfies 7y =0 and write X = h_m)X, as a direct limit of
finitely presented objects X; with the compatible family of morphisms «;: X; — X.
Each vyq; is a morphism in fp-€ and thus factors uniquely through «. But then vy
factors through k uniquely.

CororLLarY 1.7 [23, Appendice]. If the Grothendieck category € is locally
finitely generated with enough finitely generated coherent projectives, then € is
locally coherent.

Proof. Because coh-€ is abelian and every finitely presented object is the
cokernel of a morphism between finitely generated projective objects, every
finitely presented object is coherent.

For example, a ring R is left coherent if every finitely generated left ideal / = zR
is a finitely presented left R-module. In other words, the object xR of R-Mod is
coherent. Consequently, every finitely generated projective left R-module is
coherent and so, by the corollary, R-Mod is locally coherent.

2. Examples of locally coherent categories

In this section, we present some examples of locally coherent Grothendieck
categories and verify that they are indeed such. To begin we note that many
functor categories are locally coherent Grothendieck categories and it is
instructive for the reader to keep these examples in mind throughout the sequel.
Let € denote a locally coherent Grothendieck category and & a Serre
subcategory (defined below) of coh-€. In each of the two subsections a method is
given of obtaining from & a subcategory of € that is also a locally coherent
Grothendieck category. All the results in this section are classical, often true in
greater generality (cf. [12,25]), but our pedestrian approach is intended to lend
concreteness to the categories of the title. Throughout this section as well as the
sequel, € will denote a locally coherent Grothendieck category.

ProrosiTion 2.1 [1, Theorem 2.2.b; 34, Corollary 1V.7.5]. Let B be a small
additive category, that is, B is preadditive, has finite products/coproducts and
idempotents split in B. Then every finitely generated projective object in (B, AD) is
representable. 1f B has cokernels, then (B, Ab) is locally coherent and coh-
(9B, Ab) has projective global dimension at most 2.

Proof. By the proof of Proposition 1.3, every finitely generated projective
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object P € (%4, Ab) is a coproduct factor of a finite coproduct of representable
objects [[/~1 (B:, =)= (]]/~1 B;, ). This coproduct factor P of (][], B;, -)
corresponds to an idempotent in

End(%,Ab)<I:_l Bi) —) = Endg3<I:_! Bl>

As idempotents split in 9, this corresponds to a coproduct factor B of [I7; B;
which has the property that (B, —) = P.

By Proposition 1.7, it suffices to show that every finitely generated projective
object, that is, every representable object of (%, Ab), is coherent. So let
A e R and let X = (A, —) be a finitely generated subfunctor. An epimorphism
n: (B,-)— X lifts to a morphism 7: (B, -)— (A, —) which, by Yoneda’s
Lemma, has the form n = (f, —) for some %B-morphism f: A— B. By hypothesis,
C = Coker f € B and the exact sequence

Al B8 o

in & induces an exact sequence

0 —— (C -) @) (B, -) @ A4,-) — (4,)/ X — 0
in (%, Ab) which gives a projective presentation of X =Im(f, -). If F e (%, Ab)
is coherent, then it is isomorphic to a functor of the form (A, -)/X as above and
so has projective resolution of length at most 2.

Let of be a locally finitely presented Grothendieck category. Then fp-of is an
additive category with cokernels. By Proposition 2.1, the functor category
(fp-+, Ab) is locally coherent. For example, if R is a ring then the functor
category

r%6 = (mod-R, Ab)

is a locally coherent Grothendieck category. This category % is called the
category of generalized left R-modules on account of the fully faithful right exact
functor —®x ?: R-Mod — € defined by the rule M +— — &, M. If M is a finitely
presented left R-module, it is proved in [1, Lemma 6.1] that the functor — ®z M is
a coherent object of zC. To see this, consider a presentation of xM by finitely
generated free modules

R —— R™W —— (M — 0.
As the tensor functor is right exact, this gives an exact sequence in z 6,
—®xR"™ 5 -—®xR™—>-QrM—0,

which is a presentation of —®x M in € by finitely generated projective objects
(since —®@x R = (-®z R)" = (R, -)™).

If € is a locally coherent Grothendieck category, then coh-€ and hence
(coh-%)° are abelian categories. By Proposition 2.1, the functor category
((coh-%)°P, Ab) is also a locally coherent Grothendieck category. For example, if
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R is a left coherent ring, then the functor category ((R-mod)°P, Ab) is a locally
coherent Grothendieck category.

2.1. Hereditary torsion subcategories of finite type

A subcategory I < € is a torsion subcategory [34, Chapter VI] if it is closed
under quotient objects, extensions and coproducts. The torsion subcategory
I = € is hereditary if, in addition, it is closed under subobjects. If &/ = € is an
arbitrary subcategory, we denote by J(&f) the smallest hereditary torsion
subcategory of € to contain .

Let I < € be a hereditary torsion subcategory. It is clear that an object T € I
is 6-finitely generated if and only if it is J-finitely generated. Hence the equation

fg-7 = I Nfg-%.

From the definition of a finitely presented object, it follows that fp-J = I N fp-6.
As we are assuming that €4 is locally coherent, we have that fp-€ = coh-€ and a
similar argument yields the inclusion

coh-9 2 J N coh-4.

In this subsection, we consider hereditary torsion subcategories J of € that are
of finite type, meaning that they have the form 7 = J(sf) where & consists of
coherent objects. We may write J = J(¥) where ¥ =9 Ncoh-€. Evidently,
such a subcategory & is a Serre subcategory of coh-€, that is, if

0—-A—-B—-C—=0

is a short exact sequence in coh-€, then B € & if and only if A, C € & Thus a
hereditary torsion subcategory of finite type has the general form 7 (%) where &
is a Serre subcategory of coh-%.

Serre subcategories & of coh-€ arise in the following natural way. An
object M € € is coh-injective if Extl,(C, M)=0 for each C e coh-€. Then the
subcategory

F(M) ={C e coh-%: (C, M) =0}

is Serre. For, let 0-A—B—C—0 be a short exact sequence in coh-%.
Applying the functor (-, M) gives an exact sequence

0— (C, M)— (B, M)— (A, M)— Ext'(C, M) =0

which shows that B € #(M) if and only if A, C e #(M). We shall note later
(Corollary 3.11) that every Serre subcategory of coh-€ arises in this fashion.

ProrosiTioN 2.2 [19, Theorem B.15]. Let B be a small additive category with
cokernels. An object M € (9B, Ab) is coh-injective if and only if it is right exact.

Proof. Let F e coh-(%4, Ab) with a projective presentation

(B’_)@) (A,—)—)F—)O
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As in the proof of Proposition 2.1, this may be extended to a projective resolution
of F with C = Coker f,

(f-)

0—— (C,-) — B,-) —> A,-) —> F —— 0.
If M e (%, Ab) is coh-injective, then the sequence

oy, ) LMD

is exact. By Yoneda’s Lemma, this sequence is isomorphic to the sequence

M(A)—>M(B)—->M(C)—0

((B) _), M) - ((C’ _)) M) — 0

yielding the right exactness of M. Conversely, if M is right exact, retracing this
argument shows that Ext'(F, M) = 0 for any coherent object F € (%, Ab).

An argument as in [34, Proposition I1V.10.1] shows that every right exact
functor M in z%€ = (mod-R, Ab) is of the form M =-®z M(Rg). Thus the
category R-Mod of left R-modules is recovered as the subcategory of coh-
injective objects of the category €.

Let ¥<=coh-€ be a Serre subcategory. Denote by F the subcategory of €
which consists of direct limits of objects in . We shall show that = J(¥). One
direction is easily seen. Every direct limit lim S; is the quotient of a coproduct of
objects from & and therefore lies in I (73 Indeed, an argument as in [23,
Appendice] shows that the objects of P are precisely those objects X of € which
admit an epimorphism n: [I,.;S;— X from a coproduct of objects in &.

ProrosiTioN 2.3. The following are equivalent for a finitely generated object
A€ €

(1) Aed;
(2) there is an epimorphism n: S — A with S € &,

(3) if B ecoh-6 and e: B— A is an epimorphism, then € factors through a
quotient S of B which lies in &.

Proof. The equivalence of Conditions (1) and (2) is clear from the remarks
above together with the fact that & is closed under finite coproducts. Evidently,
Condition (3) implies Condition (2). So assume Condition (2) with intent to prove
Condition (3). Write Kern =2,_;S; as a directed union of finitely generated
subobjects of S. By the exactness of direct limit functors, A =1im(S/S;) and
therefore by Proposition 1.2, any epimorphism &: B— A will factomrough one
of the finitely presented objects S/S; of & as in the following diagram

B —2%  §/S,

1/

A

But then ¢ factors through the coherent quotient Im « € &.
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The characterization of & mentioned above ensures that & is closed under
coproducts, quotient objects and therefore, by [34, Proposition 1V.8.4], colimits.
So to check that Y e & it suffices to verify the same for every finitely generated
subobject A of Y.

ProrosITION 2.4. The subcategory F of € is closed under subobjects. An object
X e€is in & if and only if any morphism «: B— X with B € coh-€ factors
through an object S € &.

Proof. Suppose A<11mS is finitely generated. It is enough to show that
AeZ If B € € is coherent with an epimorphism &: B— A, then by Proposition
1.2, ¢ factors through one of the §;. By Proposition 2.3, A e F. To prove the
second statement, apply Proposition 2.3 to Im «.

THEOREM 2.5. Let T < € be a hereditary torsion subcategory of finite type. If &
is the Serre subcategory I M coh-€ of coh-6, then T =%
Proof. It remains to be seen that #is closed under extensions. So let

T
0 X Y Y/X 0

be a short exact sequence in € such that X, Y/X e & and consider a morphism
a: B— Y with B € coh-€. We must prove that « factors through an object in &.
We know that m factors through a quotient B/A in &. The finitely generated
subobject A < B is then coherent and we have a commutative diagram

0 A B B/A —— 0
N
0 X Y Y/IX — 0
T

with exact rows. As X € &, P factors through a quotient A/K e ¥ where
K=<KerB=<Kera. Thus a factors through the quotient object B/K. Now
K<A<B with B/A and A/K in &. As ¥ is closed under extensions, B/K € &
and therefore Y € &,

COROLLARY 2.6. Let I = € be a hereditary torsion subcategory of finite type.
Then

coh-7 = J N coh-4.

Proof. Let A e coh-7. By Theorem 2.5 and Proposition 2.3 there is an
epimorphism 7n: S—A with S € 9 Ncoh-€ =coh-J. Now Kern is J-finitely
generated and hence 4-finitely generated and therefore ¥-coherent. But then A
is 6-coherent.

CoROLLARY 2.7. Let ¥ < coh-€ be a Serre subcategory. The hereditary torsion
subcategory I (&) of finite type is a locally coherent Grothendieck category.
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Proof. We have noted already how J(¥) is closed under %-colimits. Since
these are also J(¥)-colimits, 7 (%) is closed under such limits. As J(¥) is an
exact subcategory, direct limits are exact in J () and by the definition of ¥ every
object in I(&) is a direct limit of J-coherent objects. The coproduct [ [s.Sis a
generator of I

For example, the category Ab of abelian groups is a locally coherent
Grothendieck category and the torsion groups form a hereditary torsion
subcategory Tors of finite type. Thus Tors is a locally coherent Grothendieck
category. Furthermore (cf. [34, Example 1V.4.3]), Tors has no non-zero projective
objects.

THEOREM 2.8. There is an inclusion-preserving bijective correspondence between
Serre subcategories & of coh-€ and hereditary torsion subcategories I of € of finite
type. This correspondence is given by the functions

F—TJ(F)=
I+ coh-9 = T Ncoh-%,

which are mutual inverses.

Let # be a hereditary torsion subcategory of € of finite type. The correspond-
ing torsion functor is denoted by

This functor assigns to an object X e % the maximal subobject 7,(X) < X from ¥,
The subobject 7,(X) is unique by the properties of a torsion subcategory. If
X € Pand Y € €, then there is an isomorphism

HOH’I?(X, tf/(Y)) = HOIH(@(X, Y)

natural in both X and Y. This is because every morphism n: X — Y in € with
X e & has the property that Im n <z,(Y). In short, the torsion functor 7y is the
right adjoint of the inclusion functor ¥ < €.

2.2. Localization

Throughout this section, ¥ < € will denote a hereditary torsion subcategory of
finite type and ¢ =t the corresponding torsion functor. We shall describe in this
section another category €/ of € which is also a locally coherent Grothendieck
category.

DEFINITION. An object X e € is P-torsion-free if t(X)=0. Let ¢! denote the
first higher derived functor of the left exact functor . An %-torsion-free object
X € € is P-closed if t'(X)=0. The subcategory of F-closed objects of € is
denoted by €/ This category €/ is called the quotient category of € by %,

If E e €is an injective object, then t'(E) =0, so E is P-closed if and only if it is
P-torsion-free. Let X be P-torsion-free. Because the torsion theory is hereditary,
the injective envelope E(X) is also #-torsion-free. The short exact sequence

- X—>EX)—EX)/X—0



518 IVO HERZOG

gives rise to a long exact sequence
0= t(X)—=t(E(X))=0—=t(E(X)/X)—=t'(X)—t"(E(X))=0
showing that 1'(X) = 1(E(X)/X).

PROPOSITION 2.9. Let X € € be P-torsion -free. Then X is P-closed if and only if
there is no J-torsion-free (essential) extension Y =X with Y/X € &,

Proof. The £r0p051t10n follows immediately from the remarks above once we
show that an #-torsion-free extension Y = X with Y/X % must be essential. But
fA<Yand ANX=0,then A e % and therefore A = 0.

Given any short exact sequence 0—X —Y —Z— 0 in €, there is a long exact
sequence in &,
0—t(X)—=t(Y)—>t(Z)—1'(X)—t'(Y)—>1t'(2).
From this long exact sequence, we see that when Z is P-closed, then X is

P-closed if and only if Y is.

_ Proposition 2.10. If a: Y — W is a morphism in €/ F, then the 6-kernel of « is
S-closed.

Proof. Let X =Kerg @ and Z =Im¢ «. Both X and Z are F-torsion-free and
we have « as part of a short exact sequence

e
0 X Y Z 0.

By the long exact sequence and the hypothesis t'(Y) =0, it follows that ¢'(X) =0
and that X € 6/%.

In particular, a %/%-morphism is_a monomorphism if and only if it is a
%-monomorphism. So for A, B € €/¥ the relation A<B holds in €/% if and
only if it holds in €.

DEFINITION. Let X e €. A localization of X at & is a morphism Ay: X — X,
such that X, is P-closed satisfying the condition that given any morphism
a: X — W with W an P-closed object, there is a unique morphism ay: Xo— W
such that the diagram

X—/\_X)Xy

|

w

is commutative.

It is clear from the definition that a localization of X at & is unique up to
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isomorphism. If X € € is F-torsion-free, then the localization of X at & is
constructed as follows. Let X, = X be a maximal essential extension with respect
to the condition X4/X € & Such an X is clearly P-torsion-free and by
Proposition 2.9, it is F-closed. If a: X >W is a morphism with W an P-closed
object, we get a morphism of short exact sequences

0 X Xy XglX — 0

0 — W —— E(W) —— E(W)/W —— 0

The morphism ay/a =0 because Xy /X € % and E(W)/W is P-torsion-free so
that Im o = W. The extension . is unique. For, another aj would induce a
morphism ay— af: Xo/X — W which must be zero since W is F-torsion-free.
Thus the extension X, = X is indeed the localization of X at #. In particular, if
X<Wand Wis :'?—closed, then X< W.

To construct the localization at & of a general object X € 4, first apply the
quotient map T X — X/t(X). It is clear that any morphism from X to an
P-closed object factors uniquely through 7 Then it is easily seen that a
localization of X at & is obtained by composing this quotient map with the
localization of the -torsion-free object X /t(X), that is, Ax = Ax,x)7 It follows
that X, =0 if and only if X e % and so for a coherent object C we have, by
Theorem 2.8, that C, =0 if and only if C € &. Because localization of X at Fis a
solution to a universal problem, we have the following.

ProrosiTiON 2.11. If X € € and Y € 6/ P, then there is an isomorphism
Hom(X, Y) =Homg(Xy, Y)

natural both in X and Y. In words, the localization functor (-)g: €— 6/ P is the
left adjoint of the inclusion functor €/¥ < €.

A subcategory B < € is called Giraud [34, p.214] if the inclusion functor has a
left adjoint that preserves kernels. By Propositions 2.10 and 2.11, the subcategory
6/% of € is Giraud. By [34, Propositions X.1.2 and X.1.3], every Giraud
subcategory is a Grothendieck category. Because a left adjoint preserves colimits
[34, Proposition 1V.9.3], it preserves cokernels and the localization functor

(-)y: €—€|F

is therefore exact. Another property [34, Proposition X.1.4] of a Giraud
subcategory which we shall need is that an object E € 6/ Fis €/ ?—injective if and
only if it is €-injective. The next few propositions are designed to show that the
Grothendieck category 6/ Fis locally coherent.

PROPOSITION 2.12. An object X in €/F is €] P-finitely generated if and only if it
is of the form X = Ay for some 6-finitely generated object A € €. Moreover, if
X e fg-(€/F) and Y<X is a 6-subobject such that X|Y € &, then there is a
@-finitely generated subobject A<Y such that X|A e ¥,

Proof. Let A e fg-€ and suppose that Ay, = X,7X; is a directed union in €
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By the absoluteness of monomorphisms, Ay = > X; is a directed union in 6. For
some i, ImA,<X; and therefore (ImA,)y=As<X, That any object in
fg-(€/ ?) is of this form will follow from the second statement.

Let X e fg-(4/%) and suppose that Y < X is a €-subobject such that X/Y e #.
Write Y =2X,A, as a directed union of %-finitely generated objects. Because
localization preserves colimits, X = Yy = X7 (A;). By hypothesis, X = (A;)4 for
some i and therefore X /A, e Z

Lemma 2.13. Let B efg-€. If n: X<Bgy is a subobject in € such that
wo: Xo<Bgy is also €] S-finitely generated, then there are a 6-finitely generated
subobject A< B and a commutative diagram

A>——> B

o o

X»—— B,
N
such that the composition Axa: A— X is a localization of A at &.

Proof. As By/Im Ay € P 50 is X/X NIm Ag. By Proposition 2.12, there is a
%-finitely generated subobject Y <X NIm Az such that X/Y e F Let ASBbea
finitely generated subobject such that Az(A) =Y. Then the restriction a = Az,
makes the diagram commute and the lifting a: A— X is a localization of A at &.

The lemma implies that if B is %-finitely generated and n: X —> By is a
£ /57—epimorphism with X a %/,E?-ﬁnitely generated object, then by replacing B
with an appropriate finitely generated subobject, we may assume that Img Az <
Img 7. Of course, if B is coherent, then so is the finitely generated subobject. The
lemma also yields the following.

ProrosiTioN 2.14. Let B € fg-€ and let 0— X — By— Z —0 be a short exact
sequence in 6/ FPwith X a €/ §’-ﬁnitely generated object. Then there is a short exact
sequence in € of €-finitely generated objects 0—A—> B — C—0 of which the
above sequence is a localization.

It is clear that if the object B above is assumed to be coherent, then the short
exact sequence 0—A— B— C— 0 lies in coh-%. The following result seems to
be new and has been independently noted by Krause [22].

ProvrosiTion 2.15. If C is 6-coherent, then Cyis €/ F-coherent.

Proof. We shall prove that if C is €-coherent, then Cg is %/?—ﬁnitely
presented. It then follows from Lemma 2.13 that Cg is C@/?—coherent because
every %/?—ﬁnitely generated subobject has the form Ay for some %-finitely
generated subobject A<C. Then A is %-coherent and A, is C@/?—ﬁnitely
presented.

Suppose 1: X —>Cqy is a %/?—epimorphism and X a € /?—ﬁnitely generated
object. By the remarks following Lemma 2.13, we may assume that Img n <
Img Ae. To prove that Cy is 6/ ?—ﬁnitely presented, it needs to be shown that
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Y =Kern is Cg/?—ﬁnitely generated. Write Y =24Y; as a directed union of
%-finitely generated subobjects. By Proposition 1.2, the morphism Ao: C—
Imn=X/Y=X/2.Y, Eli_m)X/Y,- factors through one of the X/Y;. Because the
localization o

Ac: C — XY, — Cqy

becomes a € /?—igomorphism upon localization, ay is a €/F-split-epimorphism.
As (X/Y))ois €/ -finitely generated, so is Kery 7 ay. Localizing the factorization

T
7 X — XY, — C,

gives that 1 =1y = (am)y = aym, and because Kerysm, = (Y;), is also €/%-
finitely generated, so is Ker 7.

If X € €is a direct limit X =lim C; of coherent objects C;, then localization
gives a representation of Xy =limy3(C;)s as a direct limit of €/ F-coherent
objects. In particular, every €/ F-coherent object X is a €/F-quotient of some Cy
with C a %-coherent object. By Proposition 2.14, X also has this form. These
observations give the following result.

THEOREM 2.16. The category €7 of (?-closed objects of € is a locally coherent
Grothendieck category. An object of €/ is coherent if and only if it has the form
Cy for some €-coherent object C.

For later reference, we prove next that the category €/ F as it is defined here
coincides with the standard definition (cf. [12]). Let A and B be coherent objects
of €. If A’<A is a coherent subobject such that A/A’ € &, then it is clear that
the localization of A’ at & factors though A as A, A'<A— Ay Dually, if
B’'=B is a coherent subobject in &, then the localization of B at & factors
through the localization of B/B' as Az: B—B/B'— (B/B')y. Thus Ay=(A")s
and By = (B/B')s and localization at & gives the following morphism of abelian
groups:

(=)g: Homg(A', B/B')— Hom,3(Ag, By). 1)

Define a partial order
(A,, B/B/) E (AH, B/BH)

on the set of pairs (A’, B/B') as above, by A”<A' and B"= B’. This partial
order is directed because two pairs (A, B/B’) and (A", B/B") have the common
upper bound (A' N A", B/(B'+ B")). When this relation holds, a morphism of
abelian groups

Homy(A’, B/B')— Homy(A”, B/B")
is induced by restriction to A” and congruence modulo B"/B’. These are the
structural morphisms of a directed system indexed by the pairs (A’, B/B’).
ProrosiTioN 2.17. Let A and B be coherent objects of 6. The morphism of
abelian groups
(—)g’: li_nl)HOm(g(A,, B/B/)% Homcg/gi(Ag’, Bgf)

induced by the compatible family (1) of morphisms is an isomorphism.
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Proof. With intent to prove the morphism monic, assume that o« e
lim Homg(A’ B/B') is such that @y =0. This means that for some represent-
ative a "e Homg(A', B/B’) of a, we have that af{(=0. Thus Imal e % Now
Imai{<B/B’' is coherent and so there is a coherent subobject B”"<B such
that B'<B” and B"/B’'=Imaj. Then the morphism induced by «' in
Hom(A’, B/B") is zero and hence a = 0.

With intent to verify surjectivity, assume n € Hom¢,3(Ay, By). If Az: B— By
is the localization of B at &%, then the subobject Y =Imy Ag = B/t(B) of By has
the property that B,/Y e . We shall find a coherent subobject A’ < A such that
AJA’ e & and the image of the restriction

A
A=A o4, 1 B,

is a subobject of Y = B/t(B). By Proposition 1.2, this morphism factors through
B/B’ for some B’ € & and the commutative diagram

A —% 5 B/B’

)‘Al J)\(B/B')

Ar = Bs
gives a preimage of 7, ey = n. But such a subobject A’ <A 1s given by Lemma
2.13 with X =7"'(Y). Clearly Ay/X € ¥ and so (A')y=Xy,= Ay and hence
A/A' € coh-F=¢.

3. The Ziegler spectrum

In this section, a topological space Zg(€) called the Ziegler spectrum is
associated to the locally coherent Grothendieck category €. This space was
introduced by Ziegler in his model-theoretic analysis [37] of modules.

Let & =coh-%, for i e I, be a collection of Serre subcategories of coh-%.
Evidently, the intersection ()., % is also a Serre subcategory of coh-%. So if
& =coh-€ is an arbitrary subcategory, we may talk about the smallest Serre
subcategory of coh-€ to contain &. This Serre subcategory is denoted by

VI =N {F<coh-¢: ¥ is Serre}.

To describe VZ intrinsically, we need the notion of a subquotient.

DEeriNtTION [37, Definition, p. 156]. Given objects A, B e coh-€, we say that A
is a subquotient of B, or A < B, if there is a filtration of B by coherent subobjects

such that A = B,/B,. In other words, A is isomorphic to a coherent subobject of a
coherent quotient object of B or, equivalently, A is isomorphic to a coherent
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quotient object of a coherent subobject of B. We shall use the notion of
subquotient only in the category of coherent objects.

It is easy to see that the relation A < B is transitive and it is immediate from the
definition of a Serre subcategory & that if B € & and A is a subquotient of B,
then A € & In particular, if B € ¥ < coh-€, then A e V.

PROPOSITION 3.1. A coherent object C e VI if and only if there are a finite
filtration of C by coherent subobjects

C:COBCl;...BCn:O

and, for every i <n, A; € & such that C;/C;,, < A,.

Proof. Suppose that C has such a filtration. Since each subquotient C;/C;., is
in V& and VZis closed under extensions, C € V. Conversely, it is easy to check
that the class of those C with such a filtration satisfies the axioms for a Serre
subcategory containing &.

Denote by Zg(€) the set of indecomposable injective objects of € (up to
isomorphism). This is indeed a set because every E € Zg(%) is the injective
envelope of a finitely generated object in € and fg-€ is skeletally small. To an
arbitrary subcategory & < coh-4, we associate the subset of Zg(%),

O(X) ={E e Zg(%): for some C € & Hom(C, E) #0}.
If ¥ ={C} is a singleton, we abbreviate 0(Z) to O(C). Thus O(X) = cce O(C).
ProrosiTionN 3.2. If A and B are coherent objects and A is a subquotient of B,

then O(A) < O(B). If 0~ A, — B— A,— 0 is a short exact sequence in coh-6, then
O(B) = 0(A,) U O(A,).

Proof. Let C be a coherent quotient object of B and let A < C be coherent. If
E € O(A), then a non-zero morphism 7n: A— E extends to C. This yields a
non-zero morphism n': B— E. To prove the second statement, apply the fact
that for E € Zg(%), the functor (-, E) is exact on €.

The next result follows from Propositions 3.1 and 3.2.
PRrOPOSITION 3.3. For any subcategory & < coh-€, O(%) = O(VZ).

Proof. Let C e V¥ and consider a filtration of C as given by Proposition 3.1.
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By Proposition 3.2, we have that O(C)=J;—, O(C;/C;1) € U=, O(A;) with
A; € Z Thus OVZ) = Ucova O(C) € O(Z).

Consequently, there is no loss in generality if we restrict the discussion to
subsets of the form O(¥) where & = coh-%€ is a Serre subcategory. In that case,

O(F) = {E e Zg(€): t,(E)#0}.

THEOREM 3.4 (Ziegler [37, Theorem 4.9]). The collection of subsets of Zg( %),
{0(%): &< coh-¥€ is a Serre subcategory?},

satisfies the axioms for the open sets of a topology on Zg(%6). This topological
space is called the Ziegler spectrum of €.

Proof. First note that 0(0) = and O(coh-€)=Zg(%). By Proposition 3.3,
Uies @’(5@)=@(Uie,$)=@(\/uie,%). It remains to be shown that O(%)N
0(%) = 0(# N %). Suppose that E € O(%) N O(%). As E is uniform, t4(E) N
ty,(E) #0, so consider a finitely generated non-zero X <ty,(E) Nty (E). There is
an epimorphism 7,: §;— X with §; € #. By Proposition 2.3, this morphism 7
factors through a quotient S, e &% of §;. But then S, e $yN% and therefore
EecO0(HNS).

CoroLLARY 3.5 (Ziegler [37, Theorem 4.9]). The collection of open subsets
{0(C): C e coh-€}

satisfies the axioms for a basis of open subsets of the Ziegler spectrum.
Furthermore, O(C) = if and only if C =0.

Proof. The first statement is a consequence of the fact that every open subset
O(Z)=UccxO(C) is a union of open sets from this collection. The second
derives from the observation that every non-zero C e coh-%€ has a simple quotient
object S whose injective envelope E(S) € O(C).

The maximal Ziegler spectrum of €, denoted by max(%), is the subset of
Zg(€) consisting of those indecomposable injectives that are injective envelopes
of simple objects. The proof of Corollary 3.5 indicates that max(%) is a dense
subset of Zg(€). For the next result, we shall need the notation I(¥)=
Zg(€)\ 0(2) for the closed set which is the complement of the open set O(¥).

ProposiTION 3.6. Let & = coh-€ be a Serre subcategory. The inclusion functor
6/F<€ induces a homeomorphism h: Zg(€/F)— I(¥) from the Ziegler
spectrum of €/ onto the closed set 1(¥) endowed with the relative subspace
topology. Furthermore, h|O(Cy)] =1(¥) N O(C) for C € coh-€.

Proof. By the comments following Proposition 2.11, E € Zg(6/ :'?) if and only
if E e Zg(%) and E is P-torsion-free, that is, t,(E) = 0, that is, E € I(¥). Thus h
is a bijection. That it is a homeomorphism follows from the second statement
which is a consequence of the left adjoint property of the localization functor. If
E € Zg(€/%) and C e coh-€, then Hom(C, E) =Hom,3(Cy, E).
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Given an open set 0 = Zg(€), consider the subcategory
Fo={C e coh-€: O(C) = 0}
of coh-%. By Proposition 3.2, it is a Serre subcategory.

Lemma 3.7. For every Serre subcategory & < coh-€, & = S ().

Proof. We have
CeSoyy © O0CO)NIL)=D
& 0(Cy) =T (in Zg(€/F))
& Cy=0 (by Proposition 3.6)
&S Ced

TueoreM 3.8. There is an inclusion-preserving bijective correspondence between
the Serre subcategories & of coh-€ and the open subsets O of Zg(€). This
correspondence is given by the functions

Fs O(F), O S,

which are mutual inverses.

Proof. The previous lemma shows that 0+ ¥ is the left inverse of &+ O(¥).
It is also a right inverse because

0(Fe) = U{0(C): C e Tt = HOC): O(C) < O} = 0.
The first and last equalities hold because the 0(C) constitute a basis.

CoroLLARY 3.9 (Ziegler [37, Theorem 4.9)]. An open subset O of Zg(6) is
quasi-compact if and only if it is one of the basic open subsets O(C) with
C e coh-%.

Proof. If 0=J;.; O(C;) is quasi-compact, then for some finite subset J =1,
O0=Uics O(C)=O(] [ic; C)). Conversely, if O(C)=J;.;0(C;)=0({C;: i € I}),
then by Theorem 3.8 and Proposition 3.3, C € V{C;: i e I}. By Proposition 3.1,
there is a finite filtration of C by coherent subobjects such that each factor of the
filtration is a subquotient of some C;. Since only finitely many of the C; are
needed, there is a finite subset J of I such that C € V{C;: i e J} and therefore
0(C) = s O(C)).

Let M € € be coh-injective and denote by I(M) the closed set I(¥(M)) where
F(M) is the Serre subcategory ¥ (M) ={C e coh-€¢: (C, M) =0}. The set I(M) is
called the closed set of M. By Theorem 3.8, I(M) may be characterized as the
closed subset of Zg(€) satisfying the condition that for each C e coh-%,
O(C)NI(M)= if and only if (C, M) =0. If E is an injective indecomposable
object of €, that is, if E € Zg €, then I(E) is simply the topological closure of the
point {E}.

ProrosiTiON 3.10. Let & < coh-%€ be a Serre subcategory and M € € a coh-injec-
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tive;?—torsion-free object. Then M is F-closed and it is a coh-injective object of
6/S. If h: Zg(€/F)—Zg(6) is the continuous map of Proposition 3.6, then
h(lq5(M)] = I4(M).

Proof. As M is an F-torsion-free object, we have that M <=M, and X =
My4/M e & But if S € &, then the long exact sequence
0— (S, M)=0—(S, My) =0—(S, X)— Ext'(S, M) =0

proves that (S, X) = 0. By Proposition 2.4, X =0 and M = M, € €/ ¥.

To verify that M is (€/%)-coh-injective, we use Theorem 2.16 and Proposition
2.14 to note that every short exact sequence in coh-(€/%) is the localization of a
short exact sequence in coh-(€),

0-A—-B—-C—0.
As M is 6-coh-injective, the functor (-, M) is exact on coh-%. Thus the sequence
0— Hom¢(C, M)— Homy(B, M) — Hom¢(A, M)—0
is exact. But this sequence is isomorphic to the sequence
0— Hom,7(Cy, M)— Homy3(By, M) — Homy3(Ay, M)— 0.
To show that h[l4z(M)] = 1(M), note that
OC)Nhllye(M)]#D & O(Cy) Nh[lyz:(M)]|#D  (by Proposition 3.6)
& Homga(Cy, M)#0
< Homg(C, M) #0.

By the characterization above of the closed set I(M), we get that h[l47(M)] =
I(M).

There is always a coh-injective object M € € such that Zg(€) = I(M). One may
take any coproduct of injective indecomposable objects

M=1]E

Ee9

indexed by a dense subset & (for example, max(6)) of the Ziegler spectrum. If
& < coh-€ is a Serre subcategory, then applying this argument to €/ and the
homeomorphism h: Zg(€/¥)— I(¥) gives the following.

CoroLLARY 3.11 (Ziegler [37, Corollary 4.10]). Every closed set 1 =Zg(%€) is
the closed set I(M) of some coh-injective object M € 6. Thus every Serre
subcategory & < coh-€ has the form S (M) for some coh-injective object M € €.

For C e coh-%, define

Supp(C):={M: M is coh-injective, (C, M) # 0}.
Equivalently,

M eSupp(C) & O(C)NIM) = 0(Cyun) #*D & C ¢ AM).

If M e € is a coh-injective object, define ¥(M) to be the quotient category
€/ (M) of € by S(M).
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CoroLLARY 3.12. The following are equivalent for two coherent objects A and B
of €:
(1) 0(A) = O(B);
(2) A e VB (= V{B});
(3) there is a finite filtration of A by coherent subobjects
A=A=A,=..=A,=0

such that each of the factors A;[A, ., is a subquotient of B;

(4) Supp(A) = Supp(B);

(5) for every coh-injective M € €, O(A ) S O(Bgy) in €(M);

(6) for every Serre subcategory ¥ = coh-€, 0(Ay) = O(By) in Zg(€/F);

(7) for every N-irreducible Serre subcategory & <coh-6, O(Agy) < O(Bg) in
78(%/9);

(8) for every injective indecomposable E € Zg(€), O(Ayr)) S O(Byry) in
Zg(6(E)).

Proof. (1)&(2). We have 0(A) = O(B) if and only if A € Sy = VB.

(2)© (3). This is a special case of Proposition 3.1.

(3)© (4). Because the coh-injective objects of % behave like injective
objects with respect to the coherent objects, one can imitate the proof of
Proposition 3.2 to show that Supp(A) =, Supp(A;/A;,,) and that for each i,
Supp(A,/A,.1) < Supp(B).

(4)=(5). If Supp(A) = Supp(B), then O(A) = O(B) and therefore O(Agy ) =
OA)NI(M) < O(B) NI(M) = OB 4u))-

(5)=> (6)=> (7). These are trivial.

(M =>(8). If E eZg(¥€), then I(E), being the closure of a point, is not the
union of two proper closed subsets. By Theorem 3.8, the Serre subcategory
S(E) = coh-% is N-irreducible, that is, it is not the intersection of two properly
larger Serre subcategories.

8)=>(1). If E=0(A), then O(Agr)) # < and so by hypothesis O(B y)) # <.
But then E € O(B).

We shall give an example later showing that the last condition cannot be
strengthened to E € max(¥€).

CoroLLARY 3.13 (Ziegler [37, Theorem 4.9]). Let E € Zg(%) and C € coh-€ be
such that E € O(C). A local system of open neighbourhoods of E is given by the
collection

{0(A): E e 0(A), A< C}.

Proof. Let OeZg(%¥) be open with E e 0. Choose A ecoh-€ such that
E e 0A)c0NOC). As in Proposition 3.12.4, there is a filtration of A by
coherent subobjects

A:A()?Al?...;An:O

such that each A;/A; is a subquotient of C. By Proposition 3.2, there is an i <n
such that £ € O(A;/A;.1). But then E € 0(A,;/A;,1) < O(A) N O(C).
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The injective indecomposable objects E € Zg(%) are the maximal uniform
objects of € in the sense that they possess no proper uniform extensions.
Therefore

2g(9) ={t,(E): E e Zg(€)}

and there exists a bijection E: Zg(¥)— 0(¥) defined by sending the maximal
uniform object 14(E) of ¥ to its %-injective hull E4(t4(E))=E. Because the
torsion functor t4 is the right adjoint of the inclusion functor F< %, we have that
for C e ¥=coh-& and E e Zg(%), there is an isomorphism

Homi(cy IS/(E)) = Hom(G(C9 E):

which proves that E[0(C)] = 0(C) = Zg(€) and hence that E,: Zg(F)— O(¥)
is a homeomorphism.

4. The Ziegler spectrum of a ring

Let R be a ring. The left Ziegler spectrum of R is the topological space Zg(%€).
In this section, we describe some points of the Ziegler spectrum of certain rings.
The points of Zg(zx€) are the injective indecomposable objects E of €=
(mod-R, Ab). If xM e R-Mod, let us abbreviate the closed set I(-®z M) to
I(xM) and the related Serre subcategory & (—&®z M) of coh-(z€) to F(xM).

ExampLE. If R = R, X R, is the Cartesian product of the rings R, and R,, then
the left Ziegler spectrum of R is a disjoint union of open sets

Zg(r€) = O(xR;, —) U O(xR>, —)
which are homeomorphic to Zg(x, €) and Zg(,%) respectively.

To describe the points of the left Ziegler spectrum of R recall that a morphism
p: rM — gxN of left R-modules is a pure-monomorphism if the r 6€-morphism

-Q®p: —QxM—>-Qr N

is a monomorphism. As the tensor functor commutes with direct limits, X ®z p is
then an Ab-monomorphism for every right R-module Xy. The left R-module M
is called pure-injective if every pure-monomorphism p: M — zN is a split-
monomorphism, that is, there exists a retraction q: xRN — gM of p, with gp = 1,,.
Pure-injective modules are closed under product/coproduct factors and arbitrary
products.

ProposiTION 4.1 [16, Proposition 1.2]. An object E € 6 is an injective object if
and only if it is isomorphic to one of the functors —Qr M where M is a
pure-injective left R-module.

Proof. If E € x€ is an injective object, then a fortiori it is coh-injective and is
by Proposition 2.2 isomorphic to one of the functors —®, M with M a left
R-module. The injective hypothesis readily implies that M must in fact be
pure-injective.

Let xM be pure-injective and u: —®rx M — X a pé-monomorphism. Then u
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lifts to the injective envelope E(X)=-®zN. This lifting has the form —®zp
where p: kM —zN is a pure-monomorphism. As p is then a split-
monomorphism, so is - ®p p and therefore w is also a split-monomorphism.

A pure-injective envelope of a left R-module xM is an R-morphism p: M —
rM such that the €-morphism

-Qgp: _®RM%—®RM

is an injective envelope in g% of the object — &z M. This is equivalent to the
condition that if g: kM — gN is a pure-monomorphism with N pure-injective,
then there is a split-monomorphism r: zkM — zN such that the diagram

ML)M

| A

N
commutes. The existence of pure-injective envelopes was discovered by
Kietpinski [21] and Warfield [36].

Proposition 4.1 says that the points of the left Ziegler spectrum of R are
represented by the pure-injective indecomposable left R-modules. We might
informally refer to a pure-injective zU as being a point of Zg(z %) when we mean
to assert that —®z U e Zg(x6). Note that for such a U, we have that
-®r U e I(M) if and only if I(U)<I(M). Because EndgU = End,¢),(- ®r U)
and — ® U is an injective object in ;€ one obtains the following.

ProrosiTion 4.2 [39]. A pure-injective left R-module xM is indecomposable if
and only if the endomorphism ring End, M is local.

ExampLE. Every injective indecomposable left R—module zE is pure-injective
and hence — ®y E is a point of Zg(z%6). More generally, we have the following.

ProrosiTioN 4.3. Let ¢Mr be an S-R-bimodule and E an injective left
S-module. The abelian group Homg(sMg, sE) equipped with the left R-module
structure (rf)(m):= f(mr) is a pure-injective left R-module.

Proof. Suppose p: gkHomg(sMg, sE)— gN is pure. Then the S-linear map

M®Rp: SM®R HOmS(SMR, SE)_)SM®R N

is a monomorphism. Applying the exact functor Homg(—, £) gives an
epimorphism

(M®Rp, SE): Homs(SM®R N, SE)—)HOms(SM®R Homs(SMR, sE), SE)'

As the tensor functor is left adjoint to the Hom functor, this epimorphism is
isomorphic to the epimorphism

(p, kRHomg(sMp, sE)): Homg(gN, gRHomg(sMg, sE))— Endg(rgHomg(;Mg, sE)).

A preimage of lyomu, £y then gives a retraction q: gkN — gHomg(sMg sE).
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ExampLE. The pure-injective indecomposable abelian groups are the following.

(1) The injective modules Q (the group of rational numbers) and, for every
prime p, the Priifer groups Z(p™).

(2) Every cyclic group Z(p") of order a prime power is pure-injective because
Z(p")=(Z(p"), Z(p*)). )

(3) For every prime p, the p-adic completion Z,, of the integers is pure-
injective because Z,, = (Z(p~), Z(p™)).

Kaplansky [20] showed that this list is complete. A similar argument holds for
Dedekind domains.

ExampLE. For a commutative noetherian ring R, Warfield [36] determined the
pure-injective envelope M of a finitely presented (that is, finitely generated) left
R-module M as the completion of M in the following sense. The Q-adic
topology on M is the topology with a neighbourhood basis of 0 given by the
submodules of the form /M as I ranges over all finite intersections of finite powers
of maximal ideals. Then the Q-adic completion c: xM — xM is a pure-injective
envelope of xM. For example, the ring of p-adic integers Z,, is (as an abelian
group) the pure-injective envelope of the localization Z,, of Z at the prime p.

ExampLE. Let (R, m, k) be a local commutative noetherian ring with maximal
ideal m and residue field k. Suppose further that R is complete in the m-adic
topology. The unique simple module is k and its injective envelope Eg(k) is a
cogenerator in the category of left R-modules. Matlis [24] showed that the
contravariant functor Homg (-, Ex(k)): R-mod - R-dcc is a duality between the
category R-mod of finitely generated R-modules and the category R-dcc of the
modules M whose lattice of submodules satisfies the descending chain condition.
By Proposition 4.3, both of these categories consist of pure-injective R-modules.

ExampLE. Let S be a ring with centre (R, m, k) as in the previous example.
Suppose furthermore that the R-module .S is finitely generated. If ¢M is a
finitely generated S-module then it is also a finitely generated R-module and the
R-isomorphism

sM — Homg[Homg (M, Er(k)), Ex(k)]

given by the Matlis duality is in fact an S-isomorphism. By Proposition 4.3, every
finitely generated S-module is pure-injective.

ExampLE. An artin algebra A is a ring that is finitely generated as a module
over an artinian centre. Every artin algebra is a finite product A = A; X ... X A, of
artin algebras A; each with a local artinian centre (R;, m;, k;). As each R; is
complete, the previous example serves to show that every finitely generated
indecomposable A-module is a point of the Ziegler spectrum

Zg(2 €)= U Zg(4,6).

i=n

A ring R is called von Neumann regular if every finitely presented left
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R-module is projective. If xI < zR is a finitely generated left ideal, then the short
exact sequence 0— I — R— R/I— 0 splits and therefore I, a direct summand of
R, is generated by an idempotent / = Re. Thus R is left coherent. The following
proposition is essentially a result of Auslander [1, end of § 3].

ProrosiTioN 4.4. The following conditions on a ring R are equivalent:
(1) R is von Neumann regular;

(2) every coherent object of € is projective;

(3) every short exact sequence in coh-(x %) splits;

(4) the functor xkM — - Qr M from R-Mod to 6 is an equivalence.

Proof. (1)=>(2). Let R be von Neumann regular and C e coh-(x%6). Consider
a finite projective resolution of C of minimal length

(ﬁw_)

0 — M,,-) —> (M,_,-) My, -) —— C —— 0.

The R-linear map f,: M,_;— M, is an epimorphism. Because M, is finitely
presented, f;, is a split-epimorphism. But then (f,, —) is a split-monomorphism,
which gives a shorter resolution, contradicting the minimal choice of the
resolution. Therefore n =0 and C is projective.

(2)© (3). Every coherent object C of z€ admits an epimorphism from a
representable object. If this is a split-epimorphism, then C is projective.

(3)©& (4). Because the functor zkM — — ®z M is always full and faithful, it is an
equivalence if and only if it is dense, which is so if and only if every object X of
r€ 1s coh-injective. This is true if and only if for every X € x€ and C € coh-z %,
Ext(,¢(C, X) =0, which is true if and only if every coherent C is projective.

(2)0(4)< (1). From Condition (4), we know that ;€ is naturally equivalent to
the category R-Mod and every finitely presented object of R-Mod is therefore
coherent. By Condition (2), it is projective.

So if R is von Neumann regular, then every monomorphism in R-Mod is a pure
monomorphism and the Ziegler spectrum of R consists of precisely the injective
indecomposable left R-modules. Every monomorphism or epimorphism in
coh-(3 %) is split, so that for A and C in coh-(3x€), A is a subquotient of C if and
only if A | C, that is, A is a coproduct factor of C. Thus A e VC if and only if
there is a natural number n such that A | C*.

Let J be a two-sided ideal of the von Neumann regular ring R and denote by %
the Serre subcategory of coh-(%)= R-mod which consists of finitely generated
summands of coproducts of finitely many copies of J, that is,

% :={P € R-mod: P |J® for some n}.

We claim that every Serre subcategory & of R-mod has this form. Let J =t4(R), a
two-sided ideal of R. If P € &}, then clearly P € & But if P € &, then, as P is
projective, it is a summand of some finite power of R, P ‘ R™. Applying the
functor ¢ yields that P | J®.
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ProrosiTION 4.5. Let R be a von Neumann regular ring and J a two-sided ideal
of R. Then

% = FRIT)=1{P: (P, R/])=0}.

Proof. First note that there are no R-linear maps g: g/ — z(R/J). For then
there would be an idempotent e € J such that g(e) # 0. But g(e) = g(e*) = eg(e) =
0 in R/J. Therefore (J*?, R/J)=0 and so if P € ¥, then (P, R/J)=0. On the
other hand, suppose that (P, R/J) =0. Let n be such that P | R®. Then P lies in
the kernel of the natural quotient map m R —R®@/J"™W=(R//)™ and is
therefore a summand of J®.

THEOREM 4.6. Let R be a von Neumann regular ring. There is an inclusion-
preserving bijective correspondence between the Serre subcategories & of coh-
(r6) = R-mod and the two-sided ideals J of R given by the maps

F—>ty(R) and J—F(R/])

which are mutual inverses.

Proof. We have already noted that J— F(R/J) is the left inverse of ¥~ t4(R).
To show that tyg,)(R)=J note that for a finitely generated left ideal rP =
J,P e (R/J) and therefore P <tyr;)(R). But the module R/J is HA(R/J)-
torsion-free and therefore #4 g, (R) </J.

Thus the open subsets of the Ziegler spectrum of a von Neumann regular ring
have the form

O(J):={E € Zg(R-Mod): Homg(J, E) # 0},

where J is a two-sided ideal of R.

ExampLE. A ring R is called indiscrete if the topology of the left Ziegler
spectrum of R is indiscrete. Equivalently, the category coh-(3x%) has no
non-trivial Serre subcategories. By the foregoing, a von Neumann regular ring is
indiscrete if and only if it is simple. Prest, Rothmaler and Ziegler [28, § 2.2] have
constructed an example of an indiscrete ring that is not von Neumann regular.

To clarify the analogy between pure-injective and injective modules, let us
point out a useful homogeneity property that pure-injective modules enjoy. Let
rM be a left R-module and a € M. Consider the R-morphism d: zR— M
determined by the value d(1) =a and define

Ty(a) =Ker(-®ad: —-Qr R— - Qr M).

This is in some sense a ‘generalized’ annihilator of a in M. For example, if
g: M — N is a morphism of R-modules such that g(a) = b, then

(-®g)(-®d)=-Qga=-®b
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and we get a commutative diagram with exact rows

0 —— TM(a) I— _®RR S —®RM

e e

0 —— TN(b) m— —®RR'—) —®RN

and the relation 7,,(a)=< Ty(b) holds. If xN is pure-injective, one obtains the
following converse.

ProrosiTionN 4.7 [37, Corollary 3.3]. Let xM be an arbitrary R-module, N a
pure-injective R-module and a €e M, b € N. There is a morphism of R-modules
fr rM — gN such that f(a) = b if and only if Ty(a) < Ty(b).

Proof. The hypothesis gives a commutative diagram with exact rows

0 — Ty(ag) ——> - R —— R, M

[

0 — > Ty(b) —> @R ——> —®, N

Because —®x N is an injective object of x4, the diagram may be completed as
above.

5. Duality

All that has been done for left R-modules may be carried out as well for right
R-modules. The category (R-mod, Ab) of generalized right R-modules is then
denoted by 4. The Ziegler spectrum Zg(%y) of this category is called the right
Ziegler spectrum of the ring R. In this section, we give a proof of the observation,
due to Auslander [4] and Gruson and Jensen [16], that there is a duality
(coh-(z6))°P = coh-(€) between the respective subcategories of the coherent
objects of € and €.

Define a functor D: (coh-(3€))°®— €; on objects C e coh-(x€) as follows.
Given zN € R-mod, we have

(DC)(grN) :=Hom,(C, —®r N)

If n: B— C is a (coh-(3€))-morphism, then D(n)y: D(C)(xN)— D(B)(zN) is
defined to be Hom (71, - ®x N).
First note that the functor D: (coh-(36))°" — € is exact. If

a B

0 A B C 0

is a short exact sequence in coh-(; %), then because —®y N is coh-injective, the
sequence

(B:_®R N) (a:_®R N)

0 ——b (C,—®RN) (B,—®RN) (A,—®RN) — 0
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is exact for each N € R-mod. But this means the sequence

Dpg Da
DB DA — 0

0 DC

is exact.
By Yoneda’s Lemma,

D (Mg, =)(Xg) = ((Mg, ), X®r-) =X M.
Thus D(Mg, =) =M ® —. If C e coh-(zx€) with projective presentation
(Ng, =)= (Mg, -)—> C—0,
applying the functor D gives an exact sequence
0->DC->MQr-—>NQg —.

This shows that DC is in fact a coherent object of €z and therefore that the
functor D has its image in coh-(6R).

THEOREM 5.1 [4, §7; 16, Theorem 5.6]. The functor D: (coh-(3%))°®— coh-
(6) defined above constitutes a duality between the categories coh-(x6€) and
coh-(6g). Furthermore, for Mg € mod-R and xN € R-mod we have that

D(Mg, -)=M®r—- and D(-QxN)=(gN, -).

Proof. First note that D(- @z N)(zM)=(-Qx N, —Qr M) = (zxN, M) so that
D(-®x N)=(gN, —). Now another functor D': (coh-€6z)°®— coh-(x%) may be
defined similarly in the other direction. Both of the compositions DD’ and D'D
are exact functors that are equivalences on the respective categories of finitely
generated projective objects. Thus they are both natural equivalences.

ExawmprLE [1, p. 200]. Let R be a right coherent ring and My, a finitely presented
right R-module. There is then a projective resolution of Mg,

St P, In P, f P, Jo

MR 0

with every P, finitely generated. Two complexes arise from this resolution. In
coh-(3€), one obtains the complex

(ﬁ ’_)

0 —— (P, -) —= (P, )

(fn+1r_)

(P, -) ———= ...

e (f;l)_)

and in coh-€%, one has the dual complex
Ja1®— ®- [i®-
veeg T >

P]®R— —_— P0®R— —_— O

P,®r -

The homology at (P,, —) of the first complex is Ext"(Mg, —) while the dual
D Ext"(Mg, —) = Tor, (Mg, -)

is the homology of the second complex at P, ®g —.

We noted earlier how a ring R is von Neumann regular if and only if every
short exact sequence in coh-(€) splits. By the duality D, this is clearly a
left-right symmetric notion, that is, it holds for the ring R if and only if it does for
the opposite ring R°F.
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Because the category coh-€; has enough projectives, the duality D gives the
following.

ProrosiTioN 5.2 [4, Lemma 7.3']. Every injective object of coh-(z€) is
isomorphic to one of the functors —Qr M where gM € R-mod. The category
coh-(r6) has enough injectives, that is, for every C e coh-(z%6), there is a
monomorphism u: C— —Qr M with kM € R-mod.

If xM is a finitely presented R-module and a € M, then Ty,(a) (defined before
Proposition 4.7) is a coherent object. Using the coh-injectivity of the objects
—®r N where RN is a left R-module, one gets the following analogue of
Proposition 4.7.

ProrosiTioNn 5.3 [27, Proposition 8.5]. Let a ez M, a finitely presented R-
module, and b er N, an arbitrary left R-module. There is a morphism of
R-modules g: kM — g N such that g(a) = b if and only if Ty, (a) < Ty(b).

ExampLE [27, § 11.3]. Suppose that M is a finitely presented left R-module
with a local endomorphism ring. The pure-injective envelope rM is then
indecomposable. To see this, note that the coh-(;%6)-injective object - ®, M has a
local endomorphism ring

Endcoh_(ch)(— ®R M) = EndR M.

Because the category coh-(x%) has enough injectives, —® M is a uniform
coh-(z6)-object. But then it is uniform as a €-object and hence E(-®r M) =
—®x M is indecomposable.

If furthermore RN is another finitely presented module such that N = zM,
then N = ;M. For, both —-®; N and —®; M are essential extensions of some
finitely generated, hence coherent, uniform subobject C. But then —&®p N =
Econ-,6)(C) =~ & M.

ExampLE. A ring R is called Krull-Schmidt if every finitely presented
R-module is a (finite) coproduct of modules with a local endomorphism ring. This
is a left-right symmetric condition on the ring R. For example, any left or right
artinian ring is Krull-Schmidt. A ring S that is finitely generated as a module over
a complete local noetherian centre is Krull-Schmidt, because every finitely
presented (that is, finitely generated) module is pure-injective noetherian and is
therefore a finite coproduct of modules with a local endomorphism ring. If R is
Krull-Schmidt and M is a finitely presented indecomposable R-module, then
this module conforms to the previous example and therefore M is a point of the
left Ziegler spectrum of R.

PROPOSITION 5.4. Let R be Krull-Schmidt. The set of points having the form M
with xM a finitely presented indecomposable module is a dense subset of the
Ziegler spectrum of R.

Proof. Let C e coh-(3€). There is a monomorphism in coh-(z%) of the form
p: C——®g M. Now xM = [ [I=; xM; with every — ® M; a uniform object in €.
But then for some i <k, (C, - ®x M;) # 0 and therefore — ®; M; € O(C).
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Let & < coh-(€) be a Serre subcategory. It is then clear that the subcategory
D¥={DC: C e &}

of coh-€; is also Serre and that the restriction to & of the duality
D: (coh-z€)°P— coh-€y gives a duality D: ¥°P— D¥. By Theorem 3.8, the map
0(¥)— O(D¥) induced on the open subsets of the left Ziegler spectrum is an
inclusion-preserving bijection. Having defined the dual of a Serre subcategory, we
show next that localization commutes with duality.

Let A be a coherent object of €. If A’ < A is a coherent subobject, then the
dualized short exact sequence in coh-%g,

0—->D(A/A')—>DA— DA’ —0,

shows that if A/A' € &, then DA’ is a quotient of DA by a coherent subobject in
D&. Dually, it proves that A’ e & if and only if D(A/A')<DA is a coherent
subobject such that the corresponding quotient object lies in D&, If B is another
coherent object of €, then the function

(A’, B/B")—(D(B/B"), DA")

induces an isomorphism between the partial order of pairs indexing the
compatible family (1) (given at the end of §2) and the analogous partial order
corresponding to the pair (DB, DA). Now

D: Hom,((A', B/B')—Hom,(D(B/B'), DA")

is an isomorphism of the related direct systems (1) which gives an isomorphism of
abelian groups

D: Hom, 4 3(A, B) = thomR<g(A’, B/B’)
= 1i_m>Hom(gR(D(B/B "), DA")
= Home,,p7(DB, DA).

The assignment given by Ay~ (DA)ps on the objects and by the above for
morphisms is functorial. We document all of this as follows.

THEOREM 5.5. Let R be a ring. There is an inclusion-preserving bijective
correspondence between the Serre subcategories of coh-(z€6) and those of coh-(6g)
given by

F—DY.

The induced map O(¥)— O(DY) is an isomorphism between the topologies, that
is, the respective algebras of open sets, of the left and right Ziegler spectra of R.
Furthermore, the duality D: (coh-(z€))° — coh-(€x) induces dualities between the
respective subcategories D: $°°— DY and D: (coh-(z%/F))°® — coh-(6x/(DF))
as given by the following commutative diagram of abelian categories:

0 —— ¥ —> coh-(x€) —— coh-(z€/F) —— 0

Dl Dl Dj

0 D¥ coh-(6x) —— coh-(4x/(DF)) —— 0
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If both the left and the right Ziegler spectra of R satisfy the topological
separation axiom 7y, that is, if their points are distinguished by local neighbour-
hood systems, then the isomorphism O(¥)— O(D%) of open sets induces a
homeomorphism

Zg(D): Zg(r€)— Zg(%r)

between the left and right Ziegler spectra of R. By this we mean that Zg(D) is the
unique homeomorphism satisfying Zg(D)[O(¥)] = O(D ).

ProrosiTioN 5.6 [40, Lemma 2]. Let My be an S-R-bimodule and let sE be an
injective S-module. Then for each C e coh-€g, there is an isomorphism

Homg(s(C, M@y -), sE) = (DC, - Qg (sMg, sE))

natural in C.

Proof. Consider each side of the equation as a functor from coh-€y, with
argument C, to Ab. Then each is a covariant exact functor. When C = RQy — is
the forgetful functor, both sides reduce to (¢Mx, sE). Now every projective object
(N, =) of coh-%; has an injective resolution by finite powers of the forgetful
functor. A free presentation zR™— zR"—>zN—0 of RN gives the exact
sequence in 6y,

0— (RNy _)_> (RRnJ _)_) (RRm’ _)'
By exactness, the proposition then holds for all representable functors of coh-%x.

Applying a similar exactness argument to a projective presentation of an arbitrary
C e coh-%y gives the general result. Naturality also follows.

If, in addition to the hypotheses of the previous proposition, we assume that ¢F
is a cogenerator, then we get the following chain of equivalences:

DC e #(x(M, E)) & (DC, -Qg(sMg, sE))=0
& ((C,MRg-),sE)=0
& (CCM®r-)=0
& Ce AMp).

In short,
H(&(M, E)) = DS (Mp). (2)

ExampLE. Let T =@, ,iime Z(p”) denote the minimal injective cogenerator of
Ab. For each prime p, the following isomorphisms are readily verified:

(1) (Z(p"), T)=(Z(p"), Z(p)) = Z(p"),

@) (Z(p"), T) = (Z(p™), Z(p") = Zp),

(3) (Z(p)) T) = (Z(p)’ Z(pw)) EZ(poo)
Furthermore, (Q, T) is a vector space over the rational numbers Q and so
DHAQ)=HQ, T)=HAQ)=FQ). In this way, duality induces a
homeomorphism

Zg(D): Zg(2€)— Zg(6,) = Zg(~€)
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that fixes the rationals Q and the finite cyclic groups Z(p") while interchanging
the abelian group of p-adic integers Z,, with the Priifer group Z(p”).

ExampLE. Let My be a finitely presented right R-module with local endo-
morphism ring S. Let ¢E be the S-injective envelope of the unique simple left
S-module. Applying the isomorphism in Proposition 5.6 with C = M &z — gives
the isomorphism

= ((Mg, —), —Qr (Mg, sE)) =M Qg (sMg, sE).

Now we calculate the endomorphism ring of the pure-injective left R-module
R(SMR) SE):

EndR(sMR, SE) = HomR(R(SMR’ sE), R(SMR; sE))
= Homg(sM Qg (sMg, sE), sE) =Homg(sE, sE).

This shows that the endomorphism ring is local and hence that z(sMg, sE) is a
pure-injective indecomposable left R-module.

In general, we let Zg(D): Zg(x€)— Zg(€r) be the partial function whose
domain consists of those U € Zg(z%) uniquely determined by a local system of
basic open neighbourhoods and having the additional property that the system of
basic open neighbourhoods in Zg(%6z) dual to the system of U, determines a
unique point V. Then Zg(D)(U)=V. If M is a finitely presented left R-module
with local endomorphism ring S, the previous example computes the value of
Zg(D)(xM) as Homg(zxMs, E)z when it is defined.

ExampLE. Consider the right R-module R; and let £ be an injective
cogenerator for R-Mod. Then z(zRg, rE)=grE and equation (2) becomes
DF(Rg) = H(rE). We can describe the objects of F(Rg) as follows. Take a
projective presentation of C e coh-€,

(f-)
&N, -) —> kM,-) — C —— 0
and apply the functor Hom,(?, (R®x—)). By Yoneda’s Lemma, this gives an
exact sequence 0— (C, R®y —)—>MRL>NR of right R-modules. Now C € #(Ry)
if and only if (C, R®g —) =0, which is so if and only if fis an R-monomorphism.
Thus
F(Rg) ={C = Coker(f, -): f an R-monomorphismj}.

Aplying the duality D gives #(rE) ={DC =Ker(f ®-): f an R-monomorphism}.
ProposITION 5.7. Let RE be an injective cogenerator for R-Mod. If RE' is an
injective left R-module, then I(rE') S I(zrE). Moreover I(rE) is the closure in the
left Ziegler spectrum of R of the indecomposable injective left R-modules.
Proof. Let C e coh-(3€) and take a (coh-(i €))-injective copresentation of C,

0 — C — -QrM ﬁ - ®g N.
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If X is a left R-module, then applying the exact functor Hom(?, - ®z X) gives
the exact sequence

(rN, rX) (f’—X)> (rM, g X) — (C,-Q@r X) —— 0.

Thus (C, —®z X)=Coker(f, X). If Ce F(RrE), then f must be an R-
monomorphism and so for any injective left R-module rE’, we have that
(C, —-®r E")=Coker(f, E')=0. Thus I(E') < I(zxE). In particular, if zU is an
indecomposable injective left R-module, then I(RU)<I(xE) implies that
-®r U e I(RE).

To show that I(RxFE) is the closure of the set of injective indecomposables U,
suppose to the contrary, that V e I(E) N O(C), but that for each of the injective
U, —-®r U ¢ 0(C). Now (C, —®p U) = Coker(f, gU) =0 for all U. Because the
injective indecomposables U form a cogenerating set, f must be an R-
monomorphism. But then C € #(RE), contradicting I(zE) N O(C) # .

Prest, Rothmaler and Ziegler have shown [28, Corollary 4.4] that the ring R is
left coherent if and only if I(xE) consists exclusively of indecomposable
injectives.

6. Finite matrix subgroups

In this section, we shall consider exact representations of the category coh-%
into module categories. Let M € € be a coh-injective object with endomorphism
ring S = End M. Then the exact contravariant functor

Homg(-, M): coh-€— S-Mod

is such a representation. If C € € is a coherent object, the S-submodules of
s(C, M) corresponding to coherent quotient objects of C are called finite matrix
subgroups of ¢(C, M). They were introduced by Gruson and Jensen [15] and
Zimmermann [38]. Through the work of Baur [6], they have become the central
motif of the model theory of modules. If X is a left R-module with
endomorphism ring S = Endg X = End,«)(-®z X), finite matrix subgroups of
the S-module (- ®% R, - ®% X) = ¢X provide some control over the complexity
of the localized category z%(zX) in terms of the lattice of S-submodules of ¢X.
We shall refer to an S-submodule of ¢X as an endosubmodule of zX.

Let C be a coherent object of €. Because the category coh-€ is abelian, the
coherent subobjects of C form a modular lattice L.;,.«(C) [34, Proposition 1V.5.3]
with maximum and minimum elements. All lattices mentioned in the sequel will
be modular with maximum and minimum elements which lattice morphisms are
presumed to preserve. We begin with the observation that localization induces
such a lattice morphism.

ProrosiTiON 6.1. Let F: o — B be an exact functor of abelian categories and
A e d. The map

L(F): L,(A)— Ly(FA)
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this sends the subobject w: C<A to the subobject F(u): F(C)<F(A) is a
morphism of lattices.

Proof. Let B: B<A and y: C<A be subobjects of A. Then B+ C=
Im(B I ) and so

F(B+C)=F(Im(B II y)) =Im(F(B) Il F(y))=F(B) + F(C).

A similar argument in the opposite category proves the dual statement.

Let C be a coherent object of € and ¥ <coh-€ a Serre subcategory. The
proposition implies that localization at & induces a lattice morphism

L(_).V: Lcoh—(@(c) - Lcoh-(@/.?(c.v)-

The next proposition describes the morphism intrinsically.

ProrosiTionN 6.2. The lattice morphism L(-)g: Leon-¢(C)—> Leon-3(Cy) is the
quotient morphism of the lattice L .,.«(C) modulo the congruence

A+B/(ANB)e Y.

Proof. By the coherent version of Proposition 2.14, the lattice morphism
L(-)y' Leone(C)— Leon-/5(Cy) is surjective. Now note that Ay =B, if and
only if Ay + By/(AyNBy)=(A+ B)s/(ANB),=0. By the exactness of local-
ization, that is equivalent to [A+ B/(ANB)]s=0 which is equivalent to
A+B/(ANB)e Y.

Let C e coh-% and let M € € be a coh-injective object. If A € L,.4(C), and
S =End¢ M, then the short exact sequence

0-A—->C—->C/A—0
gives rise to a short exact sequence
0—s(C/A, M)— §(C, M)— s(A, M)—0

of left S-modules. In this manner, we identify ¢(C/A, M) with an element of
Ls((C, M)), the lattice of S-submodules of  (C, M). The map defined by
A~ (C/A, M) will be denoted by 6 u): Leon-«(C)— Ls((C, M)). A finite matrix
subgroup of (C, M) is defined to be any S-submodule of ¢(C, M) that is in the
image of &.c ar).

ExampLE. Let R be a ring and C a coherent object of 6. If RM is a finitely
presented left R-module, then the finite matrix subgroups of DC(zxM)=
(C,-®xr M) have the form D(C/A)(M) as C/A ranges over the coherent
quotient objects of C. Thus the finite matrix subgroups of (C, —-®z M) are
precisely the subgroups of the form B(M) where B € Lo «,(DC).

ProrosiTiON 6.3. Let C be a coherent object of € and M € € a coh-injective
object with S =End¢ M. The map 8 my: Leon-«(C)— Ls((C, M)) is an anti-
morphism of lattices. It induces an anti-embedding of Lcon-e(Coar)) into
Ls((C, M)).
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Proof. The first statement follows from Proposition 6.1 and the fact that the
tunctor Homy(—, M) is exact. To prove the second, let A, B < C be coherent. We
have the inclusion (C/(A+ B), M)<(C/(ANB), M) in Lg((C, M)) and it is
clear that this inclusion is proper if and only if A+ B/(ANB) ¢ FAM).
Thus for A, B € Leoh.«(C), it follows that 8. a(A) = 8 a(B) if and only if
S8cem(A+B)=38cm(ANB), which is true if and only if A+B/(ANB)e
S (M). By Proposition 6.2, an anti-embedding of Lo (Cy) into
Ls((C, M)) is induced.

ExampLE. Suppose that € = € for some ring R and let C =-®; R. If -®r X
is a coh-injective object of z€ with endomorphism ring S = Endy X, the finite
matrix subgroups of ¢(-®zR, -®rX)=¢X may be identified with certain
endosubmodules of R X. Let us describe then the finite matrix subgroups of X.
For simplicity, abbreviate 6 _gr x) to 8x. If A<-Q®xR is coherent, there is a
monomorphism (-®z R)/A— - & M for some finitely presented left R-module
rM. From the exact sequence

-Qf

00— A —— —-®rR —> -QzxM
we see that A = Tj,(f(1)), and by the coh-injectivity of — ®, X,

8x(A)=(Im (-®f), -®@r X)={y e X: A=Ty(f(1))=<Tx(y)}
We shall often apply the following special case of Proposition 6.3.

ProrosiTioN 6.4. Let xX be an R-module and S =FEndg X. There is an
anti-embedding of the lattice L on «x)[(—®r R)(x)| into the lattice Lg(X) of
endosubmodules of rX.

If M € € is coh-injective and ¥ < F(M) is a Serre subcategory, then M is also
coh-injective as an object of €/% and the respective endomorphism rings
coincide, S = End¢ M = Ends M. As localization is a left adjoint, the isomorph-
ism Homy(C, M) =Homg,3(Cy, M) is, by naturality, an S-module isomorphism.
Thus the lattices Lg(C, M) and Lg(Cy, M) are isomorphic. The following
proposition shows that this isomorphism, which we denote by (-)y: Ly(C, M)—
Lg(Cy, M), preserves finite matrix subgroups.

ProrosiTiON 6.5. Let M € € be coh-injective with endomorphism ring S =
Endy M. If = F(M) is a Serre subcategory of coh-€ and C e coh-6, then the
following diagram of lattice morphisms commutes:

L(-)s v
Lcoh—‘@(c) E— Lcoh-‘@/f}(cfl’)

dc.m l F(cy,M)

Ls(C, M) (—_)—> Ls(Cy, M)

Proof. Let A< C be a coherent subobject. On the one hand, (—)46.c um)(A) =
((C/A)g, M) while 8¢, aL(=)sA) = ((C4/Ay), M). Since the quotient Cy/Ay is
taken in €/, the two are equal.
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Let M € € be an injective object with endomorphism ring S = End, M. We
turn our attention now to finite matrix subgroups that are cyclic as S-modules. If
n € s(C, M), then the cyclic subgroup S1 may be computed using injectivity as

Sn =s(Im n, M) = (C/Ker n, M).

Writing Ker n = X, _; A; as a direct union of coherent subobjects of C shows that

Sn = (C/<E Ai)) M) = QI(C/A"’ M) = DI Sc,my(Ai)-

iel

This proves the first part of the next proposition.

ProrosiTioN 6.6 [8, Lemma 4.1; 27, Exercise 11.3; 37, Corollary 3.3(1)]. If M is
an injective object of € with endomorphism ring S =End¢ M, then every cyclic
S-submodule of ¢(C, M) is an intersection of finite matrix subgroups. If M is an
injective object of coh-%, then every finitely generated S-submodule of ¢(C, M) is a
finite matrix subgroup.

Proof. Let M be an injective object of coh-€. If n € 3(C, M), then Ker 7 is a
coherent subobject of C and, as above,

Sn = s(Imn, M) = (C/Ker n, M) = 6 m(Ker ).

Thus every cyclic S-submodule of ¢(C, M) is a finite matrix subgroup. As the
finite matrix subgroups of (C, M) are closed under finite sums, every finitely
generated S-submodule of ¢(C, M) is a finite matrix subgroup.

7. Examples of Serre subcategories

As in [27, Chapter 10], we shall consider in this section Serre subcategories that
arise from lattice-theoretic considerations. Recall that if zM is a left R-module,
we denote by €(M) the quotient category €/F(M). We shall give examples of
R-modules M such that the objects of coh-(x€(M)) are in a lattice-theoretic
sense well behaved.

An object X € € is called noetherian if every subobject of X is finitely
generated. For C e coh-%, this is equivalent to the ascending chain condition on
Leono(C). It is clear that the noetherian coherent objects form a Serre
subcategory acc-€ = coh-€6. The category € is called locally noetherian if the
equality acc-€ = coh-€ holds. In that case, every finitely generated object of € is
coherent. For example, if R is a left noetherian ring, then the category R-Mod is
locally noetherian. The mysterious rings for which the category ;% is locally
noetherian are called left pure-semisimple.

Prorosition 7.1 [31]. The following are equivalent for a locally coherent
Grothendieck category €.

(1) The category € is locally noetherian.

(2) Every coh-injective object of € is injective.



LOCALLY COHERENT GROTHENDIECK CATEGORIES 543
(3) The injective objects of € are closed under coproducts.

Proof. (1)= (2). Suppose that M is a coh-injective object and that M < E(M)
is a proper extension. There exists a non-trivial essential (hence non-split)
extension M < X < E(M) such that X/M is finitely generated and therefore, by
hypothesis, coherent. This contradicts Extiy(X /M, M) = 0.

(2) = (3). The coh-injective objects of € are closed under coproducts.

(3)=>(1). See [34, Proposition V.4.3].

Suppose that zM is an R-module such that z6(M) is locally noetherian. By
Proposition 7.1, the object —®, M is injective in 6(M) and therefore it is
injective in 6. Thus zM is a pure-injective R-module [13,38]. So if R is left
pure-semisimple, then Proposition 7.1 implies that every left R-module is
pure-injective and that the left Ziegler spectrum Zg(z%) of R consists of all the
indecomposable left R-modules. More generally, the Ziegler spectrum Zg(%€) of a
locally noetherian Grothendieck category € consists of the indecomposable
coh-injective objects.

ProrosiTiION 7.2. Let kM be an R-module which satisfies the descending chain
condition on endosubmodules. Then the category r6€(M) is locally noetherian.

Proof. Localizing the equation V(- ®g R) = coh-(x€) at (M) gives
\/((— ®r R)sar)) = coh-(g €(M)).

So it suffices to prove that (—®g R)g) € acc-(r€(M)). But this is immediate
from Proposition 6.4.

A dual version of Proposition 7.2 is obtained similarly. Define dcc-€ to be the
Serre subcategory consisting of those coherent objects C € € for which L y_«(C)
satisfies the descending chain condition.

ProrosiTiON 7.3. Let xM be an R-module which satisfies the ascending chain
condition on endosubmodules. Then the category coh-(g6(M)) = dcc-(r €(M)).

ExawmpLE. If R is a right noetherian ring, then the left R-module xR satisfies the
ascending chain condition on endosubmodules. Thus coh-(z 6(R)) = dcc-(x €(R)).
If Er is an injective cogenerator, then, by duality, the category €6z(E) is locally
noetherian.

ExamPLE. A ring R is called a noetherian algebra if it is finitely generated as a
module over a noetherian centre. If M is finitely presented, that is, finitely
generated, then it is clear that M is finitely generated and hence a noetherian
module over the centre of R. The module zM must therefore satisfy the
ascending chain condition on endosubmodules.

ProrosiTioN 7.4 [40, Observation 8]. Let xM be a finitely presented R-module
with endomorphism ring S =Endig M and let C € € be a coherent object. If
coh-(r6(M)) = dcc-(g6(M)), the S-module ¢(C, M) is noetherian. In particular,
every S-submodule is a finite matrix subgroup.
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Proof. By Proposition 6.6, every finitely generated S-submodule is a finite
matrix subgroup. By hypothesis, these satisfy the ascending chain condition.
Therefore every S-submodule of ¢(C, M) is finitely generated.

Let fin-€ = coh-%€ denote the category of those coherent objects C for which
the lattice L.n.4(C) has a composition series. In other words, fin-€ consists
of the coherent objects of finite length. This is the Serre subcategory fin-€ =
acc-€ Ndcc-6. The category € is called locally finite if coh-€ =fin-€. For
example, if C e fin-%, then ¥ = VC < fin-€ and so the category Pis locally finite.

ProrosiTion 7.5. Let C € fin-€ and M € € a coh-injective object with S =
Endiz M. Then every S-submodule of s(C, M) is a finite matrix subgroup.

Proof. Let ¥="VC and note that the F-object r,(M) is coh-injective. For, if
S e &, consider the beginning of the long exact sequence

0— (S, t(M)) = (S, M) — (S, M[t(M))
— Ext!(S, ty(M))— Ext!(S, M) — ...

As M is coh-injective, Ext'(S, M)=0 and as M/t (M) is F-torsion-free,
(S, to(M)) = 0. Thus Ext'(S, t4-(M)) =0 for every S € ¥ and therefore t,(M) is a
coh-injective object of %

Now (C, M) = 4(C, t4(M)), so we need to prove that every S-submodule of
s(C, t,(M)) is a finite matrix subgroup. As & is locally finite, r,(M) is in fact an
injective object of 7 By Proposition 6.6, every cyclic S-submodule is an
intersection of finite matrix subgroups. By the ascending chain condition in
L4(C) and Proposition 6.3, every cyclic S-submodule is a finite matrix subgroup.
By the descending chain condition in L4(C) and Proposition 6.3, every
S-submodule is a finite matrix subgroup.

Call a left R-module M endofinite if M has finite length as a module over its
endomorphism ring Endgz M.

ProprosITION 7.6. Let xM be a left R-module. The category rE(M) is locally
finite if and only if the module xM is endofinite.

Proof. If xM is endofinite, then R%6(M) is locally finite by Proposition 6.4. If
r€(M) is locally finite, then (- Qg R)y ) € fin-(r€(M)). Let S = Endg M. By the
previous proposition, every S-submodule of

s(-Br R)gary, —Or M) = 5(-Qr R, - Qg M) = sM

is a finite matrix subgroup. By Proposition 6.4, the lattice of finite matrix
subgroups of ¢M has a composition series.

Obviously fin-€ = V{S e coh-€: S simple} so that in the Ziegler spectrum of €
we have

O(fin-€) = | J{O(S): S € coh-€ is simple}.

If U € O(fin-96), then there is a coherent simple object S such that (S, U) #0. It
follows that U = E(S) and that O(S) ={U}. Thus U is an isolated point of Zg(%).
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Consequently, any dense subset of Zg(%) contains O(fin-¥). For example,
O(fin-€) < max(%). If R is Krull-Schmidt, then by Proposition 5.4, every point of
O(fin-(z €)) is of the form —®z M where M is a finitely presented indecom-
posable left R-module.

To give a criterion for when —®; M e O(fin-(z %)) recall from [2] that a
morphism f: zM — gxN in R-mod which is not a split-monomorphism is called left
almost split if any morphism g: zM — zK in R-mod that is not a split-
monomorphism factors through f, that is, there exists a morphism h: zN— zK
such that the following diagram commutes:

M__f_)N

i/

ProrosiTioN 7.7 [2]. Let M be a finitely presented R-module. The following are
equivalent:

(1) -®x M e 0(fin-(x6));
(2) —Q®gr M is essential over a simple subobject S;
(3) there is a left almost split morphism f: kM — pN in R-mod.

Proof. (1)&(2). If —®x M € O(fin-(3€)), there is a simple subobject S <
(-®xM)=E(-®xM). Thus -®zM is essential over S. Conversely, if
S<-®zM is an essential extension, then S is coherent and —®z;M is
indecomposable. Furthermore, (S, - ®z M) #0 and so - @ M € O(fin-(z€)).

(2)© (3). Consider the diagram

f

—®rM —L 5 _Q, N

_®g

-®r K

That —®f is not a split-monomorphism is tantamount to Ker(-®f)#0. That
every — ® g that is not a split-monomorphism factors through — &® f is tantamount
to Ker(-®f) being contained in every non-zero subobject of —®z M (one can
see this by using the existence of injectives in coh-(3€)). Thus f: M — gN is left
almost split if and only if Ker(-®f) is simple and —-®; M is an essential
extension of it.

A similar result holds for the category R-Mod.

ProposiTioN 7.8 [8, Theorem 2.3]. Let kM be a pure-injective indecomposable
R-module. Then —®x M € max(z%) if and only if there is a left almost split
morphism f: kM — gy N in the category R-Mod.

ExampLE. The maximal Ziegler spectrum max(,€) of ,€ consists of the
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torsion pure-injective indecomposable abelian groups. Thus the self-
homeomorphism Zg(D) does not preserve the maximal Ziegler spectrum. If p is
prime, the basic open set O(—&®, Z(p)) consists of the p-torsion pure-injective
indecomposable abelian groups. The open set

O=®z Z(p)) U O((Z(p), -)) = O(-®2 Z(p) 11 (Z(p), -))

contains only one additional point, the abelian group of p-adic integers. These
two distinct basic open subsets agree on max( %), which shows that Condition (8)
of Corollary 3.12 cannot be strengthened to max(€).

ExamrLE [27, §13.1]. Let A be an artin algebra. Every finitely generated
A-module ,M is pure-injective. Auslander and Reiten [5] proved that every
indecomposable A-module admits a left almost split morphism. Thus O(fin-(, %))
consists of the finitely generated indecomposable A-modules. As this set is dense,
these are precisely the isolated points of the Ziegler spectrum. Furthermore, we
have that

O(fin-(, €)) = max(, €).

To see this, suppose that S e, is simple. We want to show that E(S) e
O(fin-(, €)). There is a finitely generated indecomposable right A-module M,
such that S(M,)#0. By Yoneda’s Lemma, there is a non-zero morphism
(My, -)— S. We will use duality to prove S is coherent. We know that M, is
isolated in Zg(%€,) by some coherent simple object S’ € ,6, OS")={M &, -}.
Applying duality to the monomorphism S'<sM®, - in coh-€¢, implies that
S = DS’ e coh-(,€) because (M,, —) =D(M®, -) is a local functor.

A ring R is said to be of finite representation type if R is left artinian with just
finitely many finitely generated indecomposable left R-modules. Auslander [2]
showed that this is equivalent to the condition that — ®z R e fin-(3 6), that is, that
the category r% is locally finite. By Theorem 3.8, this is equivalent to the
equation Zg(z%6) = 0(- ®x R) = O(fin-(3€)). Applying the duality D to the
relation — ®z R e fin-(x€) gives that R®y — e D[fin-(x€)] = fin-(€z). Thus finite
representation type is a left-right symmetric notion.

ProrosiTioN 7.9 [3; 27, Corollary 13.4]. Let A be an artin algebra. Then A is
not of finite representation type if and only if there is a (pure-injective)
indecomposable left A-module which is not finitely generated.

Proof. The artin algebra A is not of finite representation type if and only if
- ®\ A ¢ fin-(,€). This is so if and only if, by Theorem 3.8, the inclusion
O(fin-(, €)) = O(— ®, A) is proper, which in turn holds if and only if there exists a
pure-injective indecomposable left A-module that is not finitely generated.

There is no known example of a left pure-semisimple ring that is not of finite
representation type. Such a ring R would have to be left artinian and there would
be a finitely generated indecomposable left R-module xM such that - ®z M ¢
O(fin-(z6)).

An object X e € is uniserial if the lattice of subobjects of X is totally ordered
by the subobject relation. For an object X to be uniserial it suffices that the
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finitely generated subobjects be totally ordered. Hence A e coh-%€ is uniserial if
and only if the lattice L.y,.¢(A) is a total order. A subquotient of a uniserial
object is obviously also uniserial. Let uni-€ < coh-€ denote the smallest Serre
subcategory of coh-€ to contain every uniserial object of coh-€. By Proposition
3.1,

uni-€ = V{A e coh-%: A uniseriall,
and it follows that A € uni-€ if and only if there is a finite filtration of A,
A=A=A,=..=A,=0,

by coherent subobjects of A such that every factor A;/A;.; is uniserial. In
particular, we have that uni-€ = fin-%.

Prorosition 7.10 [27, Theorem 10.2]. Let E € € be an injective object. If
uni-(€(E)) #0, then E has an indecomposable coproduct factor.

Proof. Localizing at ¥(E), we may assume that € = €(E). Let A € uni-€ be
non-zero. Then Hom(A, E) # 0, so there is a non-zero morphism 1: A— E. The
image X =Im 7 is a uniserial subobject of E. The injective envelope E(X) is
therefore an indecomposable factor of E.

An object W e € is called distributive if the lattice of subobjects of W satisfies
the distributive law

XN(Y+Z)=XNY+XNZ

for all subobjects X, Y and Z of W. To check that W is distributive it suffices to
verify the distributive law for the finitely generated subobjects of W. Thus a
coherent object A e coh-€ is distributive if and only if the lattice L.y, (A) is
distributive. Denote by dis-€ the smallest subcategory of coh-€ to contain all
distributive objects of coh-€. Clearly dis-€ = uni-€.

ExaMmpLE. A ring R is called serial if it contains a set {e;}_; of primitive
idempotent elements such that xR =", gRe; (and hence R =P}, e;Rz) and
each of the projective R-modules zRe; (e;Rg) is a uniserial left (right) R-module.
It is proved in [10, 29] that each of the functors (¢;R, —) € coh-(z €) is distributive.
Hence (R, -) € dis-(3 %) and therefore dis-(x%6) = coh-(z¥6).

Suppose that W is a coherent object of € that is not distributive. Then there
must be three coherent subobjects A, B and C of W for which the inequality
(ANB)+(ANC)sANB+C0)

is strict. In other words, the basic open subset O(A N (B + C)/(ANB)+ (AN C))
of the Ziegler spectrum is non-empty. Thus arises the open subset

Ca(W):= U OAN(B+C)(ANB)+(ANC))

with the property that Oy (W) # O if and only if W is not a distributive object.
Localizing at the corresponding Serre subcategory  of coh-€ gives a distributive
object Wy e 6/
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By [7, Proposition IV.1.6], an object A e coh-% is distributive if and only if A
has no coherent subquotient isomorphic to B [I B for some B e coh-¢. A
subquotient of a distributive coherent object is therefore also distributive.

ProrosiTioN 7.11 [10, Proposition 2.4]. Suppose that the trivial Serre sub-
category 0 = coh-€ is N-irreducible. Then every distributive object A € coh-€ is
uniserial.

Proof. Let B and C be coherent subobjects of the distributive object A. The
subquotient B+ C/(BNC)=B/(BNC) I C/(BNC) is then distributive. As A
is distributive, B/(BN C) and C/(BNC) have no common subquotient and
therefore V(B/(B N C))NV(C/(BNC))=0. By hypothesis one of B/(BNC)
and C/(B N C) is zero and therefore B<C or C <B.

The next local-global relation generalizes an observation of C. U. Jensen [18]
for commutative rings.

TaeoreM 7.12. The following are equivalent for A € coh-€.

(1) The object A is distributive.

(2) For every Serre subcategory ¥ = coh-€, Ay is €/ F-distributive.

(3) For every N-irreducible Serre subcategory ¥ = coh-%, Ay is €/ F-uniserial.
(4) For every E € Zg(6), Ay, is €(E)-uniserial.

(5) For every E € max(€), Ay is €(E)-uniserial.

Proof. Condition (2) follows from (1) by Proposition 6.2. By Proposition 7.11,
Condition (3) is a special case of Condition (2). Condition (4) is a special case of
Condition (3). To see that (5) implies (1), suppose that A is not distributive. Then
the open subset Oy,(A) is non-empty and so meets the dense subset max(%6). But
if E € Oy5(A), then Ay g is not €(E)-distributive and hence not €(E)-uniserial.

Given W ecoh-%, it is clear that E € Oy (W) if and only if Wy is not
% (E)-uniserial. It follows from the previous theorem that

CaW)= U G(AJANB)NO(A +BJA)

EXAMPLE. A valuation ring is a commutative ring R that is uniserial as an
R-module. Such a ring is certainly serial. For certain valuation rings R, Puninsky
[30] and Salce [32] have proved the existence of pure-injective R-modules E
without indecomposable summands. Thus dis-(3€(E)) = coh-(x€(E)), while
uni-(x 6(E)) =0.

8. The Grothendieck group

In this section, we consider the Grothendieck group K,(coh-€) of the category
of coherent objects of €. Theorem 3.8 is then applied to study the characters of
Crawley-Boevey [8].

Let Ky(coh-%, @) denote the free abelian group on the isomorphism types [A]
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of objects A in coh-€, modulo the relations [A [I B]=[A]+[B]. By |35,
Theorem 1.10], the equation [A] = [B] holds in Ky(coh-€, ®D) if and only if there
is a C € coh-% such that A [ C=B [l C. The Grothendieck group Ky(coh-€) of
coh-€ is the quotient of Ky(coh-€¢, @) by the relations [A] — [B] + [C] for every
short exact sequence 0—A—B—C—0 in coh-€¢. The subset Kj(coh-%)c<
Ky(coh-€) of elements having the form [A] where A e coh-€ clearly forms a
submonoid. This monoid is the positive cone of a pre-order < with which
Ky(coh-€) is endowed,

K (coh-€) = {x € Ky(coh-%): x =0}.

The pre-order < is a transitive relation satisfying the property that for all x, y and
z in Ky(coh-%), x <y if and only if x + z <y + z. For more on this, see [14, § 15].
The duality D: (coh-(3%€))°°?— coh-%, induces an isomorphism

Ky(D): Ky(coh-(x6))— Ko(coh-€g).

If the ring R is commutative, 6= 6, and so Ky(D) is an automorphism of
Ky(coh-(x€)) which, because D? =1, is an involution.

ExawmpLE. If R = Z, the ring of integers, then Kq(D) is the identity automorph-
ism. Equivalently, [A] = [DA] for every coherent object A of coh-(z€). To verify
this, it suffices to prove it for some set of generators, for example the projective
objects A=(M, -). As (Z,-)=-Q,Z = D(Z, -), it holds for A= (Z, -). For the
cyclic groups Z(n), one has the exact sequence

-Qn

00— (Z(n),-) — -®,Z — -®,Z — -®,Z(n) —— 0
which gives the equation [(Z(n), —)] = [-® Z(n)] in the Grothendieck group.

A subgroup V of Ky(coh-%) is called convex [14, p.213] if whenever a,c e V
and a<b <c, then b e V. If V is a convex subgroup of Ky(coh-€), then the
subcategory

Sy :={A e coh-€: [A] e V}

of coh-€ is Serre. For, suppose that 0—>A — B— C— 0 is a short exact sequence
in coh-€. If A, C € %, then [A], [C] e V and so [B]=[A]+[C] e V. On the
other hand, if [B] € V, then because [A], [C]<[B], they also belong to V. We
shall call a Serre subcategory convex if it is of the form %, for some convex
subgroup V of Ky(coh-€).

A subgroup V of Ky(coh-€) is called directed [14, p. 213] if every element of V
is a difference of elements of V N Kg(coh-€). For example, if & is a Serre
subcategory of coh-€, then the subgroup [¥] of Ky(coh-€) generated by the
elements [S], with § € &, is directed. If V is a directed subgroup of K (coh-%), its
convex hull may be described as

Con(V):={x: —~v=<x<v forsome v e V,v=0}
This is again a directed group because x +v=x — (—v)=0 and x = (x +v) —v.
ProrosiTioN 8.1. The map &[] is an inclusion-preserving bijective corres-

pondence between the set of convex Serre subcategories of coh-€ and the set of
directed convex subgroups of Kq(coh-%).
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Proof. Tt is clear that if V is a directed convex subgroup of Ky(coh-€), then
V =[%/] and so the map ¥+~ [¥] is surjective. It remains to show that if & is a
convex Serre subcategory, then [¥] is a convex subgroup. Consider the convex
hull V = Con([¥]) of the subgroup [¥]. As & is convex, it must be that ¥ = %,.
But [#/]=V.

The proposition may be used to define the convex hull Con(¥) of a Serre
subcategory & as the convex Serre subcategory corresponding to the convex
subgroup Con([¥]). It may be characterized as

Con(¥) ={C € coh-6: [C]<|[S] for some S € F}.

ExampLE [14, Corollary 15.21]. If R is a von Neumann regular ring that is
unit-regular, then every Serre subcategory of coh-€ is convex.

The exactness of the inclusion functor & <=coh-€ induces a morphism
Ko(¥)— Ky(coh-6) of pre-ordered abelian groups (Proposition 6.1) whose image
is [#]. The localization functor (-) is also exact and so the function [A]+—[Ay]
induces a well-defined morphism Ky(-)y: Ky(coh-€)— Ky(coh-€/%) of pre-
ordered abelian groups. This morphism Ky(-)s is evidently an epimorphism
whose kernel contains [¥].

ProrosiTioN 8.2 [35, Corollary 5.14]. Let & be a Serre subcategory of coh-€.
Then the sequence Ky(¥%)— Ky(coh-6) — Ky(coh-€/F)— 0 is exact.

If ¥ is a convex subcategory of coh-€, the proposition implies that the trivial
Serre subcategory 0 < coh-%¢/% is convex. This is equivalent to the Grothendieck
group K,(coh-¢/%) being partially ordered by <. The proposition also implies
that if [A] =0 in Ky(coh-€/%), then by convexity of ¥, A € &,

A morphism ¢: Ky(coh-6)— Z of pre-ordered abelian groups (where Z is
endowed with the standard partial order) is called a character [8, § 5]. A necessary
and sufficient condition for a group morphism wu: Ky(coh-€)—Z to be a
character is that w([A])=0 for each A € coh-6. A finite sum of characters is
obviously also a character. To each such character & Ky(coh-€)— Z, we may
associate the Serre subcategory

H(&)={[A]: £([A]) =05

ProrosiTion 8.3. Let & Ko(coh-€)— Z be a character. The Serre subcategory
(&) = coh-%6 is convex.

Proof. Let A € Con(¥(¢)). There is a C e coh-€ such that £([C]) =0 and
[A]=<[C]. Then &([A]) =0 and so A € Con(H(£§)).

For example, if € is a locally finite Grothendieck category, the function
Aw—1(A), which assigns to a coherent object A its length, induces a character
l: Ko(coh-6)— Z. The proposition then says that the trivial Serre subcategory
0= F(I) = coh-¥€ is convex.
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ProrosITION 8.4. Let ¢: Ko(collgfg)eZ be a character and let & be the convex
Serre subcategory $(&). Then €/ is locally finite and & factors as

Ko(coh-€) —I—<9(——)y§-> K(coh-€/F)

Z
where w: Ko(coh-6/%)— Z is again a character.

Proof. By Proposition 8.2, ¢ factors through K()(coh-%/?f), so it remains to
show that €/¥ is locally finite. We shall prove by induction on £([B]), where
B e coh-%, that l43(By) < &([B]). Note that

§[B)=0 & Bed o lgz(By)=0.

First we show that if £([B]) =1, then B, must be €/%-simple. By Proposition
2.14, every €/%-finitely generated subobject X < By, is of the form A, for some
finitely generated, hence coherent, subobject A< B. Consider the short exact
sequence

0-A—-B—->C—0.

It must be that £(JA]) =0 or that £([C]) =0 which means that A, =0 or that
Ay = By. To prove the induction step, we assume that B is not €/ ?—simple and
consider a short exact sequence as above where neither of the coherent objects A
or C lies in #. Then §([A]), £([C]) <€([B]) and so by the induction hypothesis,
we get

lg3(By) =lga(Ag) + laz7(Cy) < E([A]) + E([C]) = E([B]).

A character is called irreducible if it is not the sum of two non-zero characters.
It is clear by Proposition 8.2 that in the previous proposition the induced
character w is irreducible if and only if the given character ¢ is. If € is locally
finite and S € € is simple, a character &;: Ky(coh-%)— Z is obtained by assigning
to a coherent object A the number of times the simple object S occurs as a
composition factor of A. This character &g is clearly irreducible. For, if
& =&+ &,, then for one of the &, say &, we have that &([S]) =1. Then & <&,
and hence & =0.

ProposiTION 8.5. Let € be locally finite and &: Ko(coh-€)— Z a character on
coh-€. If {S;};.; is the set of isomorphism types of the simple objects of €,
then ¢ is expressible uniquely as a (possibly infinite) Z-linear combination of the
characters &,

£=2 &([S])és.

iel

Thus & is irreducible if and only if it is one of the &g, for some i € 1.

Proof. Every element x € Ky(coh-€) is a Z-linear combination x = 2, _, n;[S;]
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of the generators [S;]. Now &(x) =3, .,m,£([S;]) where n; = £4(x), so the equality
holds. To prove uniqueness, suppose 2,;.;n;és=0. Then for every jel,
n; =, més[S] = 0([S;]) = 0.

The previous two propositions give the following result of Crawley-Boevey.

THEOREM 8.6 [8, Theorems 5.1, 5.2]. Every character &: Ky(coh-€)— Z is
uniquely expressible as a (possibly infinite) Z-linear combination

§=2ni§i

iel

of irreducible characters &,.

Let R be a ring and &: Ky(coh-(x€)) — Z a character. As every coherent object
C of ;€ is a subquotient of some (—®z R)", it is clear that ¢ is non-zero if and
only if £([-®z R]) #0. It follows that every character ¢&: Ky(coh-(x6))—Z is a
finite sum of irreducible characters.

9. Endofinite modules

In this final section we consider irreducible characters as well as the characters
on the Grothendieck group of the category coh-(;z %) of coherent generalised left
R-modules. Most of the results are due to Crawley-Boevey [8], but the methods
of this paper shed new light on them.

ExampLE. Let zM be an endofinite R-module with endomorphism ring 7=
End; M. By Proposition 7.6, the category €6(M) is locally finite and one may
define the character

L ([C]) := Lieny(Coan)-

By Proposition 6.3, uy([C]) <[7(C, - &®x M). On the other hand, Proposition 7.5
implies that wy,([C]) ={7(C, -®x M). Hence we get a more useful description of
M in the form of the equality

pm([C]) =17(C, - Qg M).

In particular, py([- ®z R])=I1;(-®r R, —Q®x M) =I;(yM) is the endolength of
&rM. Note also that F( ) = FA(xM).

Let ¢ Ko(coh-6)— Z be an irreducible character and & the Serre subcategory
F(€) of coh-€6. The proof of Proposition 8.4 shows that the character ¢ dominates
the character /4 4(—)s But since ¢ is irreducible, these two characters are in fact
equal. The category 4/ is locally finite and since the character induced by the
length function is irreducible, the category €/% has only one simple object S (up
to isomorphism) and the character induced on K(coh-(€/%)) by ¢ is &. The
Ziegler spectrum Zg(%/%) has only one point, namely E = E(S), which, by
Proposition 3.6, may be thought of as a closed point of Zg(%). By Theorem 3.8,
the category &(¢) is a maximal Serre subcategory of coh-€.
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We call a closed point E e Zg(%) endofinite if the localization €/F(E) is locally
finite. If 7 = End¢ E, an argument as in the example shows that £ is equal to the
character wg: Ky(coh-€)— Z defined by

we([CD)=1:(C, E).

THEOREM 9.1. There is a bijective correspondence between the endofinite closed
points E of Zg(€¥) and the irreducible characters &: Ky(coh-€)— Z. The
correspondence is given by the map

E'_>/"LE = lT(_) E)
where T = End¢ E.

Proof. We have just proved that the map is surjective. It is also one-to-one,
because if E and F are distinct endofinite closed points of Zg(¥€), there is a
coherent object C e € such that E € O(C) while F ¢ O(C). The two characters ug
and u are then distinct since wz([C]) =0 < uz([C]).

CoroLLARY 9.2. Let R be a ring. There is a bijective correspondence between the
endofinite indecomposable left R-modules M and the irreducible characters
& Ko(coh-p€)— Z. The correspondence is given by the map

MH/_LM - lT(_) _®RM)
where T = Endg M.

For the category of generalized R-modules, the characters on the Grothendieck
group may be thought of as the Sylvester rank functions of Schofield [33, Chapter
7]. To see this, let Ky(mod-R, ®) be the abelian group presented by the
generators [M] where M € mod-R and the relations [M @ N]—[M]—[N]. By
Yoneda’s Lemma, the representation functor Mg+ (Mg, —) is an equivalence
between the category mod-R and the subcategory of projective objects of
coh-(,€6). As every short exact sequence of projective objects is split-exact,
Ky(mod-R, D) is isomorphic to the Grothendieck group of the projective objects.
Recall that every object C e coh-(; %) has a projective resolution

(£:-)

0 —— (KR) _) - (NR) _) EE— (MR) _) — C —— 0.
By [35, Theorem 4.4], the map x: Ky(coh-(x%))— Ky(mod-R, D) given by
C—[M]—[N]+[K]

is a well-defined isomorphism of abelian groups.

Thus we may associate to each character ¢: Ky(coh-(x%6))— Z the rank
function p: mod-R — Z defined by p(M) = &x '([M]). These are precisely the
rank functions p satisfying the following two conditions.

(1) We have p(M@® N) = p(M) + p(N). This just asserts that the induced map
px = & Ky(coh—z€)— Z is a morphism of abelian groups.

(2) If f: Mr— N is a morphism in mod-R, then p(M) — p(N) + p(Coker f) =
0. This condition asserts that for a C ecoh-(x%) with a projective
resolution as above, px([C]) = p(M) — p(N) + p(Coker f) = 0.
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ExampLE. Let A be an artin algebra. Then every finitely generated indecom-
posable A-module ,M is endofinite and so gives rise to an irreducible character
- The intersection V of the kernels of these characters is a convex subgroup of
Ky(coh-(, €)) such that ¥, =0. Thus the trivial Serre subcategory 0 of coh-(, €)
is convex.

Let C e coh-€ and consider a finite filtration %,

CZCOBCIB...B n+1=0

of C by coherent subobjects. Let O(%F)=( =, O(C;/C;;,). This is a finite
intersection of basic open subsets and is therefore open. If £ € O(%), then all of
the inclusions in the localized filtration Fy ),

Coiey=(Co)onry= (C gy = ... = (Cos) ey =0,

are proper and therefore l¢ ) (Cyr)) >n (we allow, of course, for the possibility
that the length may be infinite).

DeriNiTION. For each natural number n, define 0,(C) :=_ (%) where the index
set runs over all filtrations of C of length n + 1.

Note that the open subset 0,(C) is just the basic open subset O(C).
THEOREM 9.3. Let C e coh-€. Then 0,(C) ={E € Zg(€): l¢r)(Cxr)) > n}.

Proof. We have already noted that if E e O,(C), then Il4g(Cxp)>n.
Conversely, if l¢£)(Cyr)) > n, then there is a filtration 9 of length n + 1 of Cy,
by €(E)-coherent subobjects. Proposition 2.14 shows that ¥ is the localization
Y= Fyr) of some filtration F of length n + 1 of C by €-coherent subobjects. But
then E € O(%) < 0,(C).

CoROLLARY 9.4. Let ug: Ky(coh-€)— Z be an irreducible character. For every
C e coh-6, E € 0,(C) if and only if £([C]) > n.

DErFINITION. Let R be a ring. Define 7.g,(x6) = Zg(r6)\ 0,(—- ® R).

The subset Zg,(3€) is a closed and hence quasi-compact subset of the left
Ziegler spectrum of R. A pure-injective indecomposable module zM belongs to
this set if and only if it has endolength at most #. Since all of these points are
closed, the subspace Zg,(z€) satisfies the separation axiom 7;. The subsets
7g,(r6) and Zg,(6g) are homeomorphic via the map D defined as follows. If
M e Zg,(z€), then u,: Ky(coh-(x6))— Z is an irreducible character such that
wr([-®x R]) <n. The character u,Ky(D): Kyo(coh-6z)— Z is then also ir-
reducible and so has the form wy for some endofinite indecomposable right R
module Ng. Furthermore, N e Zg, (6z) since un([R&®x —]) <n. Define DM = N.

Let us describe Zg,(z€), the subspace of all endosimple left R-modules, that is,
of those modules zM that are simple as modules over their endomorphism ring. If
A =End; M is the local endomorphism ring, then because M is a faithful simple
A-module, A must be a (not necessarily commutative) field and .M a one-
dimensional vector space over A. The action of R gives a ring homomorphism
a: R—A°=End, A. As M is indecomposable, A°"? contains no proper field
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containing the image of a. Conversely, every such ring homomorphism «: R —
A°P gives rise to an endosimple indecomposable left R-module A.

The field spectrum of R in the sense of Cohn [7, p.410] is a topological space
whose points are the epic R-fields, that is, ring homomorphisms «: R — A°® (up
to isomorphism) with the property that A°? is a minimal field containing the image
of a. It is easy to see that if

R —— A

| A

AP

is an isomorphism of epic R-fields, then f°°: zA;— gA, is an isomorphism of
R-modules. Conversely, the epic property may be used to prove that an
isomorphism g: rA;— gA, of endosimple indecomposable R-modules induces an
isomorphism of epic R-fields. The topology on the field spectrum of R is given by
the following basis of open subsets. To each square n X n matrix A, the basic
open subset

O(A):={A°": A e M, (A°P) is invertible}

is associated. That A°? € O(A) means the morphism —® A: —®z R" - -Qr R" in
coh-(z€) becomes invertible upon localisation at ¥(A). Note that in Zg,(z %), the
subset O(A) corresponds to the open subset 0,_,((— ®z R")/Ker(-® A)). If Ris a
commutative ring, the field spectrum of R is homeomorphic to the Zariski
spectrum.

Define the constructible field spectrum of R to be the topological space whose
points are those of the field spectrum and with a basis of open subsets given by
finite boolean combinations of the subsets O(A). In Zg,(3x€), the complement of
the open subset O(A) corresponds to the open subset O(Ker(- & A)), so the map
A— A" is a continuous bijection from Zg, (%) to the constructible field
spectrum. As the space Zg,(x€) is quasi-compact, so is the constructible field
spectrum of R. Because the field spectrum of R satisfies the separation axiom 7,
[7, Ex. 13, p. 412], the constructible field spectrum is Hausdorff. As the bijection
above is continuous, the subspace Zg;(z€) must also be Hausdorff. The following
is now immediate.

THEOREM 9.5. The subspace 7.g,(z6) is homeomorphic via the map A~ AP to
the constructible field spectrum of R.

Suppose that A is an artin algebra and let ¢ denote the length of A as a module
over its centre. If ,M is a A-module of length at most m, then its length over the
centre, and so its endolength, are bounded by mc. If there were an infinite family
of indecomposable A-modules of length m, then there would be infinitely many
finitely generated indecomposable A-modules of endolength at most mec.

THEOREM 9.6 (Crawley-Boevey) [8, Theorem 9.6]. Let A be an artin algebra. If
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there are infinitely many finitely generated indecomposable A-modules of endo-
length at most n, then there is an indecomposable A-module G of endolength at
most n that is not finitely generated.

Proof. The hypothesis asserts that Zg,(,€) contains infinitely many isolated
points. As Zg,(,€) is quasi-compact, this set of isolated points has an
accumulation point E € Zg,(,4). But then E=-&®;G where ;G is an
endofinite indecomposable A-module of endolength at most » that is not finitely
generated.

An endofinite indecomposable A-module that is not finitely generated is called
generic. A generic module is a A-module that corresponds to an irreducible
character ug, but does not belong to the open subset O(fin-(,€)) of isolated
points. Crawley-Boevey [8] has proved that for an infinite artin algebra A, the
existence of a generic A-module implies the existence of an infinite family of
finitely generated indecomposable A-modules of some fixed length. Thus the
second Brauer—Thrall Conjecture may be rephrased as follows.

THE SEcOND BRAUER-THRALL CONJECTURE. If A is an artin algebra that is not
of finite representation type, then there exists a generic A-module.

In the quest for a generic A-module, one may argue as follows. If A is not of
finite representation type, then fin-€ is a proper Serre subcategory of coh-é. By
Zorn’s Lemma, there is a maximal proper Serre subcategory fin-€ = & < coh-€.
The Ziegler spectrum of €/ Zis then an indiscrete topological space. The problem
is to find suitable conditions on & which imply that it has the form ¥(¢) for some
irreducible character £ The following generalises a test due to Ziegler.

ProrosiTioN 9.7 [37, Lemma 8.11]. Let € be a locally coherent Grothendieck
category such that 7g(%) is indiscrete. If there are an A € coh-€ and E € max(%€)
such that E is a coproduct factor of the injective envelope E4(A), then € is locally
finite.

Proof. As E = E(S) for some simple object S € € and E is a coproduct factor
of an essential extension of A, it must be that § is a subobject of A and is
therefore coherent. Now VS clearly consists of those objects of finite length all of
whose composition factors are isomorphic to S. By Theorem 3.8, VS = coh-4.

If there exists a maximal Serre subcategory fin-(,€) = & < coh-(,6) such that
T = F(§) for some character &, then & is necessarily a convex Serre subcategory.
So it makes sense to consider a maximal convex Serre subcategory fin-(,6) =
& < coh-(,6) and ask whether it corresponds to some irreducible character. The
existence of such a maximal convex Serre subcategory is derived from Zorn’s
Lemma together with the following.

ProrosiTioNn 9.8. If A is an artin algebra, then fin-(,€) is a convex Serre
subcategory of coh-(,6).

Proof. First note that C e fin-(,%) if and only if there are only finitely many
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finitely generated indecomposable A-modules M such that u,([C])#0. If A
belongs to the convex hull Con(fin-(,%)), then there is a C e fin-(,€) such that
[A]=<[C]. But then puu([A])#0 for only finitely many finitely generated
indecomposables M. Thus fin-(,€) = Con(fin-(, %)) is convex.

References

1. M. AUSLANDER, ‘Coherent functors’, Proceedings of the Conference on Categorical Algebra (La
Jolla 1965) (eds S. Eilenberg, D. K. Harrison, S. MacLane, and H. Rohrl, Springer, New York,
1966), pp. 189-231.

2. M. AUSLANDER, ‘Representation theory of Artin algebras II', Comm. Algebra 1 (1974) 269-310.

3. M. AUSLANDER, ‘Large modules over Artin algebras’, Algebra, topology and category theory. A
collection of papers in honor of Samuel Eilenberg (eds A. Heller and M. Tierney, Academic
Press, New York, 1976), pp. 1-17.

4. M. AUSLANDER, ‘Isolated singularities and almost split sequences’, Representation theory II (eds
V. Dlab, P. Gabriel, and G. Michler), Lecture Notes in Mathematics 1178 (Springer, Berlin,
1986), pp. 194-242.

5. M. AUSLANDER and I. REITEN, ‘Representation theory of Artin algebras III. Almost split

sequences’, Comm. Algebra 3 (1975) 239-294.

. W. BAUR, ‘Elimination of quantifiers’, Israel J. Math. 25 (1976) 64-70.

. P. M. ComnN, Free rings and their relations (Academic Press, London, 1985).

. W. W. CrRAWLEY-BOEVEY, ‘Modules of finite length over their endomorphism ring’,
Representations of algebras and related topics (eds. H. Tachikawa and S. Brenner), London
Mathematical Society Lecture Note Series 168 (Cambridge University Press, 1992), pp.
127-184.

9. W. W. CRAWLEY-BOEVEY, ‘Locally finitely presented abelian categories’, Comm. Algebra 22
(1994) 1641-1674.

10. P. EKLOF and I. HERZOG, ‘Model theory of modules over a serial ring’, Ann Pure Appl. Logic 72
(1995) 145-176.

11. P. FREYD, Abelian categories (Harper and Row, New York, 1966).

12. P. GABRIEL, ‘Des catégories abéliennes’, Bull. Soc. Math. France 90 (1962) 323-448.

13. S. GARAVAGLIA, ‘Decomposition of totally transcendental modules’, J. Symbolic Logic 45 (1980)
155-164.

14. K. GOODEARL, Von Neumann regular rings (Pitman, London, 1979).

15. L. GrusoN and C. U. JENSEN, ‘Modules algébriquement compacts et foncteurs lim”’, C.R. Acad.
Sci. Paris 276 (1973) 1651-1653. —

16. L. Gruson and C. U. JENSEN, ‘Dimensions cohomologiques reliées aux foncteurs Lim’,
Séminaire d’algébre (eds P. Dubreil and M.-P. Malliavin), Lecture Notes in Mathematics 867
(Springer, Berlin, 1981), pp. 234-294.

17. 1. HERZOG, ‘Elementary duality of modules’, Trans. Amer. Math. Soc. 340 (1993) 37-69.

18. C. U. JENSEN, ‘Arithmetical rings’, Acta Mat. Acad. Sci. Hungar. 17 (1966) 115-123.

19. C. U. JENSEN and H. LENZING, Model theoretic algebra, Algebra, Logic and Applications Series 2
(Gordon and Breach, New York, 1989).

20. 1. KAPLANSKY, Infinite abelian groups (University of Michigan Press, Ann Arbor, 1969).

21. R. KiELPINsKI, ‘On I'-pure-injective modules’, Bull. Acad. Polon. Sci. 15 (1967) 127-131.

22. H. KrRAUSE, ‘The spectrum of a locally coherent Grothendieck category’, J. Pure Appl. Algebra,
to appear.

23. D. LAZARD, ‘Autour de la platitude’, Bull. Soc. Math. France 97 (1969) 81-128.

24. E. MATLIS, ‘Injective modules over Noetherian rings’, Pacific J. Math. 8 (1958) 511-528.

25. N. Popescu, Abelian categories with applications to rings and modules (Academic Press, London,
1973).

26. M. Y. PREST, ‘Applications of logic to torsion theories in abelian categories’, doctoral dissertation,
University of Leeds, 1978.

27. M. Y. PrREST, Model theory and modules, London Mathematical Society Lecture Note Series 130
(Cambridge University Press, 1988).

28. M. Y. PresT, PH. ROTHMALER, and M. ZIEGLER, ‘Absolutely pure and flat modules and
“indiscrete” rings’, J. Algebra 174 (1995) 349-372.

29. G. PUNINSKY, ‘Indecomposable pure-injective modules over uniserial rings’, Trans. Moscow Math.
Soc. 56 (1994) 1-14.

30. G. PUNINSKY, ‘Superdecomposable pure-injective modules over commutative valuation rings’,
Algebra i Logika 31 (1992) 655-671.

[~ I =)



558 LOCALLY COHERENT GROTHENDIECK CATEGORIES

31. J.-E. Roos, ‘Locally Noetherian categories’, Category theory, homology theory and their
applications 11, Battelle Institute Conference 1968 (ed. P. Hilton), Lecture Notes in Mathemat-
ics 92 (Springer, Berlin, 1969), pp. 197-277.

32. L. SALCE, ‘Valuation domains with superdecomposable pure-injective modules’, Abelian groups:
proceedings of the 1991 Curacao conference (ed. L. Fuchs, Marcel Dekker, New York, 1993),
pp. 241-246.

33. A. SCHOFIELD, Representations of rings over skew fields, London Mathematical Society Lecture
Note Series 92 (Cambridge University Press, 1985).

34. B. STENSTROM, Rings of quotients (Springer, New York, 1975).

35. R. G. SwaN, Algebraic K-theory, Lecture Notes in Mathematics 76 (Springer, Berlin, 1968).

36. R. B. WARFIELD JR, ‘Purity and algebraic compactness for modules’, Pacific J. Math. 28 (1969)
699-719.

37. M. ZIEGLER, ‘Model theory of modules’, Ann. Pure Appl. Logic 26 (1984) 149-213.

38. W. ZIMMERMANN, ‘Rein injektive direkte Summen von Moduln’, Comm. Algebra 5 (1977)
1083-1117.

39. B. ZIMMERMANN-HUISGEN and W. ZIMMERMANN, ‘Algebraically compact rings and modules’,
Math. Z. 161 (1978) 81-93.

40. B. ZIMMERMANN-HUISGEN and W. ZIMMERMANN, ‘On the sparsity of representations of rings of
pure global dimension zero’, Trans. Amer. Math. Soc. 320 (1990) 695-711.

Department of Mathematics
University of Notre Dame
Notre Dame

Indiana 46556

U.S.A.

E-mail: iherzog@artin.helios.nd.edu



