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 Let  R  be a ring (associative ,  with identity) and denote by mod- R  the category of
 finitely presented right (unital) modules over  R .  The prototype of a locally
 coherent Grothendieck category is the category

 R #  : 5  (mod- R ,  Ab)

 whose objects are the additive functors  F  :  mod- R  5  Ab (Ab denotes the
 category of abelian groups) and whose morphisms are the natural transforma-
 tions .  The methods of this paper will illustrate how the category  R #   is used to
 study  left R -modules .  Indeed ,  we refer to the category  R #   as the category of
 generalized left  R -modules on account of the right exact ,  fully faithful functor
 R M  S  –  ̂  R  M  from the category  R -Mod of all left  R -modules to  R # .

 Let fp-( R # ) denote the full subcategory of the finitely presented objects of  R # .
 For example (cf .  [ 1 ,  Lemma 6 . 1]) ,  if  R M  is a finitely presented left  R -module ,
 then  –  ̂  R  M  is an object of fp-( R # ) .  It is a key observation of Auslander [ 1 ,
 Theorem 2 . 2] that the category fp-( R # ) is abelian .  Equivalently (cf .  Theorem
 1 . 6) ,  every finitely presented object  B  P  R #   is  coherent ,  that is ,   B  is finitely
 presented and every finitely generated subobject of  B  is also finitely presented .  It
 follows from Yoneda’s Lemma that  R #   is locally finitely presented and therefore
 locally coherent (see definition below) .

 Ziegler [ 37 ] associates to the ring  R  a topological space whose points are the
 isomorphism types of the pure-injective indecomposable left  R -modules  R U .  This
 space is homeomorphic ,  via the function  R U  5  –  ̂  R  U ,  to the topological space
 Zg( R # )   whose points are the isomorphism types of the injective indecomposable
 objects of the category  R #   and an open basis of Zg( R # ) is given by the collection
 of subsets

 2 ( C )  : 5  h E  P  Zg( R # ) :  Hom
 R # ( C ,  E )  ?  0 j

 as  C  ranges over the coherent objects of  R # .  This topological space is called the
 Ziegler spectrum  of  R # .

 The notion of a coherent object makes sense in any Grothendieck category  #
 and such a category is said to be  locally coherent  if every object  X  P  #   may be
 represented as a direct limit

 X  >
 Å 5
 lim  C i

 of coherent objects  C i   of  #  .  Locally coherent categories were introduced by Roos
 [ 31 ] .  The full subcategory of coherent objects of  #   is denoted by coh- #  .  The
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 Ziegler spectrum Zg( #  ) of a locally coherent Grothendieck category  #   is defined
 as for  R # .

 Although this paper contains no model theory  per se ,  the point is to survey in
 the category-theoretic idiom model-theoretic methods (cf .  [ 27 ,  37 ]) used in the
 study of modules .  The categorical setting for these methods is that of a locally
 coherent Grothendieck category .  As part of this paper’s introduction ,  we shall
 recall a portion of Gabriel’s theory [ 12 ] of localization for this special case .  In the
 latter sections ,  we apply the methods developed in the paper to treat recent
 results of Crawley-Boevey [ 8 ] .

 The main result of this paper is a Nullstellensatz for locally coherent
 Grothendieck categories .  To understand its statement ,  recall that a full sub-
 category  6  ‘  coh- #   is called a Serre subcategory if for every short exact sequence

 0  5  A  5  B  5  C  5  0

 in coh- #  ,  we have that  B  P  6   if and only if  A ,  C  P  6 .  Serre subcategories of
 coh- #  arise in the following way .  An object  X  of  #   is called  coh - injecti y  e  if
 Ext 1

 # ( C ,  X  )  5  0   for every coherent object  C .  (In this setting ,  coh-injectivity is
 equivalent to the more familiar notion of fp-injectivity [ 19 ] . ) Then the sub-
 category of coh- #  ,

 6 ( X  )  : 5  h C  P  coh- #  :  Hom # ( C ,  X  )  5  0 j ,

 is a Serre subcategory .  In  R # ,  the coh-injective objects have been characterized
 [ 19 ,  Theorem B . 15] as precisely the objects of the form  –  ̂  R  M  where  R M  is a left
 R -module .  In this way  R -Mod is recovered within  R #   and a Serre subcategory of
 coh- #  is associated to every left  R -module .

 T HEOREM  3 . 8 .  Let  #   be a locally coherent Grothendieck category . There is an
 inclusion - preser y  ing bijecti y  e correspondence between the Serre subcategories  6   of
 coh- #   and the open subsets  2   of  Zg( # ) . This correspondence is gi y  en by the
 functions

 6  S  2 ( 6  )  : 5  !

 C P 6
 2 ( C )

 and

 2  S  6 2  : 5  h C  P  coh- #  :  2 ( C )  ‘  2  j

 which are mutual in y  erses .

 The advantage of working in the context of locally coherent Grothendieck
 categories is that one can show that every locally closed subset  I  >  2   (here  I
 denotes a closed set) of the Ziegler spectrum Zg( #  ) of a locally coherent
 Grothendieck category  #   is homeomorphic to the Ziegler spectrum of a
 subcategory of  #   which is also locally coherent Grothendieck .  For the case of an
 open set  2   or a closed set  I ,  this is done as follows .

 2 .  By Theorem 3 . 8 ,  there is a Serre subcategory  6  ‘  coh- #   such that
 2  5  2 ( 6  ) .  Let  6 $    [ 9 ] denote the full subcategory of  #   of those objects  Y  which
 may be represented as a direct limit

 Y  >
 Å 5
 lim  S i
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 of objects from  6  .  Then  6 $    is a locally coherent category whose Ziegler spectrum
 Zg( 6 $  )   is homeomorphic to  2 ( 6  ) .

 I .  If  I  ‘  Zg( #  ) is closed ,  let  6  ‘  coh- #   be such that  2 ( 6  )  5  Zg( #  )  \  I .  To the
 subcategory  6 $  ‘  #   is associated the torsion functor

 t 6 :  #  5  6 $

 which assigns to an object  X  of  #   its maximal subobject from  6 $  .  The functor  t 6   is
 left exact and the object  X  is called  6  - closed  if  t 6  ( X  )  5  t 1

 s 6  ( X  )  5  0 where  t 1
 6

 denotes first higher derived functor of  t 6 .  The full subcategory  #  / 6 $    of  6 -closed
 objects is a locally coherent Grothendieck category whose Ziegler spectrum
 Zg( #  / 6 $  )   is homeomorphic to  I .

 Thus every Serre subcateogry  6   of coh- #   gives a partition of the Ziegler
 spectrum of  #  ,

 Zg( #  )  >  Zg( 6 $  )  < ~  Zg( #  / 6 $  ) ,

 into an open and a closed set .
 We shall consider three general sets of points of the left Ziegler spectrum

 Zg( R # )   of the ring  R .
 (1)  The injective indecomposables ,  that is ,  the points  –  ̂  R  E  where  R E  is an

 indecomposable injective  R -module .
 (2)  If  R M  is a finitely presented  R -module with local endomorphism ring ,  then

 the injective envelope  E ( –  ̂  R  M ) of  –  ̂  R  M  is a point of Zg( R # ) .  If the ring  R
 contains a complete local noetherian ring in its centre and  R  is finitely generated
 as a module over this subring ,  then  –  ̂  R  M  5  E ( –  ̂  R  M ) is already an injective
 object of  R # .  The set of such points is dense in the left Ziegler spectrum of such
 an  R .

 Similar considerations apply to an artin algebra  L ,  so that if  L M  is a finitely
 generated indecomposable  L -module ,  then  –  ̂  L  M  is a point of Zg( L # ) .  By [ 27 ,
 Corollary 13 . 4] ,  these are precisely the isolated points of Zg( L # ) .

 (3)  An  endofinite R -module  R M  is one that has finite length as a module over
 its endomorphism ring End R  M .  This finite length is called the  endolength  of  R M .
 Every endofinite indecomposable  R -module is a point of the left Ziegler spectrum
 of  R .  We prove (cf .  Corollary 9 . 4) that for every natural number  n ,  the set
 Zg n ( R # )   of points of endolength at most  n  is closed .  In Theorem 9 . 5 ,  the closed
 subset Zg 1 ( R # ) is shown to be the field spectrum of  R  in the sense of Cohn [ 7 ]
 endowed with the constructible topology .  The work [ 8 ] of Crawley-Boevey shows
 that for an infinite artin algebra  L ,  the Second Brauer – Thrall Conjecture is
 equivalent to the existence of a non-isolated endofinite point in Zg( L # ) .

 The Nullstellensatz (Theorem 3 . 8) assumes the ro ̂  le of Ziegler’s [ 37 ,  Lemma
 4 . 7] which is ,  in the model theory of modules ,  the most often applied form of
 Go ̈  del’s Compactness Theorem .  The following is an example of such an
 application .

 C OROLLARY  3 . 9 (Ziegler [ 37 ,  Theorem 4 . 9]) .  Let  #   be a locally coherent
 Grothendieck category . An open subset  2   of  Zg( # )  is quasi - compact if and only if
 it is one of the basic open subsets  2 ( C )  where C is a coherent object of  # .

 For the ring  R ,  the forgetful functor  –  ̂  R  R :  mod- R  5  Ab is a coherent object
 of  R #   and therefore the left Ziegler spectrum of  R ,  Zg( R # )  5  2 ( –  ̂  R  R ) ,  is a
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 quasi-compact topological space .  Quasi-compactness is the property of the
 Ziegler spectrum of a ring used in proving the existence of large (not finitely
 generated) modules .  If the ring is an artin algebra  L ,  which is not of finite
 representation type ,  then an accumulation point of the set of isolated points
 witnesses the following result of Auslander .

 P ROPOSITION  7 . 9 (Auslander [ 3 ;   27 ,  Corollary 13 . 4]) .  If  L   is an artin algebra
 that is not of finite representation type , then there exists a  (  pure - injecti y  e )
 indecomposable  L - module which is not finitely generated .

 Similarly ,  an accumulation point of the isolated points of Zg n ( L # ) witnesses the
 following result of Crawley-Boevey .

 T HEOREM  9 . 6 (Crawley-Boevey [ 8 ,  Theorem 9 . 6]) .  Let  L   be an artin algebra and
 n a natural number . If there are infinitely many finitely generated indecomposable
 L - modules of endolength at most n , then there is an indecomposable  L - module of
 endolength at most n which is not finitely generated .

 The categorical duality  D :  (coh- R # ) o p
 5  coh- # R   of Auslander [ 4 ] and

 Gruson and Jensen [ 16 ] is described in  §  5 .  In the model theory of modules ,
 this corresponds to elementary duality ,  introduced by Prest [ 27 ,  Chapter 8]
 and developed in [ 17 ] .  If  6  ‘  coh- R #   is a Serre subcategory ,  we let  D 6  5
 h DS :  S  P  6  j  ‘  coh- # R   denote the dual Serre subcategory of  # R .

 T HEOREM  5 . 5 [ 17 ,  Proposition 4 . 4] .  Let R be a ring . There is an inclusion -
 preser y  ing bijecti y  e correspondence between the Serre subcategories of  coh-( R # )
 and those of  coh-( # R )  gi y  en by

 6  S  D 6 .

 The induced map  2 ( 6  )  S  2 ( D 6  )  gi y  es an isomorphism between the topologies ,
 that is , the respecti y  e algebras of open sets , of the left and right Ziegler spectra
 of R .

 In the final section ,  Theorem 3 . 8 is applied to the characters [ 8 ] of Crawley-
 Boevey .  These generalize the Sylvester rank functions of Schofield [ 33 ] .  The
 Grothendieck group  K 0 (coh- #  ) is endowed with a pre-order and a  character
 j  :  K 0 (coh- #  )  5  Z  (the integers) is defined to be any order-preserving group
 homomorphism .  An  irreducible  character is one that is not the sum of two
 non-zero characters .  We give a proof of the following result of Crawley-Boevey .

 T HEOREM  8 . 6 (Crawley-Boevey [ 8 ,  Theorem 5 . 2]) .  E y  ery character

 j  :  K 0 (Coh- #  )  5  Z

 is expressible uniquely as a sum  o i P I  n i j i  of  (  possibly infinitely many )  irreducible
 characters  j i  .
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 The paper is organized as follows .  The first two sections are preliminary ,
 collecting the necessary category-theoretic background .  The Ziegler spectrum is
 defined in the third section where its main properties are described .  The
 remaining sections are devoted to the Ziegler spectrum of a ring  R .  Examples are
 given in the fourth section .  Duality is treated in the fifth section .  In the sixth
 section ,  we briefly discuss finite matrix subgroups .  In the following section ,
 examples of Serre subcategories are given and we show how they are used in the
 analysis of  R -modules .  In the final two sections ,  we study the Grothendieck group
 K 0 (coh- #  ) and its characters .

 Throughout this article ,   R  will denote an associative ring with identity .  By the
 unqualified term  R -module is meant a unital left  R -module .  The category of
 R -modules is denoted by  R -Mod ;  the category of right (unital)  R -modules by
 Mod- R .  If  R  is the ring of integers ,  then  R -Mod is abbreviated to Ab .  The full
 subcategory of  R -Mod (Mod- R ) of the finitely presented (right)  R -modules is
 denoted by  R -mod (mod- R ) .

 Throughout this article ,   #   will denote a Grothendieck category .  By that we
 mean that  #   is an abelian category with a generator ,  that colimits exist in  #   and
 that direct limits are exact .  We shall freely invoke the fact [ 34 ,  Corollary X . 4 . 3]
 that every object  X  P  #   has an injective envelope  E ( X  )  P  # .

 If  @   is a category ,  then by a subcategory  !   of  @   we shall always mean a  full
 subcategory of  @ .  For concepts such as subobject ,  epimorphism ,  injectivity ,  etc .
 we shall use the prefix  !  -subobject or  @ -subobject to indicate the context .  This
 prefix may be omitted if the concept in question is absolute with respect to the
 inclusion  !  ‘  @ .  To indicate the context of an operation ,  for example Ker  h  ,
 E ( X  )   or 

 Å 5
 lim  X i  ,  we shall use a subscript ,  for example ,  Ker !  h  ,  E ! ( X  ) ,  etc .  which

 may also be omitted in case of absoluteness .
 The principal section of the paper is the third ,  in which the Ziegler spectrum is

 defined .  Most of the results are categorical variants of results of Ziegler [ 37 ] .  The
 present point of view ,  which stresses Serre subcategories is best encapsulated by
 Theorem 3 . 8 which adapts a result [ 26 ,  Theorem 3 . 3] of Prest to the Ziegler
 spectrum .  The model-theoretic variant of Theorem 3 . 8 was announced and
 proved in the Autumn of 1991 before a seminar at Brandeis University .  I am
 grateful to the late Professor M .  Auslander for giving me such an opportunity .
 His encouragement and generous contribution of ideas to this paper were a great
 inspiration .  I also wish to thank W .  W .  Crawley-Boevey for many helpful
 suggestions .

 1 .  Preliminaries

 In this preliminary section ,  locally coherent categories are defined and we
 gather the information about such categories necessary for the sequel .  To begin ,
 we describe the subcategories of a Grothendieck category  #   which consist of the
 finitely generated objects ,  the finitely presented objects and the coherent objects
 respectively .  These categories are ordered by the inclusions

 #  “  fg- #  “  fp- #  “  coh- #  .

 Given objects  A ,  B  P  # ,  the notation  A  <  B  signifies that  A  is a subobject of  B ;  a
 representative monomorphism  m   will be denoted by  m  :  A  <  B .  For notation ,  we
 tend to adhere to the reference [ 34 ] .
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 1 . 1 .  Finitely presented objects
 An object  A  P  #   is  finitely generated  if whenever there are subobjects  A i  <  A

 for  i  P  I  satisfying

 A  5 O
 i P I

 A i  ,

 then there is already a finite subset  J  ’  I  such that

 A  5  O
 i P J

 A i .

 The subcategory of finitely generated objects is denoted by fg- #  .  The category  #
 is  locally †  finitely generated  if every object  X  P  #   is a directed sum

 X  5 O
 i P I

 X i

 of finitely generated subobjects  X i .  Clearly ,  the category  R -Mod is locally finitely
 generated .  All Grothendieck categories encountered in the sequel will be locally
 finitely generated .

 A finitely generated object  B  P  fg- #   is  finitely presented  [ 34 ,   §  I . 3] if every
 epimorphism  h  :  A  5  B  with  A  finitely generated has a finitely generated kernel
 Ker  h .  The subcategory of finitely presented objects of  #   is denoted by fp- #  .  The
 respective categories of finitely presented  R -modules are denoted by  R -mod  5  fp-
 ( R -Mod) and mod- R  5  fp-(Mod- R ) .  The subcategory fp- #   of  #   is closed under
 extensions ,  that is ,  if

 0  5  X  5  Y  5  Z  5  0

 is a short exact sequence in  #   with  X  and  Z  finitely presented ,  then  Y  is also
 finitely presented .  If ,  on the other hand ,  the object  Y  is finitely presented ,  then  Z
 is finitely presented if and only if  X  is finitely generated .

 The most obvious example of a finitely presented object of  #   is a finitely
 generated projective object  P .  One says that  #   has  enough  finitely generated
 projectives if every finitely generated object  A  P  #   admits an epimorphism
 h  :  P  5  A  with  P  a finitely generated projective object .  For example ,  the category
 R -Mod of left  R -modules has enough finitely generated projectives .  If  #   has
 enough finitely generated projectives ,  then by the remarks above ,  every finitely
 presented object  B  P  #   is isomorphic to the cokernel of a morphism between
 finitely generated projective objects .  This is expressed by an exact sequence

 P 1  5  P 0  5  B  5  0

 called a  projecti y  e presentation  of  B .  In the case of  R -modules ,  these projectives
 may be taken free of finite rank .

 The category  #   is  locally finitely presented  if every object  X  P  #   is a direct limit

 X  5
 Å 5
 lim  B i

 of finitely presented objects  B i .  In such a category ,  every finitely generated object
 A  P  #   admits an epimorphism  h  :  B  5  A  from a finitely presented object  B .

 †  If  p  is a property of an object of  #  ,  then  #   is said to be locally  p  if there is a class of generators
 with the property  p .  As  p  varies ,  we shall opt for more operative definitions ,  but in each instance ,  the
 reader may check that the definition we give is equivalent to the standard .
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 P ROPOSITION  1 . 1 [ 23 ,  Appendice] .  If the Grothendieck category  #   is locally
 finitely generated with enough finitely generated projecti y  es , then  #   is locally
 finitely presented .

 In particular ,  the category  R -Mod of left  R -modules is locally finitely
 presented .

 P ROPOSITION  1 . 2 [ 34 ,  Proposition V . 3 . 4] .  Let  #   be locally finitely generated . An
 object B  P  #   is finitely presented if and only if the functor

 Hom #  ( B ,  – ) :  #  5  Ab

 commutes with direct limits .

 1 . 2 .  Functor categories
 Let  @   be a small preadditive category .  We denote by ( @ ,  Ab) (cf .  [ 34 ,   §  IV . 7])

 the category whose objects are the additive functors  F  :  @  5  Ab and whose
 morphisms are the natural transformations between functors .  In this section we
 shall apply Proposition 1 . 1 to show that such a category is a locally finitely
 presented Grothendieck category .  That it is Grothendieck follows from [ 34 ,
 Example V . 2 . 2] .

 For  F ,  G  P  ( @ ,  Ab) ,  we say that  F  is subfunctor of  G ,  or  F  ‘  G ,  if for each
 X  P  @ ,  there is given an inclusion  F  ( X  )  ‘  G ( X  ) of abelian groups and whenever
 f  :  X  5  Y  is a  @ -morphism ,  then  F  (  f  )  5  G (  f  ) 3 F  ( X  ) .  For example ,  if  a  :  F  5  G  is a
 ( @ ,  Ab)-morphism ,  then the kernel of  a  ,  defined for each  X  P  @   by

 (Ker  a  )( X  )  : 5  Ker  a X  ,

 is a subfunctor of  F .  Similarly ,  the image of  a  ,  defined by

 (Im  a  )( X  )  : 5  Im  a X  ,

 is a subfunctor of  G .  Finally ,  the cokernel of  a   is defined as the quotient functor
 Coker  a  : 5  G  / Im  a  .  It is readily verified that the diagram

 F  ÅÅ 5

 a
 G  ÅÅ 5

 b
 H

 of ( @ ,  Ab)-morphisms is exact if and only if Im  a  5  Ker  b  ,  that is ,  if and only if
 for each  X  P  @ ,  the sequence of Ab-morphisms

 F  ( X  )  ÅÅ 5

 a X  G ( X  )  ÅÅ 5

 b X  H ( X  )

 is exact .
 A functor  F  P  ( @ ,  Ab) is called  representable  if it is isomorphic to one of the

 functors
 ( X ,  – )  : 5  Hom @ ( X ,  – )

 where  X  P  @ .  Every representable functor is an example of a finitely generated
 functor .  For ,  suppose that

 ( X ,  – )  5 O
 i P I

 F i .
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 There is a finite subset  J  of  I  such that 1 X  P  ( o i P J  F i )( X  )  5  o i P J  F i ( X  )  ‘  ( X ,  X  ) .  It
 is easy to check that then ( X ,  – )  5  o i P J  F i  .

 Y ONEDA ’ S  L EMMA .  Let X  P  @   and F  P  ( @ ,  Ab) .   There is an isomorphism of
 abelian groups

 Θ X , F  :  Hom ( @ , Ab) [( X ,  – ) ,  F  ]  5  F  ( X  )

 defined by  Θ X , F  ( h  )  5  h X  (1 X  )  which is natural in both X and F .

 It is immediate from Yoneda’s Lemma that the functor  X  S  ( X ,  – ) is full ,  that
 is ,  that every ( @ ,  Ab)-morphism  h  :  ( X ,  – )  5  ( Y ,  – ) is of the form  h  5  (  f ,  – ) for
 some  @ -morphism  f  :  Y  5  X .

 Another consequence is that every representable functor is projective .  For ,  let

 0  ÅÅ 5  F  ÅÅ 5

 a
 G  ÅÅ 5

 b
 H  ÅÅ 5  0

 be a short exact sequence in ( @ ,  Ab) .  Applying the functor Hom ( @ , Ab) [( X ,  – ) ,  ?]
 gives a sequence which ,  by Yoneda’s Lemma ,  is isomorphic to the exact sequence

 0  ÅÅ 5  F  ( X  )  ÅÅ 5

 a X  G ( X  )  ÅÅ 5

 b X  H ( X  )  ÅÅ 5  0 .

 P ROPOSITION  1 . 3 [ 34 ,  Corollary IV . 7 . 5] .  Let  @   be a small preadditi y  e category .
 The functor category  ( @ ,  Ab)  is locally finitely generated with enough finitely
 generated projecti y  es . Therefore  ( @ ,  Ab)  is a locally finitely presented Grothen-
 dieck category .

 Proof .  First ,  we will note that ( @ ,  Ab) is locally finitely generated .  Let
 F  P  ( @ ,  Ab) .  For every  X  P  @   and  x  P  F  ( X  ) ,  there is ,  by Yoneda’s Lemma ,  a
 morphism  h  5  Θ 2 1

 X ,F  ( x ) :  ( X ,  – )  5  F  such that  x  5  h X  (1 X  ) .  As  @   is small ,

 F  5  O
 X  P @

 S  O
 x P F  ( X  )

 Im  Θ 2 1
 X ,F  ( x ) D

 and each Im  Θ 2 1
 X ,F  ( x ) ,  a quotient functor of ( X ,  – ) ,  is finitely generated .  If  F  is

 finitely generated ,  then  F  is already the sum of finitely many of the factors and is
 therefore a quotient functor of a finite coproduct of representable functors .  But
 then it is a quotient of a finitely generated projective object .

 1 . 3 .  Coherent objects
 A subcategory  !  ‘  #   is  exact  if it is abelian and the inclusion functor of  !   into

 #  is exact .

 P ROPOSITION  1 . 4 [ 11 ,  Theorem 3 . 41] .  A subcategory  !   of  #   is an exact
 subcategory if and only if the following two conditions hold .

 (1)  If A 1  ,  A 2  P  !   then the coproduct A 1  I  I 2  A 2   is an object of  ! .

 (2)  If  h  :  A 1  5  A 2   is a morphism in  ! , then both the  # - kernel and  # - cokernel of
 h   are objects of  ! .

 Since the subcategory fp- #   of  #   is closed under extensions ,  Condition (1) of
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 Proposition 1 . 4 is satisfied .  And if  h  :  B 1  5  B 2  is a morphism in fp- #  ,  then
 Coker  h   is also finitely presented .  However ,  the kernel Ker  h   is not necessarily
 finitely presented .  Because the category fp- #   is not always an exact subcategory
 of  #  ,  we will restrict our attention to a smaller category which  is  exact .

 A finitely presented object  C  P  #   is  coherent  if every finitely generated
 subobject  B  <  C  is finitely presented .  Equivalently ,  every epimorphism  h  :  C  5  A
 with  A  finitely presented has a finitely presented kernel .  Evidently ,  a finitely
 generated subobject of a coherent object is also coherent .  The subcategory of
 coherent objects of  #   is denoted by coh- #  .

 P ROPOSITION  1 . 5 [ 1 ,  p .  199] .  The category  coh- #   is an exact subcategory of  #
 closed under extensions .

 Proof .  Let  h  :  C 1  5  C 2  be a morphism in coh- #  .  Since Im  h   is a finitely
 generated subobject of  C 2  ,  it is finitely presented .  Then Ker  h   is a finitely
 generated subobject of  C 1  and is therefore coherent .  To check that Coker  h  >
 C 2 / Im  h   is coherent ,  let  Y  be a finitely generated subobject of  C 2 / Im  h  .  Its
 preimage in  C 2  is a finitely generated subobject  Y 0  of  C 2  containing Im  h  .  By the
 hypothesis ,   Y 0  is then finitely presented and therefore so is  Y  >  Y 0 / Im  h  .

 Now we verify that coh- #   is closed under extensions .  Let 

 0  ÅÅ 5  C 1  ÅÅ 5

 a
 Y  ÅÅ 5

 b
 C 2  ÅÅ 5  0

 be a short exact sequence with  C 1  and  C 2  coherent .  If  X  <  Y  is finitely generated ,
 we get a commutative diagram

 with exact rows and each of the vertical morphisms is monic ( A 2  5  Im  [ b  3 X  ]) .
 Now  A 2  is a finitely generated subobject of the coherent object  C 2  and is
 therefore finitely presented .  But since  X  is finitely generated ,  so is  A 1  .  Now  A 1  is
 a finitely generated subobject of the coherent object  C 1  and is therefore finitely
 presented .  As fp- #   is closed under extensions ,   X  P  fp- #  .

 The Grothendieck category  #   is  locally coherent  if every object of  #   is a direct
 limit of coherent objects .

 T HEOREM  1 . 6 [ 31 ,   §  2] .  The following conditions on a locally finitely presented
 Grothendieck category  #   are equi y  alent :

 (1)  #   is locally coherent ;

 (2)  fp- #  5  coh- # ;

 (3)  fp- #   is an exact subcategory of  # ;
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 (4)  fp- #   is an abelian category .

 Proof .  It is clear from Proposition 1 . 5 that Condition (2) implies the others .  To
 see that (1)  é  (2) ,  note that if  #   is locally coherent ,  then every finitely presented
 B  is the quotient of a coherent object and is therefore coherent .  Thus Conditions
 (1) and (2) are equivalent .  The implication (3)  é  (4) is just part of the definition
 of an exact subcategory ,  so it remains to prove that (4)  é  (2) .  Let  B  P  fp- #   and
 let  A  <  B  be finitely generated .  The quotient map  π  :  B  5  B  / A  is a morphism in
 the category fp- #  .  Let  k  :  A 9  5  B  be the (fp- #  )-kernel of  π .  We shall prove that
 k   is the  #  -kernel of  π .  Then  k   is a  #  -monomorphism and  A  >  A 9  P  fp- #  .

 Suppose that  g  :  X  5  B  satisfies  π g  5  0 and write  X  5
 Å 5
 lim  X i   as a direct limit of

 finitely presented objects  X i   with the compatible family of morphisms  a i  :  X i  5  X .
 Each  g a i   is a morphism in fp- #   and thus factors uniquely through  k .  But then  g
 factors through  k   uniquely .

 C OROLLARY  1 . 7 [ 23 ,  Appendice] .  If the Grothendieck category  #   is locally
 finitely generated with enough finitely generated coherent projecti y  es , then  #   is
 locally coherent .

 Proof .  Because coh- #   is abelian and every finitely presented object is the
 cokernel of a morphism between finitely generated projective objects ,  every
 finitely presented object is coherent .

 For example ,  a ring  R  is  left coherent  if every finitely generated left ideal  I  ‘  R R
 is a finitely presented left  R -module .  In other words ,  the object  R R  of  R -Mod is
 coherent .  Consequently ,  every finitely generated projective left  R -module is
 coherent and so ,  by the corollary ,   R -Mod is locally coherent .

 2 .  Examples of locally coherent categories

 In this section ,  we present some examples of locally coherent Grothendieck
 categories and verify that they are indeed such .  To begin we note that many
 functor categories are locally coherent Grothendieck categories and it is
 instructive for the reader to keep these examples in mind throughout the sequel .
 Let  #   denote a locally coherent Grothendieck category and  6   a Serre
 subcategory (defined below) of coh- #  .  In each of the two subsections a method is
 given of obtaining from  6   a subcategory of  #   that is also a locally coherent
 Grothendieck category .  All the results in this section are classical ,  often true in
 greater generality (cf .  [ 12 ,  25 ]) ,  but our pedestrian approach is intended to lend
 concreteness to the categories of the title .  Throughout this section as well as the
 sequel ,   #   will denote a locally coherent Grothendieck category .

 P ROPOSITION  2 . 1 [ 1 ,  Theorem 2 . 2 . b ;   34 ,  Corollary IV . 7 . 5] .  Let  @   be a small
 additi y  e category , that is ,  @   is preadditi y  e , has finite products  / coproducts and
 idempotents split in  @ . Then e y  ery finitely generated projecti y  e object in  ( @ ,  Ab)  is
 representable .  If  @   has cokernels , then  ( @ ,  Ab)  is locally coherent and  coh-
 ( @ ,  Ab)  has projecti y  e global dimension at most  2 .

 Proof .  By the proof of Proposition 1 . 3 ,  every finitely generated projective
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 object  P  P  ( @ ,  Ab) is a coproduct factor of a finite coproduct of representable
 objects  I  I —

 n
 i 5 1  ( B i  ,  – )  >  (  I  I —

 n
 i 5 1  B i  ,  – ) .  This coproduct factor  P  of (  I  I —

 n
 i 5 1  B i  ,  – )

 corresponds to an idempotent in

 End ( @ , Ab) S  I  I —
 n

 i 5 1
 B i  ,  – D  >  End @ S  I  I —

 n

 i 5 1
 B i D .

 As idempotents split in  @ ,  this corresponds to a coproduct factor  B  of  I  I 2
 n
 i 5 1  B i

 which has the property that ( B ,  – )  >  P .
 By Proposition 1 . 7 ,  it suf fices to show that every finitely generated projective

 object ,  that is ,  every representable object of ( @ ,  Ab) ,  is coherent .  So let
 A  P  @   and let  X  ‘  ( A ,  – ) be a finitely generated subfunctor .  An epimorphism
 h  :  ( B ,  – )  5  X  lifts to a morphism  h  :  ( B ,  – )  5  ( A ,  – ) which ,  by Yoneda’s
 Lemma ,  has the form  h  5  (  f ,  – ) for some  @ -morphism  f  :  A  5  B .  By hypothesis ,
 C  5  Coker  f  P  @   and the exact sequence

 A  ÅÅ 5

 f
 B  ÅÅ 5

 g
 C  ÅÅ 5  0

 in  @   induces an exact sequence

 0  ÅÅÅ 5  ( C ,  – )  ÅÅÅ 5

 ( g , –)
 ( B ,  – )  ÅÅÅ 5

 (  f , –)
 ( A ,  – )  ÅÅÅ 5  ( A ,  – ) / X  ÅÅÅ 5  0

 in ( @ ,  Ab) which gives a projective presentation of  X  >  Im(  f ,  – ) .  If  F  P  ( @ ,  Ab)
 is coherent ,  then it is isomorphic to a functor of the form ( A ,  – ) / X  as above and
 so has projective resolution of length at most 2 .

 Let  !   be a locally finitely presented Grothendieck category .  Then fp- !   is an
 additive category with cokernels .  By Proposition 2 . 1 ,  the functor category
 (fp- !  ,  Ab) is locally coherent .  For example ,  if  R  is a ring then the functor
 category

 R #  5  (mod- R ,  Ab)

 is a locally coherent Grothendieck category .  This category  R #   is called the
 category of generalized left  R -modules on account of the fully faithful right exact
 functor  –  ̂  R  ? :  R -Mod  5  R #   defined by the rule  R M  S  –  ̂  R  M .  If  R M  is a finitely
 presented left  R -module ,  it is proved in [ 1 ,  Lemma 6 . 1] that the functor  –  ̂  R  M  is
 a coherent object of  R C .  To see this ,  consider a presentation of  R M  by finitely
 generated free modules

 R R  ( m )
 ÅÅ 5  R R  ( n )

 ÅÅ 5  R M  ÅÅ 5  0 .

 As the tensor functor is right exact ,  this gives an exact sequence in  R # ,

 –  ̂  R  R  ( m )
 5  –  ̂  R  R  ( n )

 5  –  ̂  R  M  5  0 ,

 which is a presentation of  –  ̂  R  M  in  R #   by finitely generated projective objects
 (since  –  ̂  R  R  ( n )  >  ( –  ̂  R  R ) ( n )  >  ( R ,  – ) ( n ) ) .

 If  #   is a locally coherent Grothendieck category ,  then coh- #   and hence
 (coh- #  ) o p  are abelian categories .  By Proposition 2 . 1 ,  the functor category
 ((coh- #  ) o p ,  Ab) is also a locally coherent Grothendieck category .  For example ,  if
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 R  is a left coherent ring ,  then the functor category (( R -mod) o p ,  Ab) is a locally
 coherent Grothendieck category .

 2 . 1 .  Hereditary torsion subcategories of finite type
 A subcategory  7  ‘  #   is a  torsion  subcategory [ 34 ,  Chapter VI] if it is closed

 under quotient objects ,  extensions and coproducts .  The torsion subcategory
 7  ‘  #  is  hereditary  if ,  in addition ,  it is closed under subobjects .  If  !  ‘  #   is an
 arbitrary subcategory ,  we denote by  7  ( !  ) the smallest hereditary torsion
 subcategory of  #   to contain  !  .

 Let  7  ‘  #   be a hereditary torsion subcategory .  It is clear that an object  T  P  7
 is  #  -finitely generated if and only if it is  7  -finitely generated .  Hence the equation

 fg- 7  5  7  >  fg- #  .

 From the definition of a finitely presented object ,  it follows that fp- 7  “  7  >  fp- #  .
 As we are assuming that  #   is locally coherent ,  we have that fp- #  5  coh- #   and a
 similar argument yields the inclusion

 coh- 7  “  7  >  coh- #  .

 In this subsection ,  we consider hereditary torsion subcategories  7   of  #   that are
 of  finite type ,  meaning that they have the form  7  5  7 ( ! ) where  !   consists of
 coherent objects .  We may write  7  5  7  ( 6  ) where  6  5  7  >  coh- #  .  Evidently ,
 such a subcategory  6   is a  Serre subcategory  of coh- #  ,  that is ,  if

 0  5  A  5  B  5  C  5  0

 is a short exact sequence in coh- #  ,  then  B  P  6   if and only if  A ,  C  P  6 .  Thus a
 hereditary torsion subcategory of finite type has the general form  7  ( 6  ) where  6
 is a Serre subcategory of coh- #  .

 Serre subcategories  6   of coh- #   arise in the following natural way .  An
 object  M  P  #   is  coh - injecti y  e  if Ext 1

 # ( C ,  M )  5  0 for each  C  P  coh- #  .  Then the
 subcategory

 6 ( M )  5  h C  P  coh- #  :  ( C ,  M )  5  0 j

 is Serre .  For ,  let 0  5  A  5  B  5  C  5  0 be a short exact sequence in coh- #  .
 Applying the functor ( – ,  M ) gives an exact sequence

 0  5  ( C ,  M )  5  ( B ,  M )  5  ( A ,  M )  5  Ext 1
 # ( C ,  M )  5  0

 which shows that  B  P  6 ( M ) if and only if  A ,  C  P  6 ( M ) .  We shall note later
 (Corollary 3 . 11) that every Serre subcategory of coh- #   arises in this fashion .

 P ROPOSITION  2 . 2 [ 19 ,  Theorem B . 15] .  Let  @   be a small additi y  e category with
 cokernels . An object M  P  ( @ ,  Ab)  is coh - injecti y  e if and only if it is right exact .

 Proof .  Let  F  P  coh-( @ ,  Ab) with a projective presentation

 ( B ,  – )  ÅÅÅ 5

 (  f , –)
 ( A ,  – )  ÅÅÅ 5  F  ÅÅÅ 5  0 .
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 As in the proof of Proposition 2 . 1 ,  this may be extended to a projective resolution
 of  F  with  C  5  Coker  f ,

 0  ÅÅÅ 5  ( C ,  – )  ÅÅÅ 5  ( B ,  – )  ÅÅÅ 5

 (  f , –)
 ( A ,  – )  ÅÅÅ 5  F  ÅÅÅ 5  0 .

 If  M  P  ( @ ,  Ab) is coh-injective ,  then the sequence

 (( A ,  – ) ,  M )  ÅÅÅÅÅÅÅ 5

 ((  f , –) ,M )
 (( B ,  – ) ,  M )  ÅÅÅÅÅÅÅ 5  (( C ,  – ) ,  M )  ÅÅÅÅÅÅÅ 5  0

 is exact .  By Yoneda’s Lemma ,  this sequence is isomorphic to the sequence

 M ( A )  5  M ( B )  5  M ( C )  5  0

 yielding the right exactness of  M .  Conversely ,  if  M  is right exact ,  retracing this
 argument shows that Ext 1 ( F ,  M )  5  0 for any coherent object  F  P  ( @ ,  Ab) .

 An argument as in [ 34 ,  Proposition IV . 10 . 1] shows that every right exact
 functor  M  in  R #  5  (mod- R ,  Ab) is of the form  M  >  –  ̂  R  M ( R R ) .  Thus the
 category  R -Mod of left  R -modules is recovered as the subcategory of coh-
 injective objects of the category  R # .

 Let  6  ‘  coh- #   be a Serre subcategory .  Denote by  6 $    the subcategory of  #
 which consists of direct limits of objects in  6  .  We shall show that  6 $  5  7 ( 6  ) .  One
 direction is easily seen .  Every direct limit 

 Å 5
 lim  S i   is the quotient of a coproduct of

 objects from  6   and therefore lies in  7  ( 6  ) .  Indeed ,  an argument as in [ 23 ,
 Appendice] shows that the objects of  6 $    are precisely those objects  X  of  #   which
 admit an epimorphism  h  :  I  I 2  i P I  S i  5  X  from a coproduct of objects in  6  .

 P ROPOSITION  2 . 3 .  The following are equi y  alent for a finitely generated object
 A  P  # :

 (1)  A  P  6 $  ;

 (2)  there is an epimorphism  h  :  S  5  A with S  P  6 ;

 (3)  if B  P  coh- #   and  »  :  B  5  A is an epimorphism , then  »   factors through a
 quotient S of B which lies in  6 .

 Proof .  The equivalence of Conditions (1) and (2) is clear from the remarks
 above together with the fact that  6   is closed under finite coproducts .  Evidently ,
 Condition (3) implies Condition (2) .  So assume Condition (2) with intent to prove
 Condition (3) .  Write Ker  h  5  o i P I  S i   as a directed union of finitely generated
 subobjects of  S .  By the exactness of direct limit functors ,   A  >

 Å 5
 lim( S  / S i ) and

 therefore by Proposition 1 . 2 ,  any epimorphism  »  :  B  5  A  will factor through one
 of the finitely presented objects  S  / S i   of  6   as in the following diagram

 But then  »   factors through the coherent quotient Im  a  P  6 .
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 The characterization of  6 $    mentioned above ensures that  6 $    is closed under
 coproducts ,  quotient objects and therefore ,  by [ 34 ,  Proposition IV . 8 . 4] ,  colimits .
 So to check that  Y  P  6 $    it suf fices to verify the same for every finitely generated
 subobject  A  of  Y .

 P ROPOSITION  2 . 4 .  The subcategory  6 $   of  #   is closed under subobjects . An object
 X  P  #  is in  6 $   if and only if any morphism  a  :  B  5  X with B  P  coh- #   factors
 through an object S  P  6 .

 Proof .  Suppose  A  <
 Å 5
 lim  S i   is finitely generated .  It is enough to show that

 A  P  6 $  .  If  B  P  #   is coherent with an epimorphism  »  :  B  5  A ,  then by Proposition
 1 . 2 ,   »   factors through one of the  S i .  By Proposition 2 . 3 ,   A  P  6 $  .  To prove the
 second statement ,  apply Proposition 2 . 3 to Im  a .

 T HEOREM  2 . 5 .  Let  7  ‘  #   be a hereditary torsion subcategory of finite type . If  6
 is the Serre subcategory  7  >  coh- #   of  coh- #  ,   then  7  5  6 $  .

 Proof .  It remains to be seen that  6 $    is closed under extensions .  So let

 0  ÅÅ 5  X  ÅÅ 5  Y  ÅÅ 5

 π
 Y  / X  ÅÅ 5  0

 be a short exact sequence in  #   such that  X ,  Y  / X  P  6 $    and consider a morphism
 a  :  B  5  Y  with  B  P  coh- #  .  We must prove that  a   factors through an object in  6  .
 We know that  π a   factors through a quotient  B  / A  in  6  .  The finitely generated
 subobject  A  <  B  is then coherent and we have a commutative diagram

 with exact rows .  As  X  P  6 $  ,  b   factors through a quotient  A / K  P  6   where
 K  <  Ker  b  <  Ker  a  .  Thus  a   factors through the quotient object  B  / K .  Now
 K  <  A  <  B  with  B  / A  and  A / K  in  6  .  As  6   is closed under extensions ,   B  / K  P  6
 and therefore  Y  P  6 $  .

 C OROLLARY  2 . 6 .  Let  7  ‘  #   be a hereditary torsion subcategory of finite type .
 Then

 coh- 7  5  7  >  coh- #  .

 Proof .  Let  A  P  coh- 7  .  By Theorem 2 . 5 and Proposition 2 . 3 there is an
 epimorphism  h  :  S  5  A  with  S  P  7  >  coh- #  ‘  coh- 7  .  Now Ker  h   is  7 -finitely
 generated and hence  # -finitely generated and therefore  #  -coherent .  But then  A
 is  #  -coherent .

 C OROLLARY  2 . 7 .  Let  6  ‘  coh- #   be a Serre subcategory . The hereditary torsion
 subcategory  7 ( 6  )  of finite type is a locally coherent Grothendieck category .
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 Proof .  We have noted already how  7  ( 6  ) is closed under  #  -colimits .  Since
 these are also  7  ( 6  )-colimits ,   7  ( 6  ) is closed under such limits .  As  7  ( 6  ) is an
 exact subcategory ,  direct limits are exact in  7  ( 6  ) and by the definition of  6 $   every
 object in  7  ( 6  ) is a direct limit of  7  -coherent objects .  The coproduct  I  I —  S P 6  S  is a
 generator of  7  .

 For example ,  the category Ab of abelian groups is a locally coherent
 Grothendieck category and the torsion groups form a hereditary torsion
 subcategory Tors of finite type .  Thus Tors is a locally coherent Grothendieck
 category .  Furthermore (cf .  [ 34 ,  Example IV . 4 . 3]) ,  Tors has no non-zero projective
 objects .

 T HEOREM  2 . 8 .  There is an inclusion - preser y  ing bijecti y  e correspondence between
 Serre subcategories  6   of  coh- #   and hereditary torsion subcategories  7   of  #   of finite
 type . This correspondence is gi y  en by the functions

 6  S  7 ( 6 )  5  6 $  ,

 7  S  coh- 7  5  7  >  coh- # ,

 which are mutual in y  erses .

 Let  6 $    be a hereditary torsion subcategory of  #   of finite type .  The correspond-
 ing torsion functor is denoted by

 t 6  :  #  5  6 $  .

 This functor assigns to an object  X  P  #   the maximal subobject  t 6  ( X  )  <  X  from  6 $  .
 The subobject  t 6  ( X  ) is unique by the properties of a torsion subcategory .  If
 X  P  6 $    and  Y  P  # ,  then there is an isomorphism

 Hom 6 $  ( X ,  t 6  ( Y ))  >  Hom # ( X ,  Y )

 natural in both  X  and  Y .  This is because every morphism  h  :  X  5  Y  in  #   with
 X  P  6 $    has the property that Im  h  <  t 6  ( Y ) .  In short ,  the torsion functor  t 6   is the
 right adjoint of the inclusion functor  6 $  ‘  # .

 2 . 2 .  Localization
 Throughout this section ,   6 $  ‘  #   will denote a hereditary torsion subcategory of

 finite type and  t  5  t 6   the corresponding torsion functor .  We shall describe in this
 section another category  #  / 6 $    of  #   which is also a locally coherent Grothendieck
 category .

 D EFINITION .  An object  X  P  #   is  6 $  - torsion - free  if  t ( X  )  5  0 .  Let  t 1  denote the
 first higher derived functor of the left exact functor  t .  An  6 $  -torsion-free object
 X  P  #   is  6 $  - closed  if  t 1 ( X  )  5  0 .  The subcategory of  6 $  -closed objects of  #   is
 denoted by  #  / 6 $  .  This category  #  / 6 $    is called the  quotient category  of  #   by  6 $  .

 If  E  P  #   is an injective object ,  then  t 1 ( E )  5  0 ,  so  E  is  6 $  -closed if and only if it is
 6 $  -torsion-free .  Let  X  be  6 $  -torsion-free .  Because the torsion theory is hereditary ,
 the injective envelope  E ( X  ) is also  6 $  -torsion-free .  The short exact sequence

 0  5  X  5  E ( X  )  5  E ( X  ) / X  5  0
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 gives rise to a long exact sequence

 0  5  t ( X  )  5  t ( E ( X  ))  5  0  5  t ( E ( X  ) / X  )  5  t 1 ( X  )  5  t 1 ( E ( X  ))  5  0

 showing that  t 1 ( X  )  >  t ( E ( X  ) / X  ) .

 P ROPOSITION  2 . 9 .  Let X  P  #   be  6 $  - torsion - free . Then X is  6 $  - closed if and only if
 there is no  6 $  - torsion - free  ( essential )  extension Y  >  X with Y  / X  P  6 $  .

 Proof .  The proposition follows immediately from the remarks above once we
 show that an  6 $  -torsion-free extension  Y  >  X  with  Y  / X  P  6 $    must be essential .  But
 if  A  <  Y  and  A  >  X  5  0 ,  then  A  P  6 $    and therefore  A  5  0 .

 Given any short exact sequence 0  5  X  5  Y  5  Z  5  0 in  #  ,  there is a long exact
 sequence in  6 $  ,

 0  5  t ( X  )  5  t ( Y )  5  t ( Z )  5  t 1 ( X  )  5  t 1 ( Y )  5  t 1 ( Z ) .

 From this long exact sequence ,  we see that when  Z  is  6 $  -closed ,  then  X  is
 6 $  -closed if and only if  Y  is .

 P ROPOSITION  2 . 10 .  If  a  :  Y  5  W is a morphism in  #  / 6 $  , then the  # - kernel of  a   is
 6 $  - closed .

 Proof .  Let  X  5  Ker #  a   and  Z  5  Im #  a .  Both  X  and  Z  are  6 $  -torsion-free and
 we have  a   as part of a short exact sequence

 0  ÅÅ 5  X  ÅÅ 5  Y  ÅÅ 5

 a
 Z  ÅÅ 5  0 .

 By the long exact sequence and the hypothesis  t 1 ( Y )  5  0 ,  it follows that  t 1 ( X  )  5  0
 and that  X  P  #  / 6 $  .

 In particular ,  a  #  / 6 $  -morphism is a monomorphism if and only if it is a
 # -monomorphism .  So for  A ,  B  P  #  / 6 $    the relation  A  <  B  holds in  #  / 6 $    if and
 only if it holds in  #  .

 D EFINITION .  Let  X  P  # .  A localization of  X  at  6 $    is a morphism  l X  :  X  5  X 6

 such that  X 6   is  6 $  -closed satisfying the condition that given any morphism
 a  :  X  5  W  with  W  an  6 $  -closed object ,  there is a unique morphism  a 6 :  X 6  5  W
 such that the diagram

 is commutative .

 It is clear from the definition that a localization of  X  at  6 $    is unique up to
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 isomorphism .  If  X  P  #   is  6 $  -torsion-free ,  then the localization of  X  at  6 $    is
 constructed as follows .  Let  X 6  >  X  be a maximal essential extension with respect
 to the condition  X 6  / X  P  6 $  .  Such an  X 6   is clearly  6 $  -torsion-free and by
 Proposition 2 . 9 ,  it is  6 $  -closed .  If  a  :  X  5  W  is a morphism with  W  an  6 $  -closed
 object ,  we get a morphism of short exact sequences

 The morphism  a 6  / a  5  0 because  X 6  / X  P  6 $    and  E ( W  ) / W  is  6 $  -torsion-free so
 that Im  a 6  ‘  W .  The extension  a 6   is unique .  For ,  another  a 9 6   would induce a
 morphism  a 6  2  a 9 6  :  X 6  / X  5  W  which must be zero since  W  is  6 $  -torsion-free .
 Thus the extension  X 6  >  X  is indeed the localization of  X  at  6 $  .  In particular ,  if
 X  <  W  and  W  is  6 $  -closed ,  then  X 6  <  W .

 To construct the localization at  6 $    of a general object  X  P  # ,  first apply the
 quotient map  π  :  X  5  X  / t ( X  ) .  It is clear that any morphism from  X  to an
 6 $  -closed object factors uniquely through  π .  Then it is easily seen that a
 localization of  X  at  6 $    is obtained by composing this quotient map with the
 localization of the  6 $  -torsion-free object  X  / t ( X  ) ,  that is ,   l X  5  l X  / t ( X  ) π .  It follows
 that  X 6  5  0 if and only if  X  P  6 $    and so for a coherent object  C  we have ,  by
 Theorem 2 . 8 ,  that  C 6  5  0 if and only if  C  P  6 .  Because localization of  X  at  6 $    is a
 solution to a universal problem ,  we have the following .

 P ROPOSITION  2 . 11 .  If X  P  #   and Y  P  #  / 6 $  , then there is an isomorphism

 Hom # ( X ,  Y )  >  Hom # / 6 $  ( X 6  ,  Y )

 natural both in X and Y . In words , the localization functor  ( – ) 6  :  #  5  #  / 6 $   is the
 left adjoint of the inclusion functor  #  / 6 $  ‘  # .

 A subcategory  @  ‘  #   is called  Giraud  [ 34 ,  p .  214] if the inclusion functor has a
 left adjoint that preserves kernels .  By Propositions 2 . 10 and 2 . 11 ,  the subcategory
 #  / 6 $    of  #   is Giraud .  By [ 34 ,  Propositions X . 1 . 2 and X . 1 . 3] ,  every Giraud
 subcategory is a Grothendieck category .  Because a left adjoint preserves colimits
 [ 34 ,  Proposition IV . 9 . 3] ,  it preserves cokernels and the localization functor

 ( – ) 6 :  #  5  #  / 6 $

 is therefore exact .  Another property [ 34 ,  Proposition X . 1 . 4] of a Giraud
 subcategory which we shall need is that an object  E  P  #  / 6 $    is  #  / 6 $  -injective if and
 only if it is  #  -injective .  The next few propositions are designed to show that the
 Grothendieck category  #  / 6 $    is locally coherent .

 P ROPOSITION  2 . 12 .  An object X in  #  / 6 $   is  #  / 6 $  - finitely generated if and only if it
 is of the form X  >  A 6   for some  # - finitely generated object A  P  # . Moreo y  er , if
 X  P  fg-( #  / 6 $  )  and Y  <  X is a  # - subobject such that X  / Y  P  6 $  , then there is a
 # - finitely generated subobject A  <  Y such that X  / A  P  6 $  .

 Proof .  Let  A  P  fg- #   and suppose that  A 6  5  o # / 6 $  X i   is a directed union in  #  / 6 $  .
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 By the absoluteness of monomorphisms ,   A 6  5  o #  X i   is a directed union in  #  .  For
 some  i ,  Im  l A  ‘  X i   and therefore (Im  l A ) 6  5  A 6  <  X i .  That any object in
 fg-( #  / 6 $  )   is of this form will follow from the second statement .

 Let  X  P  fg-( #  / 6 $  ) and suppose that  Y  <  X  is a  #  -subobject such that  X  / Y  P  6 $  .
 Write  Y  5  o #  A i   as a directed union of  #  -finitely generated objects .  Because
 localization preserves colimits ,   X  5  Y 6  5  o # / 6 $  ( A i ) 6  .  By hypothesis ,   X  5  ( A i ) 6   for
 some  i  and therefore  X  / A i  P  6 $  .

 L EMMA  2 . 13 .  Let B  P  fg- #  .   If  m  :  X  <  B 6   is a subobject in  #   such that
 m 6 :  X 6  <  B 6  is also  #  / 6 $  - finitely generated , then there are a  # - finitely generated
 subobject A  <  B and a commutati y  e diagram

 such that the composition  l X a  :  A  5  X 6   is a localization of A at  6 .

 Proof .  As  B 6  / Im  l B  P  6 $  ,  so is  X  / X  >  Im  l B .  By Proposition 2 . 12 ,  there is a
 #  -finitely generated subobject  Y  <  X  >  Im  l B   such that  X  / Y  P  6 $  .  Let  A  <  B  be a
 finitely generated subobject such that  l B ( A )  5  Y .  Then the restriction  a  5  l B 3 A

 makes the diagram commute and the lifting  a  :  A  5  X 6   is a localization of  A  at  6 .

 The lemma implies that if  B  is  #  -finitely generated and  h  :  X  5  B 6   is a
 #  / 6 $  -epimorphism with  X  a  #  / 6 $  -finitely generated object ,  then by replacing  B
 with an appropriate finitely generated subobject ,  we may assume that Im #  l B  <
 Im #  h  .  Of course ,  if  B  is coherent ,  then so is the finitely generated subobject .  The
 lemma also yields the following .

 P ROPOSITION  2 . 14 .  Let B  P  fg- #   and let  0  5  X  5  B 6  5  Z  5  0  be a short exact
 sequence in  #  / 6 $   with X a  #  / 6 $  - finitely generated object . Then there is a short exact
 sequence in  #   of  # - finitely generated objects  0  5  A  5  B  5  C  5  0  of which the
 abo y  e sequence is a localization .

 It is clear that if the object  B  above is assumed to be coherent ,  then the short
 exact sequence 0  5  A  5  B  5  C  5  0 lies in coh- #  .  The following result seems to
 be new and has been independently noted by Krause [ 22 ] .

 P ROPOSITION  2 . 15 .  If C is  # - coherent , then C 6   is  #  / 6 $  - coherent .

 Proof .  We shall prove that if  C  is  #  -coherent ,  then  C 6   is  #  / 6 $  -finitely
 presented .  It then follows from Lemma 2 . 13 that  C 6   is  #  / 6 $  -coherent because
 every  #  / 6 $  -finitely generated subobject has the form  A 6   for some  # -finitely
 generated subobject  A  <  C .  Then  A  is  #  -coherent and  A 6   is  #  / 6 $  -finitely
 presented .

 Suppose  h  :  X  5  C 6   is a  #  / 6 $  -epimorphism and  X  a  #  / 6 $  -finitely generated
 object .  By the remarks following Lemma 2 . 13 ,  we may assume that Im #  h  <
 Im #  l C .  To prove that  C 6   is  #  / 6 $  -finitely presented ,  it needs to be shown that
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 Y  5  Ker  h   is  #  / 6 $  -finitely generated .  Write  Y  5  o #  Y i   as a directed union of
 #  -finitely generated subobjects .  By Proposition 1 . 2 ,  the morphism  l C :  C  5

 Im  h  >  X  / Y  >  X  / o #  Y i  >
 Å 5
 lim  X  / Y i   factors through one of the  X  / Y i .  Because the

 localization
 l C :  C  ÅÅ 5  X  / Y i  ÅÅ 5

 a
 C 6

 becomes a  #  / 6 $  -isomorphism upon localization ,   a 6   is a  #  / 6 $  -split-epimorphism .
 As ( X  / Y i ) 6   is  #  / 6 $  -finitely generated ,  so is Ker # / 6 $  a 6 .  Localizing the factorization

 h  :  X  ÅÅ 5

 π
 X  / Y i  ÅÅ 5

 a
 C 6

 gives that  h  5  h 6  5  ( a π  ) 6  5  a 6 π 6   and because Ker # / 6 $  π 6  5  ( Y i ) 6   is also  #  / 6 $  -
 finitely generated ,  so is Ker  h .

 If  X  P  #   is a direct limit  X  >
 Å 5
 lim  C i   of coherent objects  C i ,  then localization

 gives a representation of  X 6  >
 Å 5
 lim # / 6 $  ( C i ) 6   as a direct limit of  #  / 6 $  -coherent

 objects .  In particular ,  every  #  / 6 $  -coherent object  X  is a  #  / 6 $  -quotient of some  C 6

 with  C  a  # -coherent object .  By Proposition 2 . 14 ,   X  also has this form .  These
 observations give the following result .

 T HEOREM  2 . 16 .  The category  #  / 6 $   of  6 $  - closed objects of  #   is a locally coherent
 Grothendieck category . An object of  #  / 6 $   is coherent if and only if it has the form
 C 6  for some  # - coherent object C .

 For later reference ,  we prove next that the category  #  / 6 $    as it is defined here
 coincides with the standard definition (cf .  [ 12 ]) .  Let  A  and  B  be coherent objects
 of  #  .  If  A 9  <  A  is a coherent subobject such that  A / A 9  P  6 ,  then it is clear that
 the localization of  A 9  at  6   factors though  A  as  l A :  A 9  <  A  5  A 6 .  Dually ,  if
 B 9  <  B  is a coherent subobject in  6  ,  then the localization of  B  at  6   factors
 through the localization of  B  / B 9  as  l B :  B  5  B  / B 9  5  ( B  / B 9 ) 6  .  Thus  A 6  >  ( A 9 ) 6

 and  B 6  >  ( B  / B 9 ) 6   and localization at  6   gives the following morphism of abelian
 groups :

 ( – ) 6  :  Hom #  ( A 9 ,  B  / B 9 )  5  Hom # / 6 $  ( A 6  ,  B 6 ) .  (1)

 Define a partial order

 ( A 9 ,  B  / B 9 )  fl
 2  ( A 0 ,  B  / B 0 )

 on the set of pairs ( A 9 ,  B  / B 9 ) as above ,  by  A 0  <  A 9  and  B 0  >  B 9 .  This partial
 order is directed because two pairs ( A 9 ,  B  / B 9 ) and ( A 0 ,  B  / B 0 ) have the common
 upper bound ( A 9  >  A 0 ,  B  / ( B 9  1  B 0 )) .  When this relation holds ,  a morphism of
 abelian groups

 Hom # ( A 9 ,  B  / B 9 )  5  Hom # ( A 0 ,  B  / B 0 )

 is induced by restriction to  A 0   and congruence modulo  B 0 / B 9 .  These are the
 structural morphisms of a directed system indexed by the pairs ( A 9 ,  B  / B 9 ) .

 P ROPOSITION  2 . 17 .  Let A and B be coherent objects of  # . The morphism of
 abelian groups

 ( – ) 6 :
 Å 5
 lim  Hom # ( A 9 ,  B  / B 9 )  5  Hom # / 6 $  ( A 6  ,  B 6 )

 induced by the compatible family  (1)  of morphisms is an isomorphism .
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 Proof .  With intent to prove the morphism monic ,  assume that  a  P

 Å 5
 lim Hom # ( A 9 ,  B  / B 9 ) is such that  a 6  5  0 .  This means that for some represent-
 ative  a 9  P  Hom # ( A 9 ,  B  / B 9 ) of  a  ,  we have that  a  9 6  5  0 .  Thus Im  a 9 6  P  6 $  .  Now
 Im  a 9 6  <  B  / B 9  is coherent and so there is a coherent subobject  B 0  <  B  such
 that  B 9  <  B 0   and  B 0 / B 9  5  Im  a 9 6  .  Then the morphism induced by  a 9  in
 Hom # ( A 9 ,  B  / B 0 ) is zero and hence  a  5  0 .

 With intent to verify surjectivity ,  assume  h  P  Hom # / 6 $  ( A 6  ,  B 6 ) .  If  l B :  B  5  B 6

 is the localization of  B  at  6  ,  then the subobject  Y  5  Im #  l B  >  B  / t ( B ) of  B 6   has
 the property that  B 6  / Y  P  6 $  .  We shall find a coherent subobject  A 9  <  A  such that
 A / A 9  P  6   and the image of the restriction

 A 9  <  A  ÅÅ 5

 l A  A 6  ÅÅ 5

 h
 B 6

 is a subobject of  Y  >  B  / t ( B ) .  By Proposition 1 . 2 ,  this morphism factors through
 B  / B 9   for some  B 9  P  6   and the commutative diagram

 gives a preimage of  h  ,  a 6  5  h  .  But such a subobject  A 9  <  A  is given by Lemma
 2 . 13 with  X  5  h 2 1 ( Y ) .  Clearly  A 6  / X  P  6 $    and so ( A 9 ) 6  5  X 6  5  A 6   and hence
 A / A 9  P  coh- 6 $  5  6 .

 3 .  The Ziegler spectrum

 In this section ,  a topological space Zg( #  ) called the Ziegler spectrum is
 associated to the locally coherent Grothendieck category  #  .  This space was
 introduced by Ziegler in his model-theoretic analysis [ 37 ] of modules .

 Let  6 i  ‘  coh- # ,  for  i  P  I ,  be a collection of Serre subcategories of coh- #  .
 Evidently ,  the intersection  " i P I  6 i   is also a Serre subcategory of coh- #  .  So if
 -  ‘  coh- #  is an arbitrary subcategory ,  we may talk about the smallest Serre
 subcategory of coh- #   to contain  -  .  This Serre subcategory is denoted by

 4 -  5  "  h 6  ‘  coh- #  :  6  “  -  is  Serre j .

 To describe  4 -   intrinsically ,  we need the notion of a subquotient .

 D EFINITION  [ 37 ,  Definition ,  p .  156] .  Given objects  A ,  B  P  coh- #  ,  we say that  A
 is a  subquotient  of  B ,  or  A  a  B ,  if there is a filtration of  B  by coherent subobjects

 B  5  B 0  >  B 1  >  B 2  >  0

 such that  A  >  B 1 / B 2 .  In other words ,   A  is isomorphic to a coherent subobject of a
 coherent quotient object of  B  or ,  equivalently ,   A  is isomorphic to a coherent



 LOCALLY COHERENT GROTHENDIECK CATEGORIES  523

 quotient object of a coherent subobject of  B .  We shall use the notion of
 subquotient only in the category of coherent objects .

 It is easy to see that the relation  A  a  B  is transitive and it is immediate from the
 definition of a Serre subcategory  6   that if  B  P  6   and  A  is a subquotient of  B ,
 then  A  P  6 .  In particular ,  if  B  P  -  ‘  coh- #  ,  then  A  P  4 - .

 P ROPOSITION  3 . 1 .  A coherent object C  P  4 -   if and only if there are a finite
 filtration of C by coherent subobjects

 C  5  C 0  >  C 1  >  . . .  >  C n  5  0

 and , for e y  ery i  ,  n ,  A i  P  -   such that C i  / C i 1 1  a  A i .

 Proof .  Suppose that  C  has such a filtration .  Since each subquotient  C i  / C i 1 1  is
 in  4 -   and  4 -   is closed under extensions ,   C  P  4 - .  Conversely ,  it is easy to check
 that the class of those  C  with such a filtration satisfies the axioms for a Serre
 subcategory containing  -  .

 Denote by Zg( #  ) the set of indecomposable injective objects of  #   (up to
 isomorphism) .  This is indeed a set because every  E  P  Zg( #  ) is the injective
 envelope of a finitely generated object in  #   and fg- #   is skeletally small .  To an
 arbitrary subcategory  -  ‘  coh- #  ,  we associate the subset of Zg( #  ) ,

 2 ( -  )  5  h E  P  Zg( # ) :  for  some  C  P  - ,  Hom # ( C ,  E )  ?  0 j .

 If  -  5  h C j   is a singleton ,  we abbreviate  2 ( -  ) to  2 ( C ) .  Thus  2 ( -  )  5  ! C P -  2 ( C ) .

 P ROPOSITION  3 . 2 .  If A and B are coherent objects and A is a subquotient of B ,
 then  2 ( A )  ‘  2 ( B ) . If  0  5  A 1  5  B  5  A 2  5  0  is a short exact sequence in  coh- #  ,   then
 2 ( B )  5  2 ( A 1 )  <  2 ( A 2 ) .

 Proof .  Let  C  be a coherent quotient object of  B  and let  A  <  C  be coherent .  If
 E  P  2 ( A ) ,  then a non-zero morphism  h  :  A  5  E  extends to  C .  This yields a
 non-zero morphism  h 9 :  B  5  E .  To prove the second statement ,  apply the fact
 that for  E  P  Zg( #  ) ,  the functor ( – ,  E ) is exact on  #  .

 The next result follows from Propositions 3 . 1 and 3 . 2 .

 P ROPOSITION  3 . 3 .  For any subcategory  -  ‘  coh- #  ,   2 ( -  )  5  2 ( 4 -  ) .

 Proof .  Let  C  P  4 -   and consider a filtration of  C  as given by Proposition 3 . 1 .
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 By Proposition 3 . 2 ,  we have that  2 ( C )  5  ! i , n  2 ( C i  / C i 1 1 )  ‘  ! i , n  2 ( A i ) with
 A i  P  - .  Thus  2 ( 4 -  )  5  ! C P 4 -  2 ( C )  ‘  2 ( -  ) .

 Consequently ,  there is no loss in generality if we restrict the discussion to
 subsets of the form  2 ( 6  ) where  6  ‘  coh- #   is a Serre subcategory .  In that case ,

 2 ( 6  )  5  h E  P  Zg( #  ) :  t 6  ( E )  ?  0 j .

 T HEOREM  3 . 4 (Ziegler [ 37 ,  Theorem 4 . 9]) .  The collection of subsets of  Zg( # ) ,

 h 2 ( 6  ) :  6  ‘  coh- #  is  a  Serre  subcategory j ,

 satisfies the axioms for the open sets of a topology on  Zg( # ) . This topological
 space is called the  Ziegler spectrum  of  # .

 Proof .  First note that  2 (0)  5  [   and  2 (coh- #  )  5  Zg( #  ) .  By Proposition 3 . 3 ,
 ! i P I  2 ( 6 i )  5  2 ( ! i P I  6 i )  5  2 ( 4 ! i P I  6 i ) .  It remains to be shown that  2 ( 6 1 )  >
 2 ( 6 2 )  5  2 ( 6 1  >  6 2 ) .  Suppose that  E  P  2 ( 6 1 )  >  2 ( 6 2 ) .  As  E  is uniform ,   t 6 1 ( E )  >
 t 6 2 ( E )  ?  0 ,  so consider a finitely generated non-zero  X  <  t 6 1 ( E )  >  t 6 2 ( E ) .  There is
 an epimorphism  h  1 :  S 1  5  X  with  S 1  P  6 1 .  By Proposition 2 . 3 ,  this morphism  h
 factors through a quotient  S 2  P  6 2  of  S 1 .  But then  S 2  P  6 1  >  6 2  and therefore
 E  P  2 ( 6 1  >  6 2 ) .

 C OROLLARY  3 . 5 (Ziegler [ 37 ,  Theorem 4 . 9]) .  The collection of open subsets

 h 2 ( C ) :  C  P  coh- # j

 satisfies the axioms for a basis of open subsets of the Ziegler spectrum .
 Furthermore ,  2 ( C )  5  [   if and only if C  5  0 .

 Proof .  The first statement is a consequence of the fact that every open subset
 2 ( -  )  5  ! C P -  2 ( C )   is a union of open sets from this collection .  The second
 derives from the observation that every non-zero  C  P  coh- #   has a simple quotient
 object  S  whose injective envelope  E ( S )  P  2 ( C ) .

 The maximal Ziegler spectrum of  #  ,  denoted by max( #  ) ,  is the subset of
 Zg( #  ) consisting of those indecomposable injectives that are injective envelopes
 of simple objects .  The proof of Corollary 3 . 5 indicates that max( #  ) is a dense
 subset of Zg( #  ) .  For the next result ,  we shall need the notation  I ( 6 )  5
 Zg( #  )  \  2 ( 6  ) for the closed set which is the complement of the open set  2 ( 6  ) .

 P ROPOSITION  3 . 6 .  Let  6  ‘  coh- #   be a Serre subcategory . The inclusion functor
 #  / 6 $  ‘  #  induces a homeomorphism h :  Zg( #  / 6 $  )  5  I ( 6  )  from the Ziegler
 spectrum of  #  / 6 $   onto the closed set I ( 6  )  endowed with the relati y  e subspace
 topology . Furthermore , h [ 2 ( C 6 )]  5  I ( 6  )  >  2 ( C )  for C  P  coh- #  .

 Proof .  By the comments following Proposition 2 . 11 ,   E  P  Zg( #  / 6 $  ) if and only
 if  E  P  Zg( #  ) and  E  is  6 $  -torsion-free ,  that is ,   t 6 ( E )  5  0 ,  that is ,   E  P  I ( 6  ) .  Thus  h
 is a bijection .  That it is a homeomorphism follows from the second statement
 which is a consequence of the left adjoint property of the localization functor .  If
 E  P  Zg( #  / 6 $  )   and  C  P  coh- #  ,  then Hom # ( C ,  E )  >  Hom # / 6 $  ( C 6  ,  E ) .
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 Given an open set  2  ‘  Zg( #  ) ,  consider the subcategory

 6 2  5  h C  P  coh- # :  2 ( C )  ‘  2  j

 of coh- #  .  By Proposition 3 . 2 ,  it is a Serre subcategory .

 L EMMA  3 . 7 .  For e y  ery Serre subcategory  6  ‘  coh- # ,  6  5  6 2 ( 6  )  .

 Proof .  We have

 C  P  6 2 ( 6 )  ï  2 ( C )  >  I ( 6  )  5  [

 ï  2 ( C 6 )  5  [  (in  Zg( #  / 6 $  ))

 ï  C 6  5  0  (by  Proposition  3 . 6)

 ï  C  P  6 .

 T HEOREM  3 . 8 .  There is an inclusion - preser y  ing bijecti y  e correspondence between
 the Serre subcategories  6   of  coh- #   and the open subsets  2   of  Zg( #  ) .   This
 correspondence is gi y  en by the functions

 6  S  2 ( 6  ) ,  2  S  6 2  ,

 which are mutual in y  erses .

 Proof .  The previous lemma shows that  2  S  6 2   is the left inverse of  6  S  2 ( 6 ) .
 It is also a right inverse because

 2 ( 6 2 )  5  !  h 2 ( C ) :  C  P  6 2 j  5  ! h 2 ( C ) :  2 ( C )  ‘  2 j  5  2 .

 The first and last equalities hold because the  2 ( C ) constitute a basis .

 C OROLLARY  3 . 9 (Ziegler [ 37 ,  Theorem 4 . 9)] .   An open subset  2   of  Zg( # )  is
 quasi - compact if and only if it is one of the basic open subsets  2 ( C )  with
 C  P  coh- #  .

 Proof .  If  2  5  ! i P I  2 ( C i ) is quasi-compact ,  then for some finite subset  J  ‘  I ,
 2  5  ! i P J  2 ( C i )  5  2 (  I  I —  i P J  C i ) .  Conversely ,  if  2 ( C )  5  ! i P I  2 ( C i )  5  2 ( h C i :  i  P  I j ) ,
 then by Theorem 3 . 8 and Proposition 3 . 3 ,   C  P  4 h C i  :  i  P  I j .  By Proposition 3 . 1 ,
 there is a finite filtration of  C  by coherent subobjects such that each factor of the
 filtration is a subquotient of some  C i .  Since only finitely many of the  C i   are
 needed ,  there is a finite subset  J  of  I  such that  C  P  4 h C i  :  i  P  J j   and therefore
 2 ( C )  5  ! i P J  2 ( C i ) .

 Let  M  P  #   be coh-injective and denote by  I ( M ) the closed set  I ( 6 ( M )) where
 6 ( M )   is the Serre subcategory  6  ( M )  5  h C  P  coh- #  :  ( C ,  M )  5  0 j .  The set  I ( M ) is
 called the closed set of  M .  By Theorem 3 . 8 ,   I ( M ) may be characterized as the
 closed subset of Zg( #  ) satisfying the condition that for each  C  P  coh- # ,
 2 ( C )  >  I ( M )  5  [   if and only if ( C ,  M )  5  0 .  If  E  is an injective indecomposable
 object of  #  ,  that is ,  if  E  P  Zg  #  ,  then  I ( E ) is simply the topological closure of the
 point  h E j .

 P ROPOSITION  3 . 10 .  Let  6  ‘  coh- #   be a Serre subcategory and M  P  #   a coh - injec -
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 ti y  e  6 $  - torsion - free object . Then M is  6 $  - closed and it is a coh - injecti y  e object of
 #  / 6 $  . If h :  Zg( #  / 6 $  )  5  Zg( # )  is the continuous map of Proposition  3 . 6 , then
 h [ I # / 6 $  ( M )]  5  I # ( M ) .

 Proof .  As  M  is an  6 $  -torsion-free object ,  we have that  M  <  M 6   and  X  5
 M 6  / M  P  6 $  .  But if  S  P  6 ,  then the long exact sequence

 0  5  ( S ,  M )  5  0  5  ( S ,  M 6 )  5  0  5  ( S ,  X  )  5  Ext 1 ( S ,  M )  5  0

 proves that ( S ,  X  )  5  0 .  By Proposition 2 . 4 ,   X  5  0 and  M  5  M 6  P  #  / 6 $  .
 To verify that  M  is ( #  / 6 $  )-coh-injective ,  we use Theorem 2 . 16 and Proposition

 2 . 14 to note that every short exact sequence in coh-( #  / 6 $  ) is the localization of a
 short exact sequence in coh-( #  ) ,

 0  5  A  5  B  5  C  5  0 .

 As  M  is  # -coh-injective ,  the functor ( – ,  M ) is exact on coh- #  .  Thus the sequence

 0  5  Hom # ( C ,  M )  5  Hom #  ( B ,  M )  5  Hom #  ( A ,  M )  5  0

 is exact .  But this sequence is isomorphic to the sequence

 0  5  Hom # / 6 $  ( C 6  ,  M )  5  Hom # / 6 $  ( B 6  ,  M )  5  Hom # / 6 $  ( A 6  ,  M )  5  0 .

 To show that  h [ I # / 6 $  ( M )]  5  I ( M ) ,  note that

 2 ( C )  >  h [ I # / 6 $  ( M )]  ?  [  ï  2 ( C 6 )  >  h [ I # / 6 $  ( M )]  ?  [  (by  Proposition  3 . 6)

 ï  Hom # / 6 $  ( C 6  ,  M )  ?  0

 ï  Hom # ( C ,  M )  ?  0 .

 By the characterization above of the closed set  I ( M ) ,  we get that  h [ I # / 6 $  ( M )]  5
 I ( M ) .

 There is always a coh-injective object  M  P  #   such that Zg( #  )  5  I ( M ) .  One may
 take any coproduct of injective indecomposable objects

 M  5  I  I — E P $
 E

 indexed by a dense subset  $   (for example ,  max( #  )) of the Ziegler spectrum .  If
 6  ‘  coh- #  is a Serre subcategory ,  then applying this argument to  #  / 6 $    and the
 homeomorphism  h :  Zg( #  / 6 $  )  5  I ( 6  ) gives the following .

 C OROLLARY  3 . 11 (Ziegler [ 37 ,  Corollary 4 . 10]) .  E y  ery closed set I  ‘  Zg( # )  is
 the closed set I ( M )  of some coh - injecti y  e object M  P  # . Thus e y  ery Serre
 subcategory  6  ‘  coh- #   has the form  6 ( M )  for some coh - injecti y  e object M  P  # .

 For  C  P  coh- # ,  define

 Supp( C )  : 5  h M :  M  is coh-injective ,  ( C ,  M )  ?  0 j .
 Equivalently ,

 M  P  Supp( C )  ï  2 ( C )  >  I ( M )  5  2 ( C 6  ( M ) )  ?  [  ï  C  ̧  6 ( M ) .

 If  M  P  #   is a coh-injective object ,  define  # ( M ) to be the quotient category
 #  / 6 $  ( M )   of  #   by  6 $  ( M ) .
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 C OROLLARY  3 . 12 .  The following are equi y  alent for two coherent objects A and B
 of  # :

 (1)  2 ( A )  ‘  2 ( B ) ;

 (2)  A  P  4 B  ( : 5  4 h B j ) ;

 (3)  there is a finite filtration of A by coherent subobjects

 A  5  A 0  >  A 1  >  . . .  >  A n  5  0

 such that each of the factors A i  / A i 1 1   is a subquotient of B ;

 (4)  Supp( A )  ‘  Supp( B ) ;

 (5)  for e y  ery coh - injecti y  e M  P  # ,  2 ( A 6 ( M ) )  ‘  2 ( B 6 ( M ) )  in  # ( M ) ;

 (6)  for e y  ery Serre subcategory  6  ‘  coh- #  ,   2 ( A 6 )  ‘  2 ( B 6 )  in  Zg( #  / 6 $  ) ;

 (7)  for e y  ery  > - irreducible Serre subcategory  6  ‘  coh- # ,  2 ( A 6 )  ‘  2 ( B 6 )  in
 Zg( #  / 6 $  ) ;

 (8)  for e y  ery injecti y  e indecomposable E  P  Zg( #  ) ,   2 ( A 6 ( E ) )  ‘  2 ( B 6  ( E ) )  in
 Zg( # ( E )) .

 Proof .  (1)  ï  (2) .  We have  2 ( A )  ‘  2 ( B ) if and only if  A  P  6 2 ( B )  5  4 B .
 (2)  ï  (3) .  This is a special case of Proposition 3 . 1 .
 (3)  ï  (4) .  Because the coh-injective objects of  #   behave like injective

 objects with respect to the coherent objects ,  one can imitate the proof of
 Proposition 3 . 2 to show that Supp( A )  5  ! i , n  Supp( A i  / A i 1 1 ) and that for each  i ,
 Supp( A i  / A i 1 1 )  ‘  Supp( B ) .

 (4)  é  (5) .  If Supp( A )  ‘  Supp( B ) ,  then  2 ( A )  ‘  2 ( B ) and therefore  2 ( A 6 ( M ) )  5
 2 ( A )  >  I ( M )  ‘  2 ( B )  >  I ( M )  5  2 ( B 6 ( M ) ) .

 (5)  é  (6)  é  (7) .  These are trivial .
 (7)  é  (8) .  If  E  P  Zg( # ) ,  then  I ( E ) ,  being the closure of a point ,  is not the

 union of two proper closed subsets .  By Theorem 3 . 8 ,  the Serre subcategory
 6  ( E )  ‘  coh- #   is  > -irreducible ,  that is ,  it is not the intersection of two properly
 larger Serre subcategories .

 (8)  é  (1) .  If  E  5  2 ( A ) ,  then  2 ( A 6 ( E ) )  ?  [   and so by hypothesis  2 ( B 6 ( E ) )  ?  [ .
 But then  E  P  2 ( B ) .

 We shall give an example later showing that the last condition cannot be
 strengthened to  E  P  max( # ) .

 C OROLLARY  3 . 13 (Ziegler [ 37 ,  Theorem 4 . 9]) .  Let E  P  Zg( #  )  and C  P  coh- #   be
 such that E  P  2 ( C ) . A local system of open neighbourhoods of E is gi y  en by the
 collection

 h 2 ( A ) :  E  P  2 ( A ) ,  A  a  C j .

 Proof .  Let  2  P  Zg( #  ) be open with  E  P  2 .  Choose  A  P  coh- #   such that
 E  P  2 ( A )  ‘  2  >  2 ( C ) .  As in Proposition 3 . 12 . 4 ,  there is a filtration of  A  by
 coherent subobjects

 A  5  A 0  >  A 1  >  . . .  >  A n  5  0

 such that each  A i  / A i 1 1  is a subquotient of  C .  By Proposition 3 . 2 ,  there is an  i  ,  n
 such that  E  P  2 ( A i  / A i 1 1 ) .  But then  E  P  2 ( A i  / A i 1 1 )  ‘  2 ( A )  >  2 ( C ) .
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 The injective indecomposable objects  E  P  Zg( #  ) are the maximal uniform
 objects of  #   in the sense that they possess no proper uniform extensions .
 Therefore

 Zg( 6 $  )  5  h t 6  ( E ) :  E  P  Zg( #  ) j

 and there exists a bijection  E # :  Zg( 6 $  )  5  2 ( 6  ) defined by sending the maximal
 uniform object  t 6  ( E ) of  6 $    to its  # -injective hull  E # ( t 6  ( E ))  5  E .  Because the
 torsion functor  t 6   is the right adjoint of the inclusion functor  6 $  ‘  # ,  we have that
 for  C  P  6  5  coh- 6 $    and  E  P  Zg( #  ) ,  there is an isomorphism

 Hom 6 $  ( C ,  t 6  ( E ))  >  Hom # ( C ,  E ) ,

 which proves that  E # [ 2 ( C )]  5  2 ( C )  ‘  Zg( #  ) and hence that  E # :  Zg( 6 $  )  5  2 ( 6  )
 is a homeomorphism .

 4 .  The Ziegler spectrum of a ring

 Let  R  be a ring .  The left Ziegler spectrum of  R  is the topological space Zg( R # ) .
 In this section ,  we describe some points of the Ziegler spectrum of certain rings .
 The points of Zg( R # ) are the injective indecomposable objects  E  of  R #  5
 (mod- R ,  Ab) .  If  R M  P  R -Mod ,  let us abbreviate the closed set  I ( –  ̂  R  M ) to
 I ( R M ) and the related Serre subcategory  6  ( –  ̂  R  M ) of coh-( R # ) to  6 ( R M ) .

 E XAMPLE .  If  R  5  R 1  3  R 2  is the Cartesian product of the rings  R 1  and  R 2  ,  then
 the left Ziegler spectrum of  R  is a disjoint union of open sets

 Zg( R # )  5  2 ( R R 1  ,  – )  < ~  2 ( R R 2  ,  – )

 which are homeomorphic to Zg( R 1 # ) and Zg( R 2 # ) respectively .

 To describe the points of the left Ziegler spectrum of  R  recall that a morphism
 p :  R M  5  R N  of left  R -modules is a  pure - monomorphism  if the  R # -morphism

 –  ̂  p :  –  ̂  R  M  5  –  ̂  R  N

 is a monomorphism .  As the tensor functor commutes with direct limits ,   X  ̂  R  p  is
 then an Ab-monomorphism for every right  R -module  X R .  The left  R -module  R M
 is called  pure - injecti y  e  if every pure-monomorphism  p :  R M  5  R N  is a split-
 monomorphism ,  that is ,  there exists a retraction  q :  R N  5  R M  of  p ,  with  qp  5  1 M .
 Pure-injective modules are closed under product / coproduct factors and arbitrary
 products .

 P ROPOSITION  4 . 1 [ 16 ,  Proposition 1 . 2] .  An object E  P  R #   is an injecti y  e object if
 and only if it is isomorphic to one of the functors  –  ̂  R  M where  R M is a
 pure - injecti y  e left R - module .

 Proof .  If  E  P  R #   is an injective object ,  then  a fortiori  it is coh-injective and is
 by Proposition 2 . 2 isomorphic to one of the functors  –  ̂  R  M  with  R M  a left
 R -module .  The injective hypothesis readily implies that  R M  must in fact be
 pure-injective .

 Let  R M  be pure-injective and  m  :  –  ̂  R  M  5  X  a  R # -monomorphism .  Then  m
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 lifts to the injective envelope  E ( X  )  >  –  ̂  R  N .  This lifting has the form  –  ̂  R  p
 where  p :  R M  5  R N  is a pure-monomorphism .  As  p  is then a split-
 monomorphism ,  so is  –  ̂  R  p  and therefore  m   is also a split-monomorphism .

 A  pure - injecti y  e en y  elope  of a left  R -module  R M  is an  R -morphism  p :  R M  5

 R M #    such that the  R # -morphism

 –  ̂  R  p :  –  ̂  R  M  5  –  ̂  R  M #
 is an injective envelope in  R #   of the object  –  ̂  R  M .  This is equivalent to the
 condition that if  q :  R M  5  R N  is a pure-monomorphism with  R N  pure-injective ,
 then there is a split-monomorphism  r :  R M #  5  R N  such that the diagram

 commutes .  The existence of pure-injective envelopes was discovered by
 Kie ã pin ̀  ski [ 21 ] and Warfield [ 36 ] .

 Proposition 4 . 1 says that the points of the left Ziegler spectrum of  R  are
 represented by the pure-injective indecomposable left  R -modules .  We might
 informally refer to a pure-injective  R U  as being a point of Zg( R # ) when we mean
 to assert that  –  ̂  R  U  P  Zg( R # ) .  Note that for such a  R U ,  we have that
 –  ̂  R  U  P  I ( M )   if and only if  I ( U )  ‘  I ( M ) .  Because End R U  5  End ( R # ) ( –  ̂  R  U )
 and  –  ̂  R  U  is an injective object in  R #   one obtains the following .

 P ROPOSITION  4 . 2 [ 39 ] .  A pure - injecti y  e left R - module  R M is indecomposable if
 and only if the endomorphism ring  End R  M is local .

 E XAMPLE .  Every injective indecomposable left  R  – module  R E  is pure-injective
 and hence  –  ̂  R  E  is a point of Zg( R # ) .  More generally ,  we have the following .

 P ROPOSITION  4 . 3 .  Let  S M R  be an S - R - bimodule and  S E an injecti y  e left
 S - module . The abelian group  Hom S ( S M R ,  S E )  equipped with the left R - module
 structure  ( rf  )( m )  : 5  f  ( mr )  is a pure - injecti y  e left R - module .

 Proof .  Suppose  p :  R Hom S ( S M R ,  S E )  5  R N  is pure .  Then the  S -linear map

 M  ̂  R  p :  S M  ̂  R  Hom S ( S M R ,  S E )  5  S M  ̂  R  N

 is a monomorphism .  Applying the exact functor Hom S ( –  ,  S E ) gives an
 epimorphism

 ( M  ̂  R  p ,  S E ) :  Hom S ( S M  ̂  R  N ,  S E )  5  Hom S ( S M  ̂  R  Hom S ( S M R ,  S E ) ,  S E ) .

 As the tensor functor is left adjoint to the Hom functor ,  this epimorphism is
 isomorphic to the epimorphism

 (  p ,  R Hom S ( S M R ,  S E )) :  Hom R ( R N ,  R Hom S ( S M R ,  S E ))  5  End R ( R Hom S ( s M R  ,  S E )) .

 A preimage of 1 Hom( M ,E )  then gives a retraction  q :  R N  5  R Hom S ( S M R , S E ) .
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 E XAMPLE .  The pure-injective indecomposable abelian groups are the following .
 (1)  The injective modules  Q  (the group of rational numbers) and ,  for every

 prime  p ,  the Pru ̈  fer groups  Z (  p  ̀  ) .
 (2)  Every cyclic group  Z (  p n ) of order a prime power is pure-injective because

 Z (  p n )  >  ( Z (  p n ) ,  Z (  p  ̀  )) .
 (3)  For every prime  p ,  the  p -adic completion  Z #  (  p )  of the integers is pure-

 injective because  Z #  (  p )  >  ( Z (  p  ̀  ) ,  Z (  p  ̀  )) .

 Kaplansky [ 20 ] showed that this list is complete .  A similar argument holds for
 Dedekind domains .

 E XAMPLE .  For a commutative noetherian ring  R ,  Warfield [ 36 ] determined the
 pure-injective envelope  R M #    of a finitely presented (that is ,  finitely generated) left
 R -module  R M  as the completion of  R M  in the following sense .  The  Ω -adic
 topology on  R M  is the topology with a neighbourhood basis of 0 given by the
 submodules of the form  IM  as  I  ranges over all finite intersections of finite powers
 of maximal ideals .  Then the  Ω -adic completion  c :  R M  5  R M #    is a pure-injective
 envelope of  R M .  For example ,  the ring of  p -adic integers  Z #  (  p )  is (as an abelian
 group) the pure-injective envelope of the localization  Z (  p )  of  Z  at the prime  p .

 E XAMPLE .  Let ( R ,  m ,  k ) be a local commutative noetherian ring with maximal
 ideal  m  and residue field  k .  Suppose further that  R  is complete in the  m -adic
 topology .  The unique simple module is  k  and its injective envelope  E R ( k ) is a
 cogenerator in the category of left  R -modules .  Matlis [ 24 ] showed that the
 contravariant functor Hom R ( –  ,  E R ( k )) :  R -mod  ↔  R -dcc is a duality between the
 category  R -mod of finitely generated  R -modules and the category  R -dcc of the
 modules  R M  whose lattice of submodules satisfies the descending chain condition .
 By Proposition 4 . 3 ,  both of these categories consist of pure-injective  R -modules .

 E XAMPLE .  Let  S  be a ring with centre ( R ,  m ,  k ) as in the previous example .
 Suppose furthermore that the  R  – module  R S  is finitely generated .  If  S M  is a
 finitely generated  S -module then it is also a finitely generated  R -module and the
 R -isomorphism

 S M  5  S Hom R [Hom R ( M ,  E R ( k )) ,  E R ( k )]

 given by the Matlis duality is in fact an  S -isomorphism .  By Proposition 4 . 3 ,  every
 finitely generated  S -module is pure-injective .

 E XAMPLE .  An artin algebra  L   is a ring that is finitely generated as a module
 over an artinian centre .  Every artin algebra is a finite product  L  5  L 1  3  ...  3  L n   of
 artin algebras  L i   each with a local artinian centre ( R i  ,  m i  ,  k i ) .  As each  R i   is
 complete ,  the previous example serves to show that every finitely generated
 indecomposable  L -module is a point of the Ziegler spectrum

 Zg( L # )  5  ! ~
 i < n

 Zg( L i
 # ) .

 A ring  R  is called  y  on Neumann regular  if every finitely presented left
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 R -module is projective .  If  R I  <  R R  is a finitely generated left ideal ,  then the short
 exact sequence 0  5  I  5  R  5  R  / I  5  0 splits and therefore  I ,  a direct summand of
 R ,  is generated by an idempotent  I  5  Re .  Thus  R  is left coherent .  The following
 proposition is essentially a result of Auslander [ 1 ,  end of  §  3] .

 P ROPOSITION  4 . 4 .  The following conditions on a ring R are equi y  alent :

 (1)  R is  y  on Neumann regular ;

 (2)  e y  ery coherent object of  R #   is projecti y  e ;

 (3)  e y  ery short exact sequence in  coh-( R # )  splits ;

 (4)  the functor  R M  S  –  ̂  R  M from R -Mod  to  R #   is an equi y  alence .

 Proof .  (1)  é  (2) .  Let  R  be von Neumann regular and  C  P  coh-( R # ) .  Consider
 a finite projective resolution of  C  of minimal length

 0  ÅÅÅ 5  ( M n  ,  – )  ÅÅÅÅ 5

 (  f n  , –)
 ( M n 2 1  ,  – )  ÅÅÅÅ 5  . . .  ÅÅÅ 5  ( M 0  ,  – )  ÅÅÅ 5  C  ÅÅÅ 5  0 .

 The  R -linear map  f n :  M n 2 1  5  M n   is an epimorphism .  Because  M n   is finitely
 presented ,   f n   is a split-epimorphism .  But then (  f n  ,  – ) is a split-monomorphism ,
 which gives a shorter resolution ,  contradicting the minimal choice of the
 resolution .  Therefore  n  5  0 and  C  is projective .

 (2)  ï  (3) .  Every coherent object  C  of  R #   admits an epimorphism from a
 representable object .  If this is a split-epimorphism ,  then  C  is projective .

 (3)  ï  (4) .  Because the functor  R M  S  –  ̂  R  M  is always full and faithful ,  it is an
 equivalence if and only if it is dense ,  which is so if and only if every object  X  of
 R #   is coh-injective .  This is true if and only if for every  X  P  R #   and  C  P  coh- R # ,
 Ext 1

 ( R # ) ( C ,  X  )  5  0 ,  which is true if and only if every coherent  C  is projective .
 (2)  ∧  (4)  ï  (1) .  From Condition (4) ,  we know that  R #   is naturally equivalent to

 the category  R -Mod and every finitely presented object of  R -Mod is therefore
 coherent .  By Condition (2) ,  it is projective .

 So if  R  is von Neumann regular ,  then every monomorphism in  R -Mod is a pure
 monomorphism and the Ziegler spectrum of  R  consists of precisely the injective
 indecomposable left  R -modules .  Every monomorphism or epimorphism in
 coh-( R # )   is split ,  so that for  A  and  C  in coh-( R # ) , A  is a subquotient of  C  if and
 only if  A  3  C ,  that is ,   A  is a coproduct factor of  C .  Thus  A  P  4 C  if and only if
 there is a natural number  n  such that  A  3  C ( n ) .

 Let  J  be a two-sided ideal of the von Neumann regular ring  R  and denote by  6 J

 the Serre subcategory of coh-( R # )  >  R -mod which consists of finitely generated
 summands of coproducts of finitely many copies of  J ,  that is ,

 6 J  : 5  h P  P  R -mod :  P  3  J ( n )  for  some  n j .

 We claim that every Serre subcategory  6   of  R -mod has this form .  Let  J  5  t 6 ( R ) ,  a
 two-sided ideal of  R .  If  P  P  6 J  ,  then clearly  P  P  6 .  But if  P  P  6 ,  then ,  as  P  is
 projective ,  it is a summand of some finite power of  R , P  3  R ( n ) .  Applying the
 functor  t 6   yields that  P  3  J  ( n ) .
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 P ROPOSITION  4 . 5 .  Let R be a  y  on Neumann regular ring and J a two - sided ideal
 of R . Then

 6 J  5  6 ( R  / J )  5  h P :  ( P ,  R  / J )  5  0 j .

 Proof .  First note that there are no  R -linear maps  g :  R J  5  R ( R  / J ) .  For then
 there would be an idempotent  e  P  J  such that  g ( e )  ?  0 .  But  g ( e )  5  g ( e  2 )  5  eg ( e )  5
 0   in  R  / J .  Therefore ( J ( n ) ,  R  / J )  5  0 and so if  P  P  6 J  ,  then ( P ,  R  / J )  5  0 .  On the
 other hand ,  suppose that ( P ,  R  / J )  5  0 .  Let  n  be such that  P  3  R  ( n ) .  Then  P  lies in
 the kernel of the natural quotient map  π  :  R  ( n )

 5  R  ( n ) / J ( n )  >  ( R  / J ) ( n )  and is
 therefore a summand of  J ( n ) .

 T HEOREM  4 . 6 .  Let R be a  y  on Neumann regular ring . There is an inclusion -
 preser y  ing bijecti y  e correspondence between the Serre subcategories  6   of  coh-
 ( R # )  >  R -mod  and the two - sided ideals J of R gi y  en by the maps

 6  S  t 6 ( R )  and  J  S  6 ( R  / J )

 which are mutual in y  erses .

 Proof .  We have already noted that  J  S  6 ( R  / J ) is the left inverse of  6  S  t 6 ( R ) .
 To show that  t 6 ( R / J ) ( R )  >  J  note that for a finitely generated left ideal  R P  <
 J ,  P  P  6 ( R  / J )   and therefore  P  <  t 6 ( R / J ) ( R ) .  But the module  R  / J  is  6 $  ( R  / J )-
 torsion-free and therefore  t 6 ( R / J ) ( R )  <  J .

 Thus the open subsets of the Ziegler spectrum of a von Neumann regular ring
 have the form

 2 ( J )  : 5  h E  P  Zg( R -Mod) :  Hom R ( J ,  E )  ?  0 j ,

 where  J  is a two-sided ideal of  R .

 E XAMPLE .  A ring  R  is called  indiscrete  if the topology of the left Ziegler
 spectrum of  R  is indiscrete .  Equivalently ,  the category coh-( R # ) has no
 non-trivial Serre subcategories .  By the foregoing ,  a von Neumann regular ring is
 indiscrete if and only if it is simple .  Prest ,  Rothmaler and Ziegler [ 28 ,   §  2 . 2] have
 constructed an example of an indiscrete ring that is not von Neumann regular .

 To clarify the analogy between pure-injective and injective modules ,  let us
 point out a useful homogeneity property that pure-injective modules enjoy .  Let
 R M  be a left  R -module and  a  P  M .  Consider the  R -morphism  a ̂  :  R R  5  R M
 determined by the value  a ̂  (1)  5  a  and define

 T M ( a )  5  Ker( –  ̂  a ̂  :  –  ̂  R  R  5  –  ̂  R  M ) .

 This is in some sense a ‘generalized’ annihilator of  a  in  M .  For example ,  if
 g :  R M  5  R N  is a morphism of  R -modules such that  g ( a )  5  b ,  then

 ( –  ̂  g )( –  ̂  a ̂  )  5  –  ̂  . ga  5  –  ̂  b ̂
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 and we get a commutative diagram with exact rows

 and the relation  T M ( a )  <  T N ( b ) holds .  If  R N  is pure-injective ,  one obtains the
 following converse .

 P ROPOSITION  4 . 7 [ 37 ,  Corollary 3 . 3] .  Let  R M be an arbitrary R - module ,  R N a
 pure - injecti y  e R - module and a  P  M , b  P  N . There is a morphism of R - modules
 f  :  R M  5  R N such that f  ( a )  5  b if and only if T M ( a )  <  T N ( b ) .

 Proof .  The hypothesis gives a commutative diagram with exact rows

 Because  –  ̂  R  N  is an injective object of  R # ,  the diagram may be completed as
 above .

 5 .  Duality

 All that has been done for left  R -modules may be carried out as well for right
 R -modules .  The category ( R -mod ,  Ab) of generalized right  R -modules is then
 denoted by  # R .  The Ziegler spectrum Zg( # R ) of this category is called the right
 Ziegler spectrum of the ring  R .  In this section ,  we give a proof of the observation ,
 due to Auslander [ 4 ] and Gruson and Jensen [ 16 ] ,  that there is a duality
 (coh-( R # )) o p  >  coh-( # R )   between the respective subcategories of the coherent
 objects of  R #   and  # R .

 Define a functor  D :  (coh-( R # )) o p
 5  # R   on objects  C  P  coh-( R # ) as follows .

 Given  R N  P  R -mod ,  we have

 ( DC )( R N )  : 5  Hom ( R # ) ( C ,  –  ̂  R  N )

 If  h  :  B  5  C  is a (coh-( R # ))-morphism ,  then  D ( h  ) N  :  D ( C )( R N )  5  D ( B )( R N ) is
 defined to be Hom

 R # ( h  ,  –  ̂  R  N ) .
 First note that the functor  D :  (coh-( R # )) o p

 5  # R   is exact .  If

 0  ÅÅ 5  A  ÅÅ 5

 a
 B  ÅÅ 5

 b
 C  ÅÅ 5  0

 is a short exact sequence in coh-( R # ) ,  then because  –  ̂  R  N  is coh-injective ,  the
 sequence

 0  ÅÅÅ 5  ( C ,  –  ̂  R  N )  ÅÅÅÅÅÅÅÅ 5

 ( b  , –  ̂  R  N )
 ( B ,  –  ̂  R  N )  ÅÅÅÅÅÅÅÅ 5

 ( a  , –  ̂  R  N )
 ( A ,  –  ̂  R  N )  ÅÅÅ 5  0
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 is exact for each  N  P  R -mod .  But this means the sequence

 0  ÅÅ 5  DC  ÅÅ 5

 D b
 DB  ÅÅ 5

 D a
 DA  ÅÅ 5  0

 is exact .
 By Yoneda’s Lemma ,

 D ( M R  ,  – )( X R )  >  (( M R  ,  – ) ,  X  ̂  R  – )  >  X  ̂  R  M .

 Thus  D ( M R  ,  – )  >  M  ̂  R  –  .  If  C  P  coh-( R # ) with projective presentation

 ( N R  ,  – )  5  ( M R  ,  – )  5  C  5  0 ,

 applying the functor  D  gives an exact sequence

 0  5  DC  5  M  ̂  R  –  5  N  ̂  R  –  .

 This shows that  DC  is in fact a coherent object of  # R   and therefore that the
 functor  D  has its image in coh-( # R ) .

 T HEOREM  5 . 1 [ 4 ,   §  7 ;   16 ,  Theorem 5 . 6] .  The functor D :  (coh-( R # )) o p
 5  coh-

 ( # R )  defined abo y  e constitutes a duality between the categories  coh-( R # )  and
 coh-( # R ) . Furthermore , for M R  P  mod- R and  R N  P  R -mod  we ha y  e that

 D ( M R  ,  – )  >  M  ̂  R  –  and  D ( –  ̂  R  N )  >  ( R N ,  – ) .

 Proof .  First note that  D ( –  ̂  R  N )( R M )  >  ( –  ̂  R  N ,  –  ̂  R  M )  >  ( R N ,  R M ) so that
 D ( –  ̂  R  N )  >  ( R N ,  – ) .  Now another functor  D 9 :  (coh- # R ) o p

 5  coh-( R # ) may be
 defined similarly in the other direction .  Both of the compositions  DD 9  and  D 9 D
 are exact functors that are equivalences on the respective categories of finitely
 generated projective objects .  Thus they are both natural equivalences .

 E XAMPLE  [ 1 ,  p .  200] .  Let  R  be a right coherent ring and  M R   a finitely presented
 right  R -module .  There is then a projective resolution of  M R  ,

 . . .  ÅÅÅÅ 5

 f n 1 1  P n  ÅÅÅÅ 5

 f n  . . .  ÅÅÅÅ 5  P 1  ÅÅÅÅ 5

 f 1  P 0  ÅÅÅÅ 5

 f 0  M R  ÅÅÅÅ 5  0

 with every  P n   finitely generated .  Two complexes arise from this resolution .  In
 coh-( R # ) ,  one obtains the complex

 0  ÅÅÅÅ 5  ( P 0  ,  – )  ÅÅÅÅ 5

 (  f 1  , –)
 ( P 1  ,  – )  ÅÅÅÅ 5  . . .  ÅÅÅÅ 5

 (  f n  , –)
 ( P n  ,  – )  ÅÅÅÅÅÅ 5

 (  f n 1 1  , –)
 . . .

 and in coh- # R  ,  one has the dual complex

 ...  ÅÅÅÅÅÅ 5

 f n 1 1 ̂  –
 P n  ̂  R  –  ÅÅÅÅÅ 5

 f n ̂  –
 . . .  ÅÅÅÅÅ 5  P 1  ̂  R  –  ÅÅÅÅÅ 5

 f 1 ̂  –
 P 0  ̂  R  –  ÅÅÅÅÅ 5  0 .

 The homology at ( P n  ,  – ) of the first complex is Ext n ( M R  ,  – ) while the dual

 D  Ext n ( M R  ,  – )  5  Tor n ( M R  ,  – )

 is the homology of the second complex at  P n  ̂  R  –  .

 We noted earlier how a ring  R  is von Neumann regular if and only if every
 short exact sequence in coh-( R # ) splits .  By the duality  D ,  this is clearly a
 left-right symmetric notion ,  that is ,  it holds for the ring  R  if and only if it does for
 the opposite ring  R o p .
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 Because the category coh- # R   has enough projectives ,  the duality  D  gives the
 following .

 P ROPOSITION  5 . 2 [ 4 ,  Lemma 7 . 3 9 ] .  E y  ery injecti y  e object of  coh-( R # )  is
 isomorphic to one of the functors  –  ̂  R  M where  R M  P  R -mod .   The category
 coh-( R # )  has enough injecti y  es , that is , for e y  ery C  P  coh-( R # ) , there is a
 monomorphism  m  :  C  5  –  ̂  R  M with  R M  P  R -mod .

 If  R M  is a finitely presented  R -module and  a  P  M ,  then  T M ( a ) (defined before
 Proposition 4 . 7) is a coherent object .  Using the coh-injectivity of the objects
 –  ̂  R  N  where  R N  is a left  R -module ,  one gets the following analogue of
 Proposition 4 . 7 .

 P ROPOSITION  5 . 3 [ 27 ,  Proposition 8 . 5] .  Let a  P R  M , a finitely presented R -
 module , and b  P R  N , an arbitrary left R - module . There is a morphism of
 R - modules g :  R M  5  R N such that g ( a )  5  b if and only if T M ( a )  <  T N ( b ) .

 E XAMPLE  [ 27 ,   §  11 . 3] .  Suppose that  R M  is a finitely presented left  R -module
 with a local endomorphism ring .  The pure-injective envelope  R M #    is then
 indecomposable .  To see this ,  note that the coh-( R # )-injective object  –  ̂  R  M  has a
 local endomorphism ring

 End coh-( R # ) ( –  ̂  R  M )  5  End R  M .

 Because the category coh-( R # ) has enough injectives ,   –  ̂  R  M  is a uniform
 coh-( R # )-object .  But then it is uniform as a  #  -object and hence  E ( –  ̂  R  M )  5
 –  ̂  R  M #    is indecomposable .

 If furthermore  R N  is another finitely presented module such that  R N #  >  R M #  ,
 then  R N  >  R M .  For ,  both  –  ̂  R  N  and  –  ̂  R  M  are essential extensions of some
 finitely generated ,  hence coherent ,  uniform subobject  C .  But then  –  ̂  R  N  >
 E coh-( R # ) ( C )  >  –  ̂  R  M .

 E XAMPLE .  A ring  R  is called  Krull  – Schmidt  if every finitely presented
 R -module is a (finite) coproduct of modules with a local endomorphism ring .  This
 is a left-right symmetric condition on the ring  R .  For example ,  any left or right
 artinian ring is Krull – Schmidt .  A ring  S  that is finitely generated as a module over
 a complete local noetherian centre is Krull – Schmidt ,  because every finitely
 presented (that is ,  finitely generated) module is pure-injective noetherian and is
 therefore a finite coproduct of modules with a local endomorphism ring .  If  R  is
 Krull – Schmidt and  R M  is a finitely presented indecomposable  R -module ,  then
 this module conforms to the previous example and therefore  R M #    is a point of the
 left Ziegler spectrum of  R .

 P ROPOSITION  5 . 4 .  Let R be Krull  – Schmidt . The set of points ha y  ing the form  R M #
 with  R M a finitely presented indecomposable module is a dense subset of the
 Ziegler spectrum of R .

 Proof .  Let  C  P  coh-( R # ) .  There is a monomorphism in coh-( R # ) of the form
 m  :  C  5  –  ̂  R  M .  Now  R M  >  I  I —

 k
 i 5 1  R M i   with every  –  ̂  R  M i   a uniform object in  R # .

 But then for some  i  <  k ,  ( C ,  –  ̂  R  M i )  ?  0 and therefore  –  ̂  R  M #  i  P  2 ( C ) .
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 Let  6  ‘  coh-( R # ) be a Serre subcategory .  It is then clear that the subcategory

 D 6  : 5  h DC :  C  P  6  j

 of coh- # R   is also Serre and that the restriction to  6   of the duality
 D :  (coh- R # ) o p

 5  coh- # R   gives a duality  D :  6  o p
 5  D 6 .  By Theorem 3 . 8 ,  the map

 2 ( 6  )  S  2 ( D 6  )   induced on the open subsets of the left Ziegler spectrum is an
 inclusion-preserving bijection .  Having defined the dual of a Serre subcategory ,  we
 show next that localization commutes with duality .

 Let  A  be a coherent object of  R # .  If  A 9  <  A  is a coherent subobject ,  then the
 dualized short exact sequence in coh- # R  ,

 0  5  D ( A / A 9 )  5  DA  5  DA 9  5  0 ,

 shows that if  A / A 9  P  6 ,  then  DA 9  is a quotient of  DA  by a coherent subobject in
 D 6 .  Dually ,  it proves that  A 9  P  6   if and only if  D ( A / A 9 )  <  DA  is a coherent
 subobject such that the corresponding quotient object lies in  D 6 .  If  B  is another
 coherent object of  #  ,  then the function

 ( A 9 ,  B  / B 9 )  S  ( D ( B  / B 9 ) ,  DA 9 )

 induces an isomorphism between the partial order of pairs indexing the
 compatible family (1) (given at the end of  §  2) and the analogous partial order
 corresponding to the pair ( DB ,  DA ) .  Now

 D :  Hom
 R # ( A 9 ,  B  / B 9 )  5  Hom # R

 ( D ( B  / B 9 ) ,  DA 9 )

 is an isomorphism of the related direct systems (1) which gives an isomorphism of
 abelian groups

 D :  Hom
 R # / 6 $  ( A ,  B )  >

 Å 5
 lim  Hom

 R # ( A 9 ,  B  / B 9 )

 >
 Å 5
 lim  Hom # R

 ( D ( B  / B 9 ) ,  DA 9 )

 >  Hom # R /( D 6  )
 5  ( DB ,  DA ) .

 The assignment given by  A 6  S  ( DA ) D 6   on the objects and by the above for
 morphisms is functorial .  We document all of this as follows .

 T HEOREM  5 . 5 .  Let R be a ring . There is an inclusion - preser y  ing bijecti y  e
 correspondence between the Serre subcategories of  coh-( R # )  and those of  coh-( # R )
 gi y  en by

 6  S  D 6 .

 The induced map  2 ( 6  )  S  2 ( D 6  )  is an isomorphism between the topologies , that
 is , the respecti y  e algebras of open sets , of the left and right Ziegler spectra of R .
 Furthermore , the duality D :  (coh-( R # )) o p

 5  coh-( # R )  induces dualities between the
 respecti y  e subcategories D  :  6  o p

 5  D 6   and D :  (coh-( R #  / 6 $  )) o p
 5  coh-( # R  / ( D 6 Ñ ))

 as gi y  en by the following commutati y  e diagram of abelian categories :
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 If both the left and the right Ziegler spectra of  R  satisfy the topological
 separation axiom  T 0  ,  that is ,  if their points are distinguished by local neighbour-
 hood systems ,  then the isomorphism  2 ( 6  )  S  2 ( D 6  ) of open sets induces a
 homeomorphism

 Zg( D ) :  Zg( R # )  5  Zg( # R )

 between the left and right Ziegler spectra of  R .  By this we mean that Zg( D ) is the
 unique homeomorphism satisfying Zg( D )[ 2 ( 6  )]  5  2 ( D 6  ) .

 P ROPOSITION  5 . 6 [ 40 ,  Lemma 2] .  Let  S M R  be an S - R - bimodule and let  S E be an
 injecti y  e S - module . Then for each C  P  coh- # R  , there is an isomorphism

 Hom S ( S ( C ,  M  ̂  R  – ) ,  S E )  >  ( DC ,  –  ̂  R  ( S M R ,  S E ))

 natural in C .

 Proof .  Consider each side of the equation as a functor from coh- # R  ,  with
 argument  C ,  to Ab .  Then each is a covariant exact functor .  When  C  5  R  ̂  R  –  is
 the forgetful functor ,  both sides reduce to ( S M R ,  S E ) .  Now every projective object
 ( R N ,  – ) of coh- # R   has an injective resolution by finite powers of the forgetful
 functor .  A free presentation  R R m

 5  R R n
 5  R N  5  0 of  R N  gives the exact

 sequence in  # R  ,

 0  5  ( R N ,  – )  5  ( R R n ,  – )  5  ( R R m ,  – ) .

 By exactness ,  the proposition then holds for all representable functors of coh- # R .
 Applying a similar exactness argument to a projective presentation of an arbitrary
 C  P  coh- # R   gives the general result .  Naturality also follows .

 If ,  in addition to the hypotheses of the previous proposition ,  we assume that  S E
 is a cogenerator ,  then we get the following chain of equivalences :

 DC  P  6 ( R ( M ,  E ))  ï  ( DC ,  –  ̂  R  ( S M R ,  S E ))  5  0

 ï  ( S ( C ,  M  ̂  R  – ) ,  S E )  5  0

 ï  ( C ,  M  ̂  R  – )  5  0

 ï  C  P  6 ( M R ) .
 In short ,

 6 ( R ( M ,  E ))  5  D 6 ( M R ) .  (2)

 E XAMPLE .  Let  T  5  M p  prime  Z (  p  ̀  ) denote the minimal injective cogenerator of
 Ab .  For each prime  p ,  the following isomorphisms are readily verified :

 (1)  ( Z (  p n ) ,  T  )  >  ( Z (  p n ) ,  Z (  p  ̀  ))  >  Z (  p n ) ,

 (2)  ( Z (  p  ̀  ) ,  T  )  >  ( Z (  p  ̀  ) ,  Z (  p  ̀  ))  >  Z #  ( p )  ,

 (3)  ( Z #  (  p )  ,  T  )  >  ( Z #  (  p )  ,  Z (  p  ̀  ))  >  Z (  p  ̀  ) .

 Furthermore ,  ( Q ,  T  ) is a vector space over the rational numbers  Q  and so
 D 6 ( Q )  5  6 ( Q ,  T  )  5  6 ( Q  ( a ) )  5  6 ( Q ) .  In this way ,  duality induces a
 homeomorphism

 Zg( D ) :  Zg( Z # )  5  Zg( # Z )  5  Zg( Z # )
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 that fixes the rationals  Q  and the finite cyclic groups  Z (  p n ) while interchanging
 the abelian group of  p -adic integers  Z #  ( p )  with the Pru ̈  fer group  Z (  p  ̀  ) .

 E XAMPLE .  Let  M R   be a finitely presented right  R -module with local endo-
 morphism ring  S .  Let  S E  be the  S -injective envelope of the unique simple left
 S -module .  Applying the isomorphism in Proposition 5 . 6 with  C  5  M  ̂  R  –  gives
 the isomorphism

 S E  >  Hom S ( S S ,  S E )  >  Hom S ( S ( M  ̂  R  –  ,  M  ̂  R  – ) ,  S E )

 >  (( M R  ,  – ) ,  –  ̂  R  ( S M R ,  S E ))  >  M  ̂  R  ( S M R ,  S E ) .

 Now we calculate the endomorphism ring of the pure-injective left  R -module
 R ( S M R ,  S E ) ,

 End R ( S M R ,  S E )  >  Hom R ( R ( S M R ,  S E ) ,  R ( S M R ,  S E ))

 >  Hom S ( S M  ̂  R  ( S M R ,  S E ) ,  S E )  >  Hom S ( S E ,  S E ) .

 This shows that the endomorphism ring is local and hence that  R ( S M R ,  S E ) is a
 pure-injective indecomposable left  R -module .

 In general ,  we let Zg( D ) :  Zg( R # )  5  Zg( # R ) be the partial function whose
 domain consists of those  U  P  Zg( R # ) uniquely determined by a local system of
 basic open neighbourhoods and having the additional property that the system of
 basic open neighbourhoods in Zg( # R ) dual to the system of  U ,  determines a
 unique point  V .  Then Zg( D )( U )  5  V .  If  R M  is a finitely presented left  R -module
 with local endomorphism ring  S ,  the previous example computes the value of
 Zg( D )( R M #  )   as Hom S ( R M S  ,  E S ) R   when it is defined .

 E XAMPLE .  Consider the right  R -module  R R   and let  R E  be an injective
 cogenerator for  R -Mod .  Then  R ( R R R  ,  R E )  >  R E  and equation (2) becomes
 D 6 ( R R )  5  6 ( R E ) .  We can describe the objects of  6 ( R R ) as follows .  Take a
 projective presentation of  C  P  coh- # R  ,

 ( R N ,  – )  ÅÅÅ 5

 (  f , –)
 ( R M ,  – )  ÅÅÅ 5  C  ÅÅÅ 5  0

 and apply the functor Hom ( R # ) (? ,  ( R  ̂  R  – )) .  By Yoneda’s Lemma ,  this gives an
 exact sequence 0  5  ( C ,  R  ̂  R  – )  5  M R

 f
 5  N R   of right  R -modules .  Now  C  P  6 ( R R )

 if and only if ( C ,  R  ̂  R  – )  5  0 ,  which is so if and only if  f  is an  R -monomorphism .
 Thus

 6 ( R R )  5  h C  >  Coker(  f ,  – ) :  f  an  R -monomorphism j .

 Aplying the duality  D  gives  6 ( R E )  5  h DC  >  Ker(  f  ̂  – ) :  f  an  R -monomorphism j .

 P ROPOSITION  5 . 7 .  Let  R E be an injecti y  e cogenerator for R -Mod .   If  R E 9   is an
 injecti y  e left R - module , then I ( R E 9 )  ‘  I ( R E ) . Moreo y  er I ( R E )  is the closure in the
 left Ziegler spectrum of R of the indecomposable injecti y  e left R - modules .

 Proof .  Let  C  P  coh-( R # ) and take a (coh-( R # ))-injective copresentation of  C ,

 0  ÅÅ 5  C  ÅÅ 5  –  ̂  R  M  ÅÅ 5

 –  ̂  f
 –  ̂  R  N .
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 If  R X  is a left  R -module ,  then applying the exact functor Hom(? ,  –  ̂  R  X  ) gives
 the exact sequence

 ( R N ,  R X  )  ÅÅÅ 5

 (  f ,  X  )
 ( R M ,  R X  )  ÅÅÅ 5  ( C ,  –  ̂  R  X  )  ÅÅÅ 5  0 .

 Thus ( C ,  –  ̂  R  X  )  >  Coker(  f ,  X  ) .  If  C  P  6 ( R E ) ,  then  f  must be an  R -
 monomorphism and so for any injective left  R -module  R E 9 ,  we have that
 ( C ,  –  ̂  R  E 9 )  >  Coker(  f ,  E 9 )  5  0 .  Thus  I ( E 9 )  ‘  I ( R E ) .  In particular ,  if  R U  is an
 indecomposable injective left  R -module ,  then  I ( R U )  ‘  I ( R E ) implies that
 –  ̂  R  U  P  I ( R E ) .

 To show that  I ( R E ) is the closure of the set of injective indecomposables  R U ,
 suppose to the contrary ,  that  V  P  I ( E )  >  2 ( C ) ,  but that for each of the injective
 U ,  –  ̂  R  U  ̧  2 ( C ) .  Now ( C ,  –  ̂  R  U )  >  Coker(  f ,  R U )  5  0 for all  R U .  Because the
 injective indecomposables  R U  form a cogenerating set ,   f  must be an  R -
 monomorphism .  But then  C  P  6 ( R E ) ,  contradicting  I ( R E )  >  2 ( C )  ?  [ .

 Prest ,  Rothmaler and Ziegler have shown [ 28 ,  Corollary 4 . 4] that the ring  R  is
 left coherent if and only if  I ( R E ) consists exclusively of indecomposable
 injectives .

 6 .  Finite matrix subgroups

 In this section ,  we shall consider exact representations of the category coh- #
 into module categories .  Let  M  P  #   be a coh-injective object with endomorphism
 ring  S  5  End #  M .  Then the exact contravariant functor

 Hom # ( –  ,  M ) :  coh- #  5  S -Mod

 is such a representation .  If  C  P  #   is a coherent object ,  the  S -submodules of
 S ( C ,  M )   corresponding to coherent quotient objects of  C  are called finite matrix
 subgroups of  S ( C ,  M ) .  They were introduced by Gruson and Jensen [ 15 ] and
 Zimmermann [ 38 ] .  Through the work of Baur [ 6 ] ,  they have become the central
 motif of the model theory of modules .  If  R X  is a left  R -module with
 endomorphism ring  S  5  End R  X  5  End ( R # ) ( –  ̂  R  X  ) ,  finite matrix subgroups of
 the  S -module  S ( –  ̂  R  R ,  –  ̂  R  X  )  >  S X  provide some control over the complexity
 of the localized category  R # ( R X  ) in terms of the lattice of  S -submodules of  S X .
 We shall refer to an  S -submodule of  S X  as an  endosubmodule  of  R X .

 Let  C  be a coherent object of  #  .  Because the category coh- #   is abelian ,  the
 coherent subobjects of  C  form a modular lattice  L coh- # ( C ) [ 34 ,  Proposition IV . 5 . 3]
 with maximum and minimum elements .  All lattices mentioned in the sequel will
 be modular with maximum and minimum elements which lattice morphisms are
 presumed to preserve .  We begin with the observation that localization induces
 such a lattice morphism .

 P ROPOSITION  6 . 1 .  Let F  :  !  5  @   be an exact functor of abelian categories and
 A  P  ! . The map

 L ( F  ) :  L ! ( A )  5  L @ ( FA )
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 this sends the subobject  m  :  C  <  A to the subobject F  ( m  ) :  F  ( C )  <  F  ( A )  is a
 morphism of lattices .

 Proof .  Let  b  :  B  <  A  and  g  :  C  <  A  be subobjects of  A .  Then  B  1  C  5
 Im( b  I  I 2  g  ) and so

 F  ( B  1  C )  5  F  (Im( b  I  I 2  g  ))  5  Im( F  ( b  )  I  I 2  F  ( g  ))  5  F  ( B )  1  F  ( C ) .

 A similar argument in the opposite category proves the dual statement .

 Let  C  be a coherent object of  #   and  6  ‘  coh- #   a Serre subcategory .  The
 proposition implies that localization at  6   induces a lattice morphism

 L ( – ) 6  :  L coh- # ( C )  5  L coh- #  / 6 $  ( C 6 ) .

 The next proposition describes the morphism intrinsically .

 P ROPOSITION  6 . 2 .  The lattice morphism L ( – ) 6 :  L coh- # ( C )  5  L coh- # / 6 $  ( C 6 )  is the
 quotient morphism of the lattice L coh- # ( C )  modulo the congruence

 A  1  B  / ( A  >  B )  P  6 .

 Proof .  By the coherent version of Proposition 2 . 14 ,  the lattice morphism
 L ( – ) 6 :  L coh- # ( C )  5  L coh- #  / 6 $  ( C 6 )   is surjective .  Now note that  A 6  >  B 6   if and
 only if  A 6  1  B 6  / ( A 6  >  B 6 )  >  ( A  1  B ) 6  / ( A  >  B ) 6  5  0 .  By the exactness of local-
 ization ,  that is equivalent to [ A  1  B  / ( A  >  B )] 6  5  0 which is equivalent to
 A  1  B  / ( A  >  B )  P  6 .

 Let  C  P  coh- #   and let  M  P  #   be a coh-injective object .  If  A  P  L coh- # ( C ) ,  and
 S  5  End #  M ,  then the short exact sequence

 0  5  A  5  C  5  C  / A  5  0

 gives rise to a short exact sequence

 0  5  S ( C  / A ,  M )  5  S ( C ,  M )  5  S ( A ,  M )  5  0

 of left  S -modules .  In this manner ,  we identify  S ( C  / A ,  M ) with an element of
 L S (( C ,  M )) ,  the lattice of  S -submodules of  S ( C ,  M ) .  The map defined by
 A  S  ( C  / A ,  M )   will be denoted by  d  ( C ,M ) :  L coh- # ( C )  5  L S (( C ,  M )) .  A  finite matrix
 subgroup  of ( C ,  M ) is defined to be any  S -submodule of  S ( C ,  M ) that is in the
 image of  d  ( C ,M ) .

 E XAMPLE .  Let  R  be a ring and  C  a coherent object of  R # .  If  R M  is a finitely
 presented left  R -module ,  then the finite matrix subgroups of  DC ( R M )  5
 ( C ,  –  ̂  R  M ) have the form  D ( C  / A )( M ) as  C  / A  ranges over the coherent
 quotient objects of  C .  Thus the finite matrix subgroups of ( C ,  –  ̂  R  M ) are
 precisely the subgroups of the form  B ( M ) where  B  P  L coh- # R

 ( DC ) .

 P ROPOSITION  6 . 3 .  Let C be a coherent object of  #   and M  P  #   a coh - injecti y  e
 object with S  5  End #  M . The map  d  ( C ,M ) :  L coh- # ( C )  5  L S (( C ,  M ))  is an anti -
 morphism of lattices . It induces an anti - embedding of L coh- # ( M ) ( C 6 ( M ) )  into
 L S (( C ,  M )) .
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 Proof .  The first statement follows from Proposition 6 . 1 and the fact that the
 functor Hom #  ( – ,  M ) is exact .  To prove the second ,  let  A ,  B  <  C  be coherent .  We
 have the inclusion ( C  / ( A  1  B ) ,  M )  <  ( C  / ( A  >  B ) ,  M ) in  L S (( C ,  M )) and it is
 clear that this inclusion is proper if and only if  A  1  B  / ( A  >  B )  ̧  6 ( M ) .
 Thus for  A ,  B  P  L coh- # ( C ) ,  it follows that  d  ( C ,M ) ( A )  5  d  ( C ,M ) ( B ) if and only if
 d  ( C ,M ) ( A  1  B )  5  d  ( C ,M ) ( A  >  B ) ,  which is true if and only if  A  1  B  / ( A  >  B )  P
 6 ( M ) .  By Proposition 6 . 2 ,  an anti-embedding of  L coh- # ( M ) ( C 6 ( M ) ) into
 L S (( C ,  M )) is induced .

 E XAMPLE .  Suppose that  #  5  R #   for some ring  R  and let  C  5  –  ̂  R  R .  If  –  ̂  R  X
 is a coh-injective object of  R #   with endomorphism ring  S  5  End R  X ,  the finite
 matrix subgroups of  S ( –  ̂  R  R ,  –  ̂  R  X  )  >  S X  may be identified with certain
 endosubmodules of  R X .  Let us describe then the finite matrix subgroups of  R X .
 For simplicity ,  abbreviate  d  (– ̂  R ,  – ̂  X  )  to  d X .  If  A  <  –  ̂  R  R  is coherent ,  there is a
 monomorphism ( –  ̂  R  R ) / A  5  –  ̂  R  M  for some finitely presented left  R -module
 R M .  From the exact sequence

 0  ÅÅÅ 5  A  ÅÅÅ 5  –  ̂  R  R  ÅÅÅ 5

 –  ̂  f
 –  ̂  R  M

 we see that  A  5  T M (  f  (1)) ,  and by the coh-injectivity of  –  ̂  R  X ,

 d X  ( A )  5  (Im  ( –  ̂  f  ) ,  –  ̂  R  X  )  5  h  y  P  X  :  A  5  T M (  f  (1))  <  T X  (  y ) j .

 We shall often apply the following special case of Proposition 6 . 3 .

 P ROPOSITION  6 . 4 .  Let  R X be an R - module and S  5  End R  X . There is an
 anti - embedding of the lattice L coh- #  ( X  ) [( –  ̂  R  R ) 6 ( X  ) ]  into the lattice L S ( X  )  of
 endosubmodules of  R X .

 If  M  P  #   is coh-injective and  6  ‘  6 ( M ) is a Serre subcategory ,  then  M  is also
 coh-injective as an object of  #  / 6 $    and the respective endomorphism rings
 coincide ,   S  5  End #  M  5  End # / 6 $  M .  As localization is a left adjoint ,  the isomorph-
 ism Hom #  ( C ,  M )  >  Hom # / 6 $  ( C 6  ,  M ) is ,  by naturality ,  an  S -module isomorphism .
 Thus the lattices  L S ( C ,  M ) and  L S ( C 6  ,  M ) are isomorphic .  The following
 proposition shows that this isomorphism ,  which we denote by ( – ) 6 :  L 6  ( C ,  M )  5

 L S ( C 6  ,  M ) ,  preserves finite matrix subgroups .

 P ROPOSITION  6 . 5 .  Let M  P  #   be coh - injecti y  e with endomorphism ring S  5
 End #  M . If  6  ‘  6 ( M )  is a Serre subcategory of  coh- #   and C  P  coh- # , then the
 following diagram of lattice morphisms commutes :

 Proof .  Let  A  <  C  be a coherent subobject .  On the one hand ,  ( – ) 6 d  ( C ,M ) ( A )  5
 (( C  / A ) 6  ,  M )   while  d  ( C 6 ,M ) L ( – ) 6 ( A )  5  (( C 6  / A 6 ) ,  M ) .  Since the quotient  C 6  / A 6   is
 taken in  #  / 6 $  ,  the two are equal .
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 Let  M  P  #   be an injective object with endomorphism ring  S  5  End #  M .  We
 turn our attention now to finite matrix subgroups that are cyclic as  S -modules .  If
 h  P  S ( C ,  M ) ,  then the cyclic subgroup  S h   may be computed using injectivity as

 S h  5  S (Im  h  ,  M )  5  ( C  / Ker  h  ,  M ) .

 Writing Ker  h  5  o i P I  A i   as a direct union of coherent subobjects of  C  shows that

 S h  5 S C Y S O
 i P I

 A i D ,  M D  5  "

 i P I
 ( C  / A i  ,  M )  5  "

 i P I
 d  ( C ,M ) ( A i ) .

 This proves the first part of the next proposition .

 P ROPOSITION  6 . 6 [ 8 ,  Lemma 4 . 1 ;   27 ,  Exercise 11 . 3 ;   37 ,  Corollary 3 . 3(1)] .  If M is
 an injecti y  e object of  #   with endomorphism ring S  5  End #  M , then e y  ery cyclic
 S - submodule of  S ( C ,  M )  is an intersection of finite matrix subgroups . If M is an
 injecti y  e object of  coh- # , then e y  ery finitely generated S - submodule of  S ( C ,  M )  is a
 finite matrix subgroup .

 Proof .  Let  M  be an injective object of coh- #  .  If  h  P  S ( C ,  M ) ,  then Ker  h   is a
 coherent subobject of  C  and ,  as above ,

 S h  5  S (Im  h  ,  M )  5  ( C  / Ker  h  ,  M )  5  d  ( C ,M ) (Ker  h  ) .

 Thus every cyclic  S -submodule of  S ( C ,  M ) is a finite matrix subgroup .  As the
 finite matrix subgroups of ( C ,  M ) are closed under finite sums ,  every finitely
 generated  S -submodule of  S ( C ,  M ) is a finite matrix subgroup .

 7 .  Examples of Serre subcategories

 As in [ 27 ,  Chapter 10] ,  we shall consider in this section Serre subcategories that
 arise from lattice-theoretic considerations .  Recall that if  R M  is a left  R -module ,
 we denote by  R # ( M ) the quotient category  R #  / 6 $  ( M ) .  We shall give examples of
 R -modules  R M  such that the objects of coh-( R # ( M )) are in a lattice-theoretic
 sense well behaved .

 An object  X  P  #   is called  noetherian  if every subobject of  X  is finitely
 generated .  For  C  P  coh- #  ,  this is equivalent to the ascending chain condition on
 L coh- # ( C ) .  It is clear that the noetherian coherent objects form a Serre
 subcategory acc- #  ‘  coh- #  .  The category  #   is called  locally noetherian  if the
 equality acc- #  5  coh- #   holds .  In that case ,  every finitely generated object of  #   is
 coherent .  For example ,  if  R  is a left noetherian ring ,  then the category  R -Mod is
 locally noetherian .  The mysterious rings for which the category  R #   is locally
 noetherian are called  left pure - semisimple .

 P ROPOSITION  7 . 1 [ 31 ] .  The following are equi y  alent for a locally coherent
 Grothendieck category  # .

 (1)  The category  #   is locally noetherian .

 (2)  E y  ery  coh- injecti y  e object of  #   is injecti y  e .
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 (3)  The injecti y  e objects of  #   are closed under coproducts .

 Proof .  (1)  é  (2) .  Suppose that  M  is a coh-injective object and that  M  <  E ( M )
 is a proper extension .  There exists a non-trivial essential (hence non-split)
 extension  M  <  X  <  E ( M ) such that  X  / M  is finitely generated and therefore ,  by
 hypothesis ,  coherent .  This contradicts Ext 1

 # ( X  / M ,  M )  5  0 .
 (2)  é  (3) .  The coh-injective objects of  #   are closed under coproducts .
 (3)  é  (1) .  See [ 34 ,  Proposition V . 4 . 3] .

 Suppose that  R M  is an  R -module such that  R # ( M ) is locally noetherian .  By
 Proposition 7 . 1 ,  the object  –  ̂  R  M  is injective in  R # ( M ) and therefore it is
 injective in  R # .  Thus  R M  is a pure-injective  R -module [ 13 ,  38 ] .  So if  R  is left
 pure-semisimple ,  then Proposition 7 . 1 implies that every left  R -module is
 pure-injective and that the left Ziegler spectrum Zg( R # ) of  R  consists of all the
 indecomposable left  R -modules .  More generally ,  the Ziegler spectrum Zg( # ) of a
 locally noetherian Grothendieck category  #   consists of the indecomposable
 coh-injective objects .

 P ROPOSITION  7 . 2 .  Let  R M be an R - module which satisfies the descending chain
 condition on endosubmodules . Then the category  R # ( M )  is locally noetherian .

 Proof .  Localizing the equation  4 ( –  ̂  R  R )  5  coh-( R # ) at  6 ( M ) gives

 4 (( –  ̂  R  R ) 6 ( M ) )  5  coh-( R # ( M )) .

 So it suf fices to prove that ( –  ̂  R  R ) 6 ( M )  P  acc-( R # ( M )) .  But this is immediate
 from Proposition 6 . 4 .

 A dual version of Proposition 7 . 2 is obtained similarly .  Define dcc- #   to be the
 Serre subcategory consisting of those coherent objects  C  P  #   for which  L coh- # ( C )
 satisfies the descending chain condition .

 P ROPOSITION  7 . 3 .  Let  R M be an R - module which satisfies the ascending chain
 condition on endosubmodules . Then the category  coh-( R # ( M ))  5  dcc-( R # ( M )) .

 E XAMPLE .  If  R  is a right noetherian ring ,  then the left  R -module  R R  satisfies the
 ascending chain condition on endosubmodules .  Thus coh-( R # ( R ))  5  dcc-( R # ( R )) .
 If  E R   is an injective cogenerator ,  then ,  by duality ,  the category  # R ( E ) is locally
 noetherian .

 E XAMPLE .  A ring  R  is called a  noetherian algebra  if it is finitely generated as a
 module over a noetherian centre .  If  R M  is finitely presented ,  that is ,  finitely
 generated ,  then it is clear that  M  is finitely generated and hence a noetherian
 module over the centre of  R .  The module  R M  must therefore satisfy the
 ascending chain condition on endosubmodules .

 P ROPOSITION  7 . 4 [ 40 ,  Observation 8] .  Let  R M be a finitely presented R - module
 with endomorphism ring S  5  End R  M and let C  P  R #   be a coherent object . If
 coh-( R # ( M ))  5  dcc-( R # ( M )) , the S - module  S ( C ,  M )  is noetherian . In particular ,
 e y  ery S - submodule is a finite matrix subgroup .
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 Proof .  By Proposition 6 . 6 ,  every finitely generated  S -submodule is a finite
 matrix subgroup .  By hypothesis ,  these satisfy the ascending chain condition .
 Therefore every  S -submodule of  S ( C ,  M ) is finitely generated .

 Let fin- #  ‘  coh- #   denote the category of those coherent objects  C  for which
 the lattice  L coh- # ( C ) has a composition series .  In other words ,  fin- #   consists
 of the coherent objects of finite length .  This is the Serre subcategory fin- #  5
 acc- #  >  dcc- #  .  The category  #   is called  locally finite  if coh- #  5  fin- #  .  For
 example ,  if  C  P  fin- #  ,  then  6  5  4 C  ‘  fin- #   and so the category  6 $    is locally finite .

 P ROPOSITION  7 . 5 .  Let C  P  fin- #   and M  P  #   a coh - injecti y  e object with S  5
 End R  M . Then e y  ery S - submodule of  S ( C ,  M )  is a finite matrix subgroup .

 Proof .  Let  6  5  4 C  and note that the  6 $  -object  t 6  ( M ) is coh-injective .  For ,  if
 S  P  6 ,  consider the beginning of the long exact sequence

 0  5  ( S ,  t 6  ( M ))  5  ( S ,  M )  5  ( S ,  M  / t 6  ( M ))

 5  Ext 1 ( S ,  t 6  ( M ))  5  Ext 1 ( S ,  M )  5  . . .  .

 As  M  is coh-injective ,  Ext 1 ( S ,  M )  5  0 and as  M  / t 6  ( M ) is  6 $  -torsion-free ,
 ( S ,  t 6  ( M ))  5  0 .  Thus Ext 1 ( S ,  t 6  ( M ))  5  0 for every  S  P  6   and therefore  t 6  ( M ) is a
 coh-injective object of  6 $  .

 Now  S ( C ,  M )  5  S ( C ,  t 6  ( M )) ,  so we need to prove that every  S -submodule of
 S ( C ,  t 6  ( M ))   is a finite matrix subgroup .  As  6 $    is locally finite ,   t 6  ( M ) is in fact an
 injective object of  6 $  .  By Proposition 6 . 6 ,  every cyclic  S -submodule is an
 intersection of finite matrix subgroups .  By the ascending chain condition in
 L 6  ( C )   and Proposition 6 . 3 ,  every cyclic  S -submodule is a finite matrix subgroup .
 By the descending chain condition in  L 6  ( C ) and Proposition 6 . 3 ,  every
 S -submodule is a finite matrix subgroup .

 Call a left  R -module  R M endofinite  if  M  has finite length as a module over its
 endomorphism ring End R  M .

 P ROPOSITION  7 . 6 .  Let  R M be a left R - module . The category  R # ( M )  is locally
 finite if and only if the module  R M is endofinite .

 Proof .  If  R M  is endofinite ,  then  R # ( M ) is locally finite by Proposition 6 . 4 .  If
 R # ( M )   is locally finite ,  then ( –  ̂  R  R ) 6  ( M )  P  fin-( R # ( M )) .  Let  S  5  End R  M .  By the
 previous proposition ,  every  S -submodule of

 S (( –  ̂  R  R ) 6 ( M )  ,  –  ̂  R  M )  5  S ( –  ̂  R  R ,  –  ̂  R  M )  5  S M

 is a finite matrix subgroup .  By Proposition 6 . 4 ,  the lattice of finite matrix
 subgroups of  S M  has a composition series .

 Obviously fin- #  5  4 h S  P  coh- #  :  S  simple j   so that in the Ziegler spectrum of  #
 we have

 2 (fin- #  )  5  !  h 2 ( S ) :  S  P  coh- #  is  simple j .

 If  U  P  2 (fin- #  ) ,  then there is a coherent simple object  S  such that ( S ,  U )  ?  0 .  It
 follows that  U  5  E ( S ) and that  2 ( S )  5  h U j .  Thus  U  is an isolated point of Zg( # ) .
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 Consequently ,  any dense subset of Zg( #  ) contains  2 (fin- #  ) .  For example ,
 2 (fin- #  )  ‘  max( #  ) .  If  R  is Krull – Schmidt ,  then by Proposition 5 . 4 ,  every point of
 2 (fin-( R # )) is of the form  –  ̂  R  M #    where  R M  is a finitely presented indecom-
 posable left  R -module .

 To give a criterion for when  –  ̂  R  M #  P  2 (fin-( R # )) recall from [ 2 ] that a
 morphism  f  :  R M  5  R N  in  R -mod which is not a split-monomorphism is called  left
 almost split  if any morphism  g :  R M  5  R K  in  R -mod that is not a split-
 monomorphism factors through  f ,  that is ,  there exists a morphism  h :  R N  5  R K
 such that the following diagram commutes :

 P ROPOSITION  7 . 7  [ 2 ] .  Let  R M be a finitely presented R - module . The following are
 equi y  alent :

 (1)  –  ̂  R  M #  P  2 (fin-( R # )) ;

 (2)  –  ̂  R  M is essential o y  er a simple subobject S ;

 (3)  there is a left almost split morphism f  :  R M  5  R N in R -mod .

 Proof .  (1)  ï  (2) .  If  –  ̂  R  M #  P  2 (fin-( R # )) ,  there is a simple subobject  S  <
 ( –  ̂  R  M #  )  5  E ( –  ̂  R  M ) .  Thus  –  ̂  R  M  is essential over  S .  Conversely ,  if
 S  <  –  ̂  R  M  is an essential extension ,  then  S  is coherent and  –  ̂  R  M #    is
 indecomposable .  Furthermore ,  ( S ,  –  ̂  R  M #  )  ?  0 and so  –  ̂  R  M #  P  2 (fin-( R # )) .

 (2)  ï  (3) .  Consider the diagram

 That  –  ̂  f  is not a split-monomorphism is tantamount to Ker( –  ̂  f  )  ?  0 .  That
 every  –  ̂  g  that is not a split-monomorphism factors through  –  ̂  f  is tantamount
 to Ker( –  ̂  f  ) being contained in every non-zero subobject of  –  ̂  R  M  (one can
 see this by using the existence of injectives in coh-( R # )) .  Thus  f  :  R M  5  R N  is left
 almost split if and only if Ker( –  ̂  f  ) is simple and  –  ̂  R  M  is an essential
 extension of it .

 A similar result holds for the category  R -Mod .

 P ROPOSITION  7 . 8 [ 8 ,  Theorem 2 . 3] .  Let  R M be a pure - injecti y  e indecomposable
 R - module . Then  –  ̂  R  M  P  max( R # )  if and only if there is a left almost split
 morphism f  :  R M  5  R N in the category R -Mod .

 E XAMPLE .  The maximal Ziegler spectrum max( Z # ) of  Z #   consists of the
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 torsion pure-injective indecomposable abelian groups .  Thus the self-
 homeomorphism Zg( D ) does not preserve the maximal Ziegler spectrum .  If  p  is
 prime ,  the basic open set  2 ( –  ̂  Z  Z (  p )) consists of the  p -torsion pure-injective
 indecomposable abelian groups .  The open set

 2 ( –  ̂  Z  Z (  p ))  <  2 (( Z (  p ) ,  – ))  5  2 ( –  ̂  Z  Z (  p )  I  I 2  ( Z (  p ) ,  – ))

 contains only one additional point ,  the abelian group of  p -adic integers .  These
 two distinct basic open subsets agree on max( Z # ) ,  which shows that Condition (8)
 of Corollary 3 . 12 cannot be strengthened to max( #  ) .

 E XAMPLE  [ 27 ,   § 13 . 1] .  Let  L   be an artin algebra .  Every finitely generated
 L -module  L M  is pure-injective .  Auslander and Reiten [ 5 ] proved that every
 indecomposable  L -module admits a left almost split morphism .  Thus  2 (fin-( L #  ))
 consists of the finitely generated indecomposable  L -modules .  As this set is dense ,
 these are precisely the isolated points of the Ziegler spectrum .  Furthermore ,  we
 have that

 2 (fin-( L # ))  5  max( L # ) .

 To see this ,  suppose that  S  P  L #   is simple .  We want to show that  E ( S )  P
 2 (fin-( L # )) .  There is a finitely generated indecomposable right  L -module  M L

 such that  S ( M L )  ?  0 .  By Yoneda’s Lemma ,  there is a non-zero morphism
 ( M L  ,  – )  5  S .  We will use duality to prove  S  is coherent .  We know that  M L   is
 isolated in Zg( # L ) by some coherent simple object  S 9  P  L # ,  2 ( S 9 )  5  h M  ̂  L  – j .
 Applying duality to the monomorphism  S 9  <  M  ̂  L  –  in coh- # L   implies that
 S  5  DS 9  P  coh-( L # )   because ( M L  ,  – )  5  D ( M  ̂  L  – ) is a local functor .

 A ring  R  is said to be of  finite representation type  if  R  is left artinian with just
 finitely many finitely generated indecomposable left  R -modules .  Auslander [ 2 ]
 showed that this is equivalent to the condition that  –  ̂  R  R  P  fin-( R # ) ,  that is ,  that
 the category  R #   is locally finite .  By Theorem 3 . 8 ,  this is equivalent to the
 equation Zg( R # )  5  2 ( –  ̂  R  R )  5  2 (fin-( R # )) .  Applying the duality  D  to the
 relation  –  ̂  R  R  P  fin-( R # ) gives that  R  ̂  R  –  P  D [fin-( R # )]  5  fin-( # R ) .  Thus finite
 representation type is a left-right symmetric notion .

 P ROPOSITION  7 . 9 [ 3 ;   27 ,  Corollary 13 . 4] .  Let  L   be an artin algebra . Then  L   is
 not of finite representation type if and only if there is a  (  pure - injecti y  e )
 indecomposable left  L - module which is not finitely generated .

 Proof .  The artin algebra  L   is not of finite representation type if and only if
 –  ̂  L  L  ̧  fin-( L # ) .  This is so if and only if ,  by Theorem 3 . 8 ,  the inclusion
 2 (fin-( L # ))  ‘  2 ( –  ̂  L  L )   is proper ,  which in turn holds if and only if there exists a
 pure-injective indecomposable left  L -module that is not finitely generated .

 There is no known example of a left pure-semisimple ring that is not of finite
 representation type .  Such a ring  R  would have to be left artinian and there would
 be a finitely generated indecomposable left  R -module  R M  such that  –  ̂  R  M #  ̧
 2 (fin-( R # )) .

 An object  X  P  #   is  uniserial  if the lattice of subobjects of  X  is totally ordered
 by the subobject relation .  For an object  X  to be uniserial it suf fices that the
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 finitely generated subobjects be totally ordered .  Hence  A  P  coh- #   is uniserial if
 and only if the lattice  L c o h - #  ( A ) is a total order .  A subquotient of a uniserial
 object is obviously also uniserial .  Let uni- #  ‘  coh- #   denote the smallest Serre
 subcategory of coh- #   to contain every uniserial object of coh- #  .  By Proposition
 3 . 1 ,

 uni- #  5  4 h A  P  coh- #  :  A  uniserial j ,

 and it follows that  A  P  uni- #   if and only if there is a finite filtration of  A ,

 A  5  A 0  >  A 1  >  . . .  >  A n  5  0 ,

 by coherent subobjects of  A  such that every factor  A i  / A i 1 1  is uniserial .  In
 particular ,  we have that uni- #  “  fin- #  .

 P ROPOSITION  7 . 10 [ 27 ,  Theorem 10 . 2] .  Let E  P  #   be an injecti y  e object . If
 uni-( #  ( E ))  ?  0 , then E has an indecomposable coproduct factor .

 Proof .  Localizing at  6  ( E ) ,  we may assume that  #  5  #  ( E ) .  Let  A  P  uni- #   be
 non-zero .  Then Hom # ( A ,  E )  ?  0 ,  so there is a non-zero morphism  h  :  A  5  E .  The
 image  X  5  Im  h   is a uniserial subobject of  E .  The injective envelope  E ( X  ) is
 therefore an indecomposable factor of  E .

 An object  W  P  #   is called  distributi y  e  if the lattice of subobjects of  W  satisfies
 the distributive law

 X  >  ( Y  1  Z )  5  X  >  Y  1  X  >  Z

 for all subobjects  X ,  Y  and  Z  of  W .  To check that  W  is distributive it suf fices to
 verify the distributive law for the finitely generated subobjects of  W .  Thus a
 coherent object  A  P  coh- #   is distributive if and only if the lattice  L coh- # ( A ) is
 distributive .  Denote by dis- #   the smallest subcategory of coh- #   to contain all
 distributive objects of coh- #  .  Clearly dis- #  “  uni- #  .

 E XAMPLE .  A ring  R  is called  serial  if it contains a set  h e i j n
 i 5 1  of primitive

 idempotent elements such that  R R  5  M n
 i 5 1  R Re i   (and hence  R R  5  M n

 i 5 1  e i R R ) and
 each of the projective  R -modules  R Re i   ( e i R R ) is a uniserial left (right)  R -module .
 It is proved in [ 10 ,  29 ] that each of the functors ( e i R ,  – )  P  coh-( R # ) is distributive .
 Hence ( R ,  – )  P  dis-( R # ) and therefore dis-( R # )  5  coh-( R # ) .

 Suppose that  W  is a coherent object of  #   that is not distributive .  Then there
 must be three coherent subobjects  A ,  B  and  C  of  W  for which the inequality

 ( A  >  B )  1  ( A  >  C )  <  A  >  ( B  1  C )

 is strict .  In other words ,  the basic open subset  2 ( A  >  ( B  1  C ) / ( A  >  B )  1  ( A  >  C ))
 of the Ziegler spectrum is non-empty .  Thus arises the open subset

 2 dis ( W  )  : 5  !

 A ,B ,C < W
 2 ( A  >  ( B  1  C ) / ( A  >  B )  1  ( A  >  C ))

 with the property that  2 d i s ( W  )  ?  [   if and only if  W  is not a distributive object .
 Localizing at the corresponding Serre subcategory  6   of coh- #   gives a distributive
 object  W 6  P  #  / 6 $  .
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 By [ 7 ,  Proposition IV . 1 . 6] ,  an object  A  P  coh- #   is distributive if and only if  A
 has no coherent subquotient isomorphic to  B  I  I 2  B  for some  B  P  coh- #  .  A
 subquotient of a distributive coherent object is therefore also distributive .

 P ROPOSITION  7 . 11 [ 10 ,  Proposition 2 . 4] .  Suppose that the tri y  ial Serre sub-
 category  0  ‘  coh- #   is  > - irreducible . Then e y  ery distributi y  e object A  P  coh- #   is
 uniserial .

 Proof .  Let  B  and  C  be coherent subobjects of the distributive object  A .  The
 subquotient  B  1  C  / ( B  >  C )  >  B  / ( B  >  C )  I  I 2  C  / ( B  >  C ) is then distributive .  As  A
 is distributive ,   B  / ( B  >  C ) and  C  / ( B  >  C ) have no common subquotient and
 therefore  4 ( B  / ( B  >  C ))  >  4 ( C  / ( B  >  C ))  5  0 .  By hypothesis one of  B  / ( B  >  C )
 and  C  / ( B  >  C ) is zero and therefore  B  <  C  or  C  <  B .

 The next local-global relation generalizes an observation of C .  U .  Jensen [ 18 ]
 for commutative rings .

 T HEOREM  7 . 12 .  The following are equi y  alent for A  P  coh- # .

 (1)  The object A is distributi y  e .

 (2)  For e y  ery Serre subcategory  6  ‘  coh- #  ,   A 6   is  #  / 6 $  - distributi y  e .

 (3)  For e y  ery  > - irreducible Serre subcategory  6  ‘  coh- # , A 6   is  #  / 6 $  - uniserial .

 (4)  For e y  ery E  P  Zg( # ) , A 6  ( E )   is  # ( E )- uniserial .

 (5)  For e y  ery E  P  max( # ) , A 6  ( E )   is  # ( E )- uniserial .

 Proof .  Condition (2) follows from (1) by Proposition 6 . 2 .  By Proposition 7 . 11 ,
 Condition (3) is a special case of Condition (2) .  Condition (4) is a special case of
 Condition (3) .  To see that (5) implies (1) ,  suppose that  A  is not distributive .  Then
 the open subset  2 d i s ( A ) is non-empty and so meets the dense subset max( # ) .  But
 if  E  P  2 d i s ( A ) ,  then  A 6  ( E )  is not  # ( E )-distributive and hence not  #  ( E )-uniserial .

 Given  W  P  coh- # ,  it is clear that  E  P  2 d i s ( W  ) if and only if  W 6 ( E )  is not
 #  ( E )-uniserial .  It follows from the previous theorem that

 2 dis ( W  )  5  !

 A ,B < W
 2 ( A / A  >  B )  >  2 ( A  1  B  / A ) .

 E XAMPLE .  A  y  aluation  ring is a commutative ring  R  that is uniserial as an
 R -module .  Such a ring is certainly serial .  For certain valuation rings  R ,  Puninsky
 [ 30 ] and Salce [ 32 ] have proved the existence of pure-injective  R -modules  E
 without indecomposable summands .  Thus dis-( R # ( E ))  5  coh-( R # ( E )) ,  while
 uni-( R # ( E ))  5  0 .

 8 .  The Grothendieck group

 In this section ,  we consider the Grothendieck group  K 0 (coh- #  ) of the category
 of coherent objects of  #  .  Theorem 3 . 8 is then applied to study the characters of
 Crawley-Boevey [ 8 ] .

 Let  K 0 (coh- # ,  % ) denote the free abelian group on the isomorphism types [ A ] 
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 of objects  A  in coh- #  ,  modulo the relations [ A  I  I 2  B ]  5  [ A ]  1  [ B ] .  By [ 35 ,
 Theorem 1 . 10] ,  the equation [ A ]  5  [ B ] holds in  K 0 (coh- #  ,  % ) if and only if there
 is a  C  P  coh- #   such that  A  I  I 2  C  >  B  I  I 2  C .  The  Grothendieck group K 0 (coh- #  ) of
 coh- #   is the quotient of  K 0 (coh- #  ,   % ) by the relations [ A ]  2  [ B ]  1  [ C ] for every
 short exact sequence 0  5  A  5  B  5  C  5  0 in coh- #  .  The subset  K 1

 0  (coh- #  )  ‘
 K 0 (coh- #  ) of elements having the form [ A ] where  A  P  coh- #   clearly forms a
 submonoid .  This monoid is the positive cone of a pre-order  <   with which
 K 0 (coh- #  ) is endowed ,

 K 1
 0  (coh- #  )  5  h x  P  K 0 (coh- # ) :  x  >  0 j .

 The pre-order  <   is a transitive relation satisfying the property that for all  x ,  y  and
 z  in  K 0 (coh- #  ) ,   x  <  y  if and only if  x  1  z  <  y  1  z .  For more on this ,  see [ 14 ,   §  15] .

 The duality  D :  (coh-( R # )) o p
 5  coh- # R   induces an isomorphism

 K 0 ( D ) :  K 0 (coh-( R # ))  5  K 0 (coh- # R ) .

 If the ring  R  is commutative ,   R #  >  # R   and so  K 0 ( D ) is an automorphism of
 K 0 (coh-( R # ))   which ,  because  D  2  5  1 ,  is an involution .

 E XAMPLE .  If  R  5  Z ,  the ring of integers ,  then  K 0 ( D ) is the identity automorph-
 ism .  Equivalently ,  [ A ]  5  [ DA ] for every coherent object  A  of coh-( R # ) .  To verify
 this ,  it suf fices to prove it for some set of generators ,  for example the projective
 objects  A  5  ( M ,  – ) .  As ( Z ,  – )  5  –  ̂  Z  Z  5  D ( Z ,  – ) ,  it holds for  A  5  ( Z ,  – ) .  For the
 cyclic groups  Z ( n ) ,  one has the exact sequence

 0  ÅÅÅ 5  ( Z ( n ) ,  – )  ÅÅÅ 5  –  ̂  Z  Z  ÅÅÅ 5

 –  ̂  n
 –  ̂  Z  Z  ÅÅÅ 5  –  ̂  Z  Z ( n )  ÅÅÅ 5  0

 which gives the equation [( Z ( n ) ,  – )]  5  [ –  ̂  Z ( n )] in the Grothendieck group .

 A subgroup  V  of  K 0 (coh- #  ) is called  con y  ex  [ 14 ,  p .  213] if whenever  a ,  c  P  V
 and  a  <  b  <  c ,  then  b  P  V .  If  V  is a convex subgroup of  K 0 (coh- #  ) ,  then the
 subcategory

 6 V  : 5  h A  P  coh- # :  [ A ]  P  V  j

 of coh- #   is Serre .  For ,  suppose that 0  5  A  5  B  5  C  5  0 is a short exact sequence
 in coh- #  .  If  A ,  C  P  6 V  ,  then [ A ] ,  [ C ]  P  V  and so [ B ]  5  [ A ]  1  [ C ]  P  V .  On the
 other hand ,  if [ B ]  P  V ,  then because [ A ] ,  [ C ]  <  [ B ] ,  they also belong to  V .  We
 shall call a Serre subcategory  con y  ex  if it is of the form  6 V   for some convex
 subgroup  V  of  K 0 (coh- #  ) .

 A subgroup  V  of  K 0 (coh- #  ) is called  directed  [ 14 ,  p .  213] if every element of  V
 is a dif ference of elements of  V  >  K 1

 0  (coh- # ) .  For example ,  if  6   is a Serre
 subcategory of coh- #  ,  then the subgroup [ 6  ] of  K 0 (coh- #  ) generated by the
 elements [ S ] ,  with  S  P  6 ,  is directed .  If  V  is a directed subgroup of  K 0 (coh- # ) ,  its
 convex hull may be described as

 Con( V  )  : 5  h x  :  2 y  <  x  <  y  for  some  y  P  V ,  y  >  0 j .

 This is again a directed group because  x  1  y  5  x  2  ( 2 y  )  >  0 and  x  5  ( x  1  y  )  2  y  .

 P ROPOSITION  8 . 1 .  The map  6  S  [ 6  ]  is an inclusion - preser y  ing bijecti y  e corres-
 pondence between the set of con y  ex Serre subcategories of  coh- #   and the set of
 directed con y  ex subgroups of K 0 (coh- #  ) .
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 Proof .  It is clear that if  V  is a directed convex subgroup of  K 0 (coh- #  ) ,  then
 V  5  [ 6 V  ]   and so the map  6  S  [ 6  ] is surjective .  It remains to show that if  6   is a
 convex Serre subcategory ,  then [ 6  ] is a convex subgroup .  Consider the convex
 hull  V  5  Con([ 6  ]) of the subgroup [ 6  ] .  As  6   is convex ,  it must be that  6  5  6 V  .
 But [ 6 V  ]  5  V .

 The proposition may be used to define the convex hull Con( 6  ) of a Serre
 subcategory  6   as the convex Serre subcategory corresponding to the convex
 subgroup Con([ 6  ]) .  It may be characterized as

 Con( 6  )  5  h C  P  coh- #  :  [ C ]  <  [ S ]  for  some  S  P  6  j .

 E XAMPLE  [ 14 ,  Corollary 15 . 21] .  If  R  is a von Neumann regular ring that is
 unit-regular ,  then every Serre subcategory of coh- #   is convex .

 The exactness of the inclusion functor  6  ‘  coh- #   induces a morphism
 K 0 ( 6  )  5  K 0 (coh- #  ) of pre-ordered abelian groups (Proposition 6 . 1) whose image
 is [ 6  ] .  The localization functor ( – ) 6   is also exact and so the function [ A ]  S  [ A 6 ]
 induces a well-defined morphism  K 0 ( – ) 6 :  K 0 (coh- #  )  5  K 0 (coh- #  / 6 $  ) of pre-
 ordered abelian groups .  This morphism  K 0 ( – ) 6   is evidently an epimorphism
 whose kernel contains [ 6  ] .

 P ROPOSITION  8 . 2 [ 35 ,  Corollary 5 . 14] .  Let  6   be a Serre subcategory of  coh- #  .
 Then the sequence K 0 ( 6  )  5  K 0 (coh- # )  5  K 0 (coh- #  / 6 $  )  5  0  is exact .

 If  6   is a convex subcategory of coh- #  ,  the proposition implies that the trivial
 Serre subcategory 0  ‘  coh- #  / 6 $    is convex .  This is equivalent to the Grothendieck
 group  K 0 (coh- #  / 6 $  ) being partially ordered by  < .  The proposition also implies
 that if [ A ]  5  0 in  K 0 (coh- #  / 6 $  ) ,  then by convexity of  6  ,   A  P  6 .

 A morphism  j  :  K 0 (coh- #  )  5  Z  of pre-ordered abelian groups (where  Z  is
 endowed with the standard partial order) is called a  character  [ 8 ,  §  5] .  A necessary
 and suf ficient condition for a group morphism  m  :  K 0 (coh- #  )  5  Z  to be a
 character is that  m  ([ A ])  >  0 for each  A  P  coh- #  .  A finite sum of characters is
 obviously also a character .  To each such character  j  :  K 0 (coh- #  )  5  Z ,  we may
 associate the Serre subcategory

 6 ( j  )  : 5  h [ A ] :  j  ([ A ])  5  0 j .

 P ROPOSITION  8 . 3 .  Let  j  :  K 0 (coh- # )  5  Z be a character . The Serre subcategory
 6 ( j  )  ‘  coh- #  is con y  ex .

 Proof .  Let  A  P  Con( 6 ( j  )) .  There is a  C  P  coh- #   such that  j  ([ C ])  5  0 and
 [ A ]  <  [ C ] .  Then  j  ([ A ])  5  0 and so  A  P  Con( 6 ( j  )) .

 For example ,  if  #   is a locally finite Grothendieck category ,  the function
 A  S  l ( A ) ,  which assigns to a coherent object  A  its length ,  induces a character
 l :  K 0 (coh- #  )  5  Z .  The proposition then says that the trivial Serre subcategory
 0  5  6 ( l )  ‘  coh- #  is convex .
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 P ROPOSITION  8 . 4 .  Let  j  :  K 0 (coh- # )  5  Z be a character and let  6   be the con y  ex
 Serre subcategory  6 ( j  ) . Then  #  / 6 $   is locally finite and  j   factors as

 where  m  :  K 0 (coh- #  / 6 $  )  5  Z is again a character .

 Proof .  By Proposition 8 . 2 ,   j   factors through  K 0 (coh- #  / 6 $  ) ,  so it remains to
 show that  #  / 6 $    is locally finite .  We shall prove by induction on  j  ([ B ]) ,  where
 B  P  coh- #  ,  that  l # / 6 $  ( B 6 )  <  j  ([ B ]) .  Note that

 j  ([ B ])  5  0  ï  B  P  6  ï  l # / 6 $  ( B 6 )  5  0 .

 First we show that if  j  ([ B ])  5  1 ,  then  B 6   must be  #  / 6 -simple .  By Proposition
 2 . 14 ,  every  #  / 6 $  -finitely generated subobject  X  <  B 6   is of the form  A 6   for some
 finitely generated ,  hence coherent ,  subobject  A  <  B .  Consider the short exact
 sequence

 0  5  A  5  B  5  C  5  0 .

 It must be that  j  ([ A ])  5  0 or that  j  ([ C ])  5  0 which means that  A 6  5  0 or that
 A 6  5  B 6  .  To prove the induction step ,  we assume that  B 6   is not  #  / 6 $  -simple and
 consider a short exact sequence as above where neither of the coherent objects  A
 or  C  lies in  6  .  Then  j  ([ A ]) ,  j  ([ C ])  ,  j  ([ B ]) and so by the induction hypothesis ,
 we get

 l # / 6 $  ( B 6 )  5  l # / 6 $  ( A 6 )  1  l # / 6 $  ( C 6 )  <  j  ([ A ])  1  j  ([ C ])  5  j  ([ B ]) .

 A character is called  irreducible  if it is not the sum of two non-zero characters .
 It is clear by Proposition 8 . 2 that in the previous proposition the induced
 character  m   is irreducible if and only if the given character  j   is .  If  #   is locally
 finite and  S  P  #   is simple ,  a character  j S :  K 0 (coh- # )  5  Z  is obtained by assigning
 to a coherent object  A  the number of times the simple object  S  occurs as a
 composition factor of  A .  This character  j S   is clearly irreducible .  For ,  if
 j S  5  j  1  1  j  2  ,  then for one of the  j i  ,  say  j  1  ,  we have that  j i ([ S ])  5  1 .  Then  j S  <  j  1
 and hence  j  2  5  0 .

 P ROPOSITION  8 . 5 .  Let  #   be locally finite and  j  :  K 0 (coh- #  )  5  Z a character on
 coh- # . If  h S i j i P I  is the set of isomorphism types of the simple objects of  # ,
 then  j   is expressible uniquely as a  (  possibly infinite )  Z - linear combination of the
 characters  j S i

 j  5 O
 i P I

 j  ([ S i ]) j  S i
 .

 Thus  j   is irreducible if and only if it is one of the  j S i
  for some i  P  I .

 Proof .  Every element  x  P  K 0 (coh- #  ) is a  Z -linear combination  x  5  o i P I  n i [ S i ] 
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 of the generators [ S i ] .  Now  j  ( x )  5  o i P I  n i j  ([ S i ]) where  n i  5  j  S i
 ( x ) ,  so the equality

 holds .  To prove uniqueness ,  suppose  o i P I  n i j  S i
 5  0 .  Then for every  j  P  I ,

 n j  5  o i P I  n i j S i
 [ S j ]  5  0([ S j ])  5  0 .

 The previous two propositions give the following result of Crawley-Boevey .

 T HEOREM  8 . 6 [ 8 ,  Theorems 5 . 1 ,  5 . 2] .  E y  ery character  j  :  K 0 (coh- # )  5  Z is
 uniquely expressible as a  (  possibly infinite )  Z - linear combination

 j  5 O
 i P I

 n i j i

 of irreducible characters  j i  .

 Let  R  be a ring and  j  :  K 0 (coh-( R # ))  5  Z  a character .  As every coherent object
 C  of  R #   is a subquotient of some ( –  ̂  R  R ) n ,  it is clear that  j   is non-zero if and
 only if  j  ([ –  ̂  R  R ])  ?  0 .  It follows that every character  j  :  K 0 (coh-( R # ))  5  Z  is a
 finite sum of irreducible characters .

 9 .  Endofinite modules

 In this final section we consider irreducible characters as well as the characters
 on the Grothendieck group of the category coh-( R # ) of coherent generalised left
 R -modules .  Most of the results are due to Crawley-Boevey [ 8 ] ,  but the methods
 of this paper shed new light on them .

 E XAMPLE .  Let  R M  be an endofinite  R -module with endomorphism ring  T  5
 End R  M .  By Proposition 7 . 6 ,  the category  R # ( M ) is locally finite and one may
 define the character

 m M ([ C ])  : 5  l ( R # ( M )) ( C 6 ( M ) ) .

 By Proposition 6 . 3 ,   m M ([ C ])  <  l T  ( C ,  –  ̂  R  M ) .  On the other hand ,  Proposition 7 . 5
 implies that  m M ([ C ])  >  l T  ( C ,  –  ̂  R  M ) .  Hence we get a more useful description of
 m M   in the form of the equality

 m M ([ C ])  5  l T  ( C ,  –  ̂  R  M ) .

 In particular ,   m M ([ –  ̂  R  R ])  5  l T  ( –  ̂  R  R ,  –  ̂  R  M )  5  l T  ( T M ) is the endolength of
 R M .  Note also that  6 ( m M )  5  6 ( R M ) .

 Let  j  :  K 0 (coh- #  )  5  Z  be an irreducible character and  6   the Serre subcategory
 6 ( j  )   of coh- #  .  The proof of Proposition 8 . 4 shows that the character  j   dominates
 the character  l # / 6 ( – ) 6 .  But since  j   is irreducible ,  these two characters are in fact
 equal .  The category  #  / 6   is locally finite and since the character induced by the
 length function is irreducible ,  the category  #  / 6   has only one simple object  S  (up
 to isomorphism) and the character induced on  K 0 (coh-( #  / 6 $  )) by  j   is  j S .  The
 Ziegler spectrum Zg( #  / 6  ) has only one point ,  namely  E  5  E ( S ) ,  which ,  by
 Proposition 3 . 6 ,  may be thought of as a closed point of Zg( #  ) .  By Theorem 3 . 8 ,
 the category  6  ( j  ) is a maximal Serre subcategory of coh- #  .
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 We call a closed point  E  P  Zg( #  )  endofinite  if the localization  #  / 6 $  ( E ) is locally
 finite .  If  T  5  End #  E ,  an argument as in the example shows that  j   is equal to the
 character  m E :  K 0 (coh- #  )  5  Z  defined by

 m E ([ C ])  : 5  l T  ( C ,  E ) .

 T HEOREM  9 . 1 .  There is a bijecti y  e correspondence between the endofinite closed
 points E of  Zg( #  ) and the irreducible characters  j  :  K 0 (coh- #  )  5  Z . The
 correspondence is gi y  en by the map

 E  S  m E  5  l T  ( –  ,  E )
 where T  5  End #  E .

 Proof .  We have just proved that the map is surjective .  It is also one-to-one ,
 because if  E  and  F  are distinct endofinite closed points of Zg( #  ) ,  there is a
 coherent object  C  P  #   such that  E  P  2 ( C ) while  F  ̧  2 ( C ) .  The two characters  m E

 and  m F   are then distinct since  m F  ([ C ])  5  0  ,  m E ([ C ]) .

 C OROLLARY  9 . 2 .  Let R be a ring . There is a bijecti y  e correspondence between the
 endofinite indecomposable left R - modules M and the irreducible characters
 j  :  K 0 (coh- R # )  5  Z . The correspondence is gi y  en by the map

 M  S  m M  5  l T  ( –  ,  –  ̂  R  M )
 where T  5  End R  M .

 For the category of generalized  R -modules ,  the characters on the Grothendieck
 group may be thought of as the Sylvester rank functions of Schofield [ 33 ,  Chapter
 7] .  To see this ,  let  K 0 (mod- R ,  % ) be the abelian group presented by the
 generators [ M ] where  M  P  mod- R  and the relations [ M  %  N ]  2  [ M ]  2  [ N ] .  By
 Yoneda’s Lemma ,  the representation functor  M R  S  ( M R  ,  – ) is an equivalence
 between the category mod- R  and the subcategory of projective objects of
 coh-( R # ) .  As every short exact sequence of projective objects is split-exact ,
 K 0 (mod- R ,  % )   is isomorphic to the Grothendieck group of the projective objects .
 Recall that every object  C  P  coh-( R # ) has a projective resolution

 0  ÅÅÅ 5  ( K R  ,  – )  ÅÅÅ 5  ( N R  ,  – )  ÅÅÅ 5

 (  f , –)
 ( M R  ,  – )  ÅÅÅ 5  C  ÅÅÅ 5  0 .

 By [ 35 ,  Theorem 4 . 4] ,  the map  χ  :  K 0 (coh-( R # ))  5  K 0 (mod- R ,  % ) given by

 C  S  [ M ]  2  [ N ]  1  [ K ]

 is a well-defined isomorphism of abelian groups .
 Thus we may associate to each character  j  :  K 0 (coh-( R # ))  5  Z  the rank

 function  r  :  mod- R  5  Z  defined by  r  ( M )  5  j χ  2 1 ([ M ]) .  These are precisely the
 rank functions  r   satisfying the following two conditions .

 (1)  We have  r  ( M  %  N )  5  r  ( M )  1  r  ( N ) .  This just asserts that the induced map
 r χ  5  j  :  K 0 (coh –  R # )  5  Z  is a morphism of abelian groups .

 (2)  If  f  :  M R  5  N R   is a morphism in mod- R ,  then  r  ( M )  2  r  ( N )  1  r  (Coker  f  )  >
 0 .  This condition asserts that for a  C  P  coh-( R # ) with a projective
 resolution as above ,   r χ  ([ C ])  5  r  ( M )  2  r  ( N )  1  r  (Coker  f  )  >  0 .
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 E XAMPLE .  Let  L   be an artin algebra .  Then every finitely generated indecom-
 posable  L -module  L M  is endofinite and so gives rise to an irreducible character
 m M .  The intersection  V  of the kernels of these characters is a convex subgroup of
 K 0 (coh-( L # ))   such that  6 V  5  0 .  Thus the trivial Serre subcategory 0 of coh-( L # )
 is convex .

 Let  C  P  coh- #   and consider a finite filtration  ̂  ,

 C  5  C 0  >  C 1  >  . . .  >  C n 1 1  5  0

 of  C  by coherent subobjects .  Let  2 ( ̂  )  5  " i < n  2 ( C i  / C i 1 1 ) .  This is a finite
 intersection of basic open subsets and is therefore open .  If  E  P  2 ( ̂  ) ,  then all of
 the inclusions in the localized filtration  ̂  6 ( E ) ,

 C 6 ( E )  5  ( C 0 ) 6 ( E )  >  ( C 1 ) 6 ( E )  >  . . .  >  ( C n 1 1 ) 6 ( E )  5  0 ,

 are proper and therefore  l # ( E ) ( C 6 ( E ) )  .  n  (we allow ,  of course ,  for the possibility
 that the length may be infinite) .

 D EFINITION .  For each natural number  n ,  define  2 n ( C )  : 5  !  ( ̂  ) where the index
 set runs over all filtrations of  C  of length  n  1  1 .

 Note that the open subset  2 0 ( C ) is just the basic open subset  2 ( C ) .

 T HEOREM  9 . 3 .  Let C  P  coh- # . Then  2 n ( C )  5  h E  P  Zg( #  ) :  l # ( E ) ( C 6 ( E ) )  .  n j .

 Proof .  We have already noted that if  E  P  2 n ( C ) ,  then  l # ( E ) ( C 6 ( E ) )  .  n .
 Conversely ,  if  l # ( E ) ( C 6 ( E ) )  .  n ,  then there is a filtration  &   of length  n  1  1 of  C 6 ( E )

 by  # ( E )-coherent subobjects .  Proposition 2 . 14 shows that  &   is the localization
 &  5  ̂  6 ( E )   of some filtration  ̂    of length  n  1  1 of  C  by  # -coherent subobjects .  But
 then  E  P  2 ( ̂  )  ‘  2 n ( C ) .

 C OROLLARY  9 . 4 .  Let  m E :  K 0 (coh- #  )  5  Z be an irreducible character . For e y  ery
 C  P  coh- #  ,   E  P  2 n ( C )  if and only if  j E ([ C ])  .  n .

 D EFINITION .  Let R be a ring . Define  Zg n ( R # )  5  Zg( R # )  \  2 n ( –  ̂  R  R ) .

 The subset Zg n ( R # ) is a closed and hence quasi-compact subset of the left
 Ziegler spectrum of  R .  A pure-injective indecomposable module  R M  belongs to
 this set if and only if it has endolength at most  n .  Since all of these points are
 closed ,  the subspace Zg n ( R # ) satisfies the separation axiom  T 1 .  The subsets
 Zg n ( R # )   and Zg n ( # R ) are homeomorphic via the map  D  defined as follows .  If
 M  P  Zg n ( R # ) ,  then  m M  :  K 0 (coh-( R # ))  5  Z  is an irreducible character such that
 m M ([ –  ̂  R  R ])  <  n .  The character  m M K 0 ( D ) :  K 0 (coh- # R )  5  Z  is then also ir-
 reducible and so has the form  m N   for some endofinite indecomposable right  R
 module  N R .  Furthermore ,   N  P  Zg n ( # R ) since  m N ([ R  ̂  R  – ])  <  n .  Define  DM  5  N .

 Let us describe Zg 1 ( R # ) ,  the subspace of all  endosimple  left  R -modules ,  that is ,
 of those modules  R M  that are simple as modules over their endomorphism ring .  If
 D  5  End R  M  is the local endomorphism ring ,  then because  M  is a faithful simple
 D -module ,   D   must be a (not necessarily commutative) field and  D M  a one-
 dimensional vector space over  D .  The action of  R  gives a ring homomorphism
 a  :  R  5  D o p  5  End D  D .  As  R M  is indecomposable ,   D o p  contains no proper field
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 containing the image of  a .  Conversely ,  every such ring homomorphism  a  :  R  5

 D o p  gives rise to an endosimple indecomposable left  R -module  R D .
 The  field spectrum  of  R  in the sense of Cohn [ 7 ,  p .  410] is a topological space

 whose points are the epic  R -fields ,  that is ,  ring homomorphisms  a  :  R  5  D o p  (up
 to isomorphism) with the property that  D o p  is a minimal field containing the image
 of  a .  It is easy to see that if

 is an isomorphism of epic  R -fields ,  then  f  o p :  R D 1  5  R D 2  is an isomorphism of
 R -modules .  Conversely ,  the epic property may be used to prove that an
 isomorphism  g :  R D 1  5  R D 2  of endosimple indecomposable  R -modules induces an
 isomorphism of epic  R -fields .  The topology on the field spectrum of  R  is given by
 the following basis of open subsets .  To each square  n  3  n  matrix  A ,  the basic
 open subset

 2 ( A )  : 5  h D o p :  A  P  M n ( D o p )  is invertible j

 is associated .  That  D o p  P  2 ( A ) means the morphism  –  ̂  A :  –  ̂  R  R n
 5  –  ̂  R  R n   in

 coh-( R # ) becomes invertible upon localisation at  6  ( D ) .  Note that in Zg 1 ( R # ) ,  the
 subset  2 ( A ) corresponds to the open subset  2 n 2 1 (( –  ̂  R  R n ) / Ker( –  ̂  A )) .  If  R  is a
 commutative ring ,  the field spectrum of  R  is homeomorphic to the Zariski
 spectrum .

 Define the  constructible field spectrum  of  R  to be the topological space whose
 points are those of the field spectrum and with a basis of open subsets given by
 finite boolean combinations of the subsets  2 ( A ) .  In Zg 1 ( R # ) ,  the complement of
 the open subset  2 ( A ) corresponds to the open subset  2 (Ker( –  ̂  A )) ,  so the map
 D  S  D o p  is a continuous bijection from Zg 1 ( R # ) to the constructible field
 spectrum .  As the space Zg 1 ( R # ) is quasi-compact ,  so is the constructible field
 spectrum of  R .  Because the field spectrum of  R  satisfies the separation axiom  T 0

 [ 7 ,  Ex .  13 ,  p .  412] ,  the constructible field spectrum is Hausdorf f .  As the bijection
 above is continuous ,  the subspace Zg 1 ( R # ) must also be Hausdorf f .  The following
 is now immediate .

 T HEOREM  9 . 5 .  The subspace  Zg 1 ( R # )  is homeomorphic  y  ia the map  D  S  D o p   to
 the constructible field spectrum of R .

 Suppose that  L   is an artin algebra and let  c  denote the length of  L   as a module
 over its centre .  If  L M  is a  L -module of length at most  m ,  then its length over the
 centre ,  and so its endolength ,  are bounded by  mc .  If there were an infinite family
 of indecomposable  L -modules of length  m ,  then there would be infinitely many
 finitely generated indecomposable  L -modules of endolength at most  mc .

 T HEOREM  9 . 6 (Crawley-Boevey) [ 8 ,  Theorem 9 . 6] .  Let  L   be an artin algebra . If
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 there are infinitely many finitely generated indecomposable  L - modules of endo -
 length at most n , then there is an indecomposable  L - module G of endolength at
 most n that is not finitely generated .

 Proof .  The hypothesis asserts that Zg n ( L # ) contains infinitely many isolated
 points .  As Zg n ( L # ) is quasi-compact ,  this set of isolated points has an
 accumulation point  E  P  Zg n ( L # ) .  But then  E  5  –  ̂  R  G  where  R G  is an
 endofinite indecomposable  L -module of endolength at most  n  that is not finitely
 generated .

 An endofinite indecomposable  L -module that is not finitely generated is called
 generic .  A generic module is a  L -module that corresponds to an irreducible
 character  m G  ,  but does not belong to the open subset  2 (fin-( L #  )) of isolated
 points .  Crawley-Boevey [ 8 ] has proved that for an infinite artin algebra  L ,  the
 existence of a generic  L -module implies the existence of an infinite family of
 finitely generated indecomposable  L -modules of some fixed length .  Thus the
 second Brauer – Thrall Conjecture may be rephrased as follows .

 T HE  S ECOND  B RAUER – T HRALL  C ONJECTURE .  If  L   is an artin algebra that is not
 of finite representation type ,  then there exists a generic  L -module .

 In the quest for a generic  L -module ,  one may argue as follows .  If  L   is not of
 finite representation type ,  then fin- #   is a proper Serre subcategory of coh- #  .  By
 Zorn’s Lemma ,  there is a maximal proper Serre subcategory fin- #  ‘  6  ’  coh- #  .
 The Ziegler spectrum of  #  / 6 $    is then an indiscrete topological space .  The problem
 is to find suitable conditions on  6   which imply that it has the form  6  ( j  ) for some
 irreducible character  j .  The following generalises a test due to Ziegler .

 P ROPOSITION  9 . 7 [ 37 ,  Lemma 8 . 11] .  Let  #   be a locally coherent Grothendieck
 category such that  Zg( #  )  is indiscrete . If there are an A  P  coh- #   and E  P  max( #  )
 such that E is a coproduct factor of the injecti y  e en y  elope E # ( A ) , then  #   is locally
 finite .

 Proof .  As  E  5  E ( S ) for some simple object  S  P  #   and  E  is a coproduct factor
 of an essential extension of  A ,  it must be that  S  is a subobject of  A  and is
 therefore coherent .  Now  4 S  clearly consists of those objects of finite length all of
 whose composition factors are isomorphic to  S .  By Theorem 3 . 8 ,   4 S  5  coh- #  .

 If there exists a maximal Serre subcategory fin-( L #  )  ‘  6  ’  coh-( L #  ) such that
 6  5  6  ( j  )   for some character  j  ,  then  6   is necessarily a convex Serre subcategory .
 So it makes sense to consider a maximal convex Serre subcategory fin-( L #  )  ‘
 6  ’  coh-( L #  ) and ask whether it corresponds to some irreducible character .  The
 existence of such a maximal convex Serre subcategory is derived from Zorn’s
 Lemma together with the following .

 P ROPOSITION  9 . 8 .  If  L   is an artin algebra , then  fin-( L #  )  is a con y  ex Serre
 subcategory of  coh-( L #  ) .

 Proof .  First note that  C  P  fin-( L #  ) if and only if there are only finitely many



 LOCALLY COHERENT GROTHENDIECK CATEGORIES  557

 finitely generated indecomposable  L -modules  L M  such that  m M ([ C ])  ?  0 .  If  A
 belongs to the convex hull Con(fin-( L #  )) ,  then there is a  C  P  fin-( L #  ) such that
 [ A ]  <  [ C ] .  But then  m M ([ A ])  ?  0 for only finitely many finitely generated
 indecomposables  L M .  Thus fin-( L #  )  5  Con(fin-( L #  )) is convex .
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