The Endomorphism Ring of a Localized Coherent Functor

Ivo Herzog

Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556

Communicated by Walter Feit

Received May 28, 1996

Let *C* be a commutative artinian ring and Λ an artin *C*-algebra. The category of coherent additive functors $A: \operatorname{mod} \Lambda \to Ab$ on the finitely presented right Λ -modules will be denoted by $Ab(\Lambda)$. This category is equivalent to the free abelian category over the ring Λ . If $\mathscr{S}_0 \subseteq Ab(\Lambda)$ is the Serre subcategory of the finite length objects of $Ab(\Lambda)$ and $A \in Ab(\Lambda)$, it is proved that the endomorphism ring $\operatorname{End}_{Ab(\Lambda)/\mathscr{S}_0} A_{\mathscr{S}_0}$ of the localized object $A_{\mathscr{S}_0}$ is a locally artin *C*-algebra. This is used to show that the Krull-Gabriel dimension of the category $Ab(\Lambda)$ cannot equal 1. In particular, this holds for finite rings. (© 1997 Academic Press

Let *C* be a commutative artinian ring and Λ an artin *C*-algebra. The category [1] of coherent additive functors $A: \mod \Lambda \to Ab$ on the finitely presented right Λ -modules is denoted by $Ab(\Lambda)$. This category is equivalent [6] to the free abelian category over the ring Λ . The point of this paper is to prove the following theorem.

THEOREM 3.2. Let Λ be an artin C-algebra and \mathscr{S}_0 the Serre subcategory of Ab(Λ) of finite length objects. If $A \in Ab(\Lambda)$, then the endomorphism ring End_{Ab(Λ)/ \mathscr{S}_0} of the localized object $A_{\mathscr{S}_0}$ is a locally artin C-algebra.

By a *locally artin* C-algebra we mean a C-algebra every finitely generated subalgebra of which is artin. The proof uses a theorem of Krause [10] that relates restricting $Ab(\Lambda)$ to a covariantly finite subcategory of mod- Λ with some localization of $Ab(\Lambda)$.

Taking $A = \text{Hom}_{\Lambda}(\Lambda, -)$ to be the forgetful functor, the theorem shows that, in the language of Prest [13], the definable scalars of the elementary theory of right Λ -modules without finitely generated direct summands is a locally artin *C*-algebra.

416

Taking A such that $S = A_{\mathcal{S}_0}$ is a simple object of $Ab(\Lambda)/\mathcal{S}_0$, the theorem shows that $End_{Ab(\Lambda)/\mathcal{S}_0}S$ is a division ring that is algebraic over the field $k_S = C/ann_C(S)$. This case is reminiscent of (and the general theorem inspired by) the result [12, Lemma 0.5] of Buechler and Hrushovski that the division ring of isogenies of a weakly minimal abelian structure with few types is a locally finite field.

Recall from [7] that the Krull–Gabriel dimension KG-dim(Ab(Λ)) of the category Ab(Λ) is equal to zero if Ab(Λ) = \mathscr{S}_0 , in which case Λ is of finite representation type. The Krull–Gabriel dimension KG-dim(Ab(Λ)) is equal to 1 if Ab(Λ) $\neq \mathscr{S}_0$, but every object of Ab(Λ)/ \mathscr{S}_0 has finite length. As a consequence of the theorem one has the following.

THEOREM 3.6. If Λ is an artin C-algebra, then KG-dim(Ab(Λ)) \neq 1.

This has been shown by Krause [11] to hold when Λ is a finite-dimensional algebra over an algebraically closed field. The proof of Theorem 3.6 follows from a result of Crawley-Boevey [5] which asserts that whenever an artin *C*-algebra Λ has a generic left module (a module is called *generic* if it is indecomposable, is endofinite, and is not finitely generated), then it has a special generic left module $_{\Lambda}G$ with the property that the division ring top(End $_{\Lambda}G$) contains an element transcendental over the subfield $k_G = C/\operatorname{ann}_C(\operatorname{top}(\operatorname{End}_{\Lambda}G))$.

Throughout the paper, R will denote an associative ring with unit $1 \in R$. The category of finitely presented right R-modules is denoted by mod-R.

1. COVARIANTLY FINITE SUBCATEGORIES

A full additive subcategory $\mathscr{C} \subseteq \operatorname{mod} R$ (which includes the condition that \mathscr{C} is closed under isomorphism and direct summands) is *covariantly finite* (in mod-R) if, given $M \in \operatorname{mod} R$, there is a morphism $a_M \colon M \to M_{\mathscr{C}}$ with $M_{\mathscr{C}} \in \mathscr{C}$ such that any morphism $f \colon M \to N$ with $N \in \mathscr{C}$ factors through a_M . This means that there is a \mathscr{C} -morphism $f_{\mathscr{C}} \colon M_{\mathscr{C}} \to N$ so that the diagram

commutes. The morphism $a_M: M \to M_{\mathscr{C}}$ is called a left *C*-approximation of *M*. Covariantly finite subcategories were introduced by Auslander and Smalø [4]. Throughout this paper, \mathscr{C} will denote a covariantly finite subcategory of mod-*R*.

The category \mathscr{C} has pseudo-cokernels [2]. This means that every \mathscr{C} -morphism $f: M \to N$ has a *pseudo-cokernel*, a morphism $g: N \to K$ in \mathscr{C} such that gf = 0 and any \mathscr{C} -morphism $h: N \to L$ for which hf = 0 will factor through g. To find a pseudo-cokernel in \mathscr{C} of a \mathscr{C} -morphism $f: M \to N$, take the cokernel $g_0: N \to K$ in the category mod-R. Then the composition $a_K g_0: N \to K_{\mathscr{C}}$ is a pseudo-cokernel of f in \mathscr{C} . Let (\mathscr{C}, Ab) denote the category of additive functors $F: \mathscr{C} \to Ab$, with morphisms the natural transformations between functors. By Yoneda's lemma [14, Prop. IV.7.3], an object in (\mathscr{C}, Ab) is a finitely generated projective object if and only if it is *representable*, that is, if it is isomorphic to one of the functors.

to one of the functors

$$(M, -) := \operatorname{Hom}_{\mathscr{C}}(M, -) = \operatorname{Hom}_{R}(M, -)|_{\mathscr{C}},$$

where $M \in \mathcal{C}$. Yoneda's lemma also yields that every (\mathcal{C}, Ab) -morphism η : $(N, -) \to (M, -)$ between representable functors has the form $\eta = (f, -)$, where $f: M \to N$ is a \mathcal{C} -morphism. Let $\alpha: F \to G$ be a morphism in (\mathcal{C}, Ab) . The *kernel* and *image* of α are the subfunctors Ker α and Im α of F and G, respectively, defined by

$$(\operatorname{Ker} \alpha)(M) \coloneqq \operatorname{Ker} \alpha(M) \text{ and } (\operatorname{Im} \alpha)(M) \coloneqq \operatorname{Im} \alpha(M).$$

It is easily verified that the morphism α is a monomorphism (respectively, epimorphism) if and only if Ker $\alpha = 0$ (respectively, Im $\alpha = G$). A sequence

$$F \xrightarrow{\alpha} G \xrightarrow{\beta} H$$

of objects in (\mathcal{C}, Ab) is *exact* if Im $\alpha = \text{Ker }\beta$. This is equivalent to the condition that, for every object $M \in \mathcal{C}$, the sequence

$$F(M) \xrightarrow{\alpha(M)} G(M) \xrightarrow{\beta(M)} H(M)$$

of abelian groups is exact. In particular, the restriction functor $(-)|_{\mathscr{C}}$: (mod-*R*, Ab) \rightarrow (\mathscr{C} , Ab) defined by $F \mapsto F|_{\mathscr{C}}$ is exact. A functor $F \in (\mathscr{C}, Ab)$ is *finitely generated* if there is an epimorphism η : $(M, -) \rightarrow F$ from a representable functor to *F*; it is *finitely presented* if there is an exact sequence

$$(N, -) \xrightarrow{(f, -)} (M, -) \to F \to \mathbf{0}$$
 (1)

in (\mathcal{C} , Ab), where $f: M \to N$ is a \mathcal{C} -morphism. This exact sequence is called a *projective presentation* of F. A finitely presented functor F is

coherent [1] if every finitely generated subfunctor is also finitely presented. Auslander proved [2, Prop., p. 102] that the coherent functors form an *exact* subcategory coh-(\mathscr{C} , Ab) of (\mathscr{C} , Ab). This means that coh-(\mathscr{C} , Ab) is an abelian category and that the inclusion functor coh-(\mathscr{C} , Ab) \subseteq (\mathscr{C} , Ab) is exact.

is exact. Using the hypothesis that the category \mathscr{C} has pseudo-cokernels, Auslander showed [2, Prop., p. 102] that every finitely presented functor $F \in (\mathscr{C}, Ab)$ is coherent. To see this, it is enough by the exactness of the subcategory coh- (\mathscr{C}, Ab) , to verify that every representable functor (M, -) is coherent. For then both of the projective objects (M, -) and (N, -) appearing in the projective presentation (1) of F are coherent and, therefore, so must be $(M, -)/\operatorname{Im}(f, -) = F$. Now every finitely generated subfunctor G of (M, -) is the image of some morphism $(g, -): (K, -) \to (M, -)$, where $g: M \to K$ is a morphism in \mathscr{C} . Let $h: K \to L$ be a pseudo-cokernel of g in \mathscr{C} . It follows from the definition of pseudo-cokernel that the sequence cokernel that the sequence

$$(L, -) \xrightarrow{(h, -)} (K, -) \xrightarrow{(g, -)} (M, -)$$

is exact and gives a projective presentation of $\operatorname{Im}(g, -) = G$. For brevity, we shall denote by $\operatorname{Ab}(R)$ the abelian subcategory of coherent or, equivalently, finitely presented objects of $(\operatorname{mod}-R, \operatorname{Ab})$. This notation is justified by the result of Freyd [6] that $\operatorname{Ab}(R)$ is the free abelian category over R. We shall now note how the restriction functor $(-)|_{\mathscr{C}}$: $\operatorname{Ab}(R) \to (\mathscr{C}, \operatorname{Ab})$ preserves coherent objects. Because this functor is exact, it is enough to verify that the restriction to \mathscr{C} of a representable functor $(M, -), M \in \operatorname{mod}-R$, is a coherent object of $(\mathscr{C}, \operatorname{Ab})$. For then the coherent functor F with projective presentation (1) will take on the value of the cokernel in $(\mathscr{C}, \operatorname{Ab})$ of $(f, -)|_{\mathscr{C}} \colon (N, -)|_{\mathscr{C}} \to (M, -)|_{\mathscr{C}}$, a coherent functor. Let $a_M \colon M \to M_{\mathscr{C}}$ be a left \mathscr{C} -approximation of M and let $g \colon M_{\mathscr{C}} \to N$ be the cokernel of a_M in mod-R. If $a_N \colon N \to N_{\mathscr{C}}$ is a left \mathscr{C} -approximation of N, one can easily verify that the sequence \mathscr{C} -approximation of N, one can easily verify that the sequence

$$(N_{\mathscr{C}}, -) \xrightarrow{(a_{N}g, -)} (M_{\mathscr{C}}, -) \xrightarrow{(a_{M}, -)|_{\mathscr{C}}} (M, -)|_{\mathscr{C}} \to \mathbf{0}$$

of (*C*, Ab)-objects is exact and therefore gives a projective presentation of $(M, -)|_{\mathscr{C}}.$

The restriction functor $(-)|_{\mathscr{C}}$: Ab $(R) \to \operatorname{coh}(\mathscr{C}, \operatorname{Ab})$ is dense and full. This is so because every $(\mathscr{C}, \operatorname{Ab})$ -morphism $\alpha: F \to G$ between finitely

presented objects is induced by a morphism of the respective projective presentations

Then hg = fk, so if $\alpha' \colon F' \to G'$ is the Ab(*R*)-morphism induced by the same morphism of projective presentations, then $F'|_{\mathscr{C}} = F$, $G'|_{\mathscr{C}} = G$, and $\alpha'|_{\mathscr{C}} = \alpha.$

2. LOCALIZATION AT A SERRE SUBCATEGORY

A full subcategory \mathcal{S} of Ab(R) is called *Serre* if, for every short exact sequence

$$\mathbf{0} \to F \to G \to H \to \mathbf{0}$$

in Ab(R), G is an object of \mathcal{S} if and only if F and H are objects of \mathcal{S} . If \mathscr{X} is a subcategory of mod-*R*, then the subcategory

$$\mathscr{S}(\mathscr{X}) \coloneqq \{ A \in \operatorname{Ab}(R) \colon A(\mathscr{X}) = 0 \}$$

of Ab(*R*) is Serre. It is clear that an intersection of Serre subcategories of Ab(*R*) is again Serre. A Serre subcategory \mathcal{S} of Ab(*R*) is *finitely generated* if there are finitely many objects S_1, S_2, \ldots, S_n in \mathcal{S} such that \mathcal{S} is the smallest Serre subcategory that contains each of the S_i . Given a Serre subcategory \mathcal{S} of Ab(*R*), define as in [7, Ch. III] the

abelian category Ab(R)/S, the *localization* of Ab(R) at S, whose objects are the objects A of Ab(R), but denoted with a subscript A_S , and whose morphisms are given as follows. For $A, B \in Ab(R)$,

$$\operatorname{Hom}_{\operatorname{Ab}(R)/\mathscr{S}}(A_{\mathscr{S}}, B_{\mathscr{S}}) = \operatorname{lim} \operatorname{Hom}_{\operatorname{Ab}(R)}(A', B/B'),$$

where $A' \leq A$ is such that $A/A' \in \mathscr{S}$ and $B' \leq B$ is such that $B' \in \mathscr{S}$. The set of such pairs is a partially ordered directed set with respect to the relation $(A', B/B') \preccurlyeq (A'', B/B'')$, which holds if and only if $A'' \leq A'$ and $B' \leq B''$. The direct limit is indexed by this partial order. The functor $(-)_{\mathscr{S}}$: Ab $(R) \rightarrow$ Ab $(R)/\mathscr{S}$ has the universal property that whenever T: Ab $(R) \rightarrow \mathscr{A}$ is an exact functor to an abelian category \mathscr{A} ,

such that $T(\mathscr{S}) = 0$, then T factors through $(-)_{\mathscr{S}}$ uniquely, that is, there is a unique exact functor T/\mathscr{S} : Ab $(R)/\mathscr{S} \to \mathscr{A}$ such that the diagram

commutes. As an example of this, let $\mathscr{S} \subseteq \mathscr{S}'$ be an inclusion of Serre subcategories. An exact functor $\operatorname{Ab}(R)/\mathscr{S} \to \operatorname{Ab}(R)/\mathscr{S}'$ defined by $A_{\mathscr{S}} \mapsto A_{\mathscr{S}'}$ is then induced. The verification of the next proposition is straightforward.

PROPOSITION 2.1. Let \mathscr{S} be a Serre subcategory of Ab(R) which is a directed union $\mathscr{S} = \bigcup_i \mathscr{S}_i$ of Serre subcategories \mathscr{S}_i of Ab(R). Then, for $A, B \in Ab(R)$,

 $\operatorname{Hom}_{\operatorname{Ab}(R)/\mathscr{S}}(A_{\mathscr{S}}, B_{\mathscr{S}}) = \lim_{\rightarrow} \operatorname{Hom}_{\operatorname{Ab}(R)/\mathscr{S}_{i}}(A_{\mathscr{S}_{i}}, B_{\mathscr{S}_{i}}),$

where the structural morphisms of the direct limit are induced by the inclusions of the \mathcal{S}_i .

The special case of the proposition that will interest us is when the \mathcal{S}_i are taken to be the finitely generated Serre subcategories of \mathcal{S} .

Let $\mathscr{C} \subseteq \text{mod-}R$ be a covariantly finite subcategory. Then the exact functor $(-)|_{\mathscr{C}}$: Ab $(R) \to \text{coh-}(\mathscr{C}, \text{Ab})$ induces an exact functor

 $\Phi_{\mathscr{C}} \coloneqq (-)|_{\mathscr{C}}/\mathscr{S}(\mathscr{C}) \colon \operatorname{Ab}(R)/\mathscr{S}(\mathscr{C}) \to \operatorname{coh-}(\mathscr{C}, \operatorname{Ab}).$

As $(-)|_{\mathscr{C}}$ is dense and full, so is $\Phi_{\mathscr{C}}$. In the sequel, we shall need the following theorem of Krause.

THEOREM 2.2 [10, Thm. 3.4]. Let $\mathscr{C} \subseteq \text{mod-}R$ be a covariantly finite subcategory. The functor $\Phi_{\mathscr{C}}$ above, defined by $A_{\mathscr{S}(\mathscr{C})} \mapsto A|_{\mathscr{C}}$, is an equivalence of categories.

3. ARTIN ALGEBRAS

Let *C* be a commutative artinian ring. A *C*-algebra Λ is *artin* if the *C*-module $_{C}\Lambda$ is finitely generated. If Λ is an artin *C*-algebra and $M \in \text{mod-}\Lambda$, then the endomorphism ring $\text{End}_{\Lambda}M$ is also an artin *C*-algebra. To see this, consider an epimorphism $\Lambda^{n} \to M$ and apply the left exact

functor (-, M) to get an embedding of *C*-modules $\operatorname{End}_{\Lambda} M \to (\Lambda^n, M) = M^n$.

Similarly, it follows that if $\mathscr{C} \subseteq \mod A$ is a covariantly finite subcategory and $A \in \operatorname{coh}(\mathscr{C}, \operatorname{Ab})$, then the endomorphism ring $\operatorname{End}_{(\mathscr{C}, \operatorname{Ab})} A$ is an artin *C*-algebra. For, consider an epimorphism $(M, -) \to A$. Evaluated at M_A , this gives an epimorphism $\operatorname{End}_A M_A \to A(M)$ of *C*-modules. Applying now the left exact functor $\operatorname{Hom}_{(\mathscr{C}, \operatorname{Ab})}(?, A)$ to the first epimorphism gives, by Yoneda's lemma, an embedding $\operatorname{End}_{(\mathscr{C}, \operatorname{Ab})} A \to A(M)$ of *C*-modules. Thus, $\operatorname{End}_{(\mathscr{C}, \operatorname{Ab})} A$ is a finitely generated *C*-module. We document this as follows.

PROPOSITION 3.1. Let Λ be an artin C-algebra. If $\mathscr{C} \subseteq \text{mod}-\Lambda$ is a covariantly finite subcategory and $A \in \text{coh-}(\mathscr{C}, Ab)$, then the endomorphism ring $\text{End}_{(\mathscr{C}, Ab)} A$ is an artin C-algebra.

The simple objects S of $Ab(\Lambda)$ are in bijective correspondence with the finitely generated indecomposable right Λ -modules. This correspondence is given by the rule $S \mapsto M_{\Lambda}$, where $(M, -) \to S$ is a projective cover of S in $Ab(\Lambda)$. If we denote this simple object by S_M , then a finitely generated Λ -module X_{Λ} lies in the support of S_M if and only if X_{Λ} has a direct summand isomorphic to M_{Λ} .

Call a *C*-algebra Γ *locally artin* if every finitely generated *C*-subalgebra of Γ is artin. It is clear that a *C*-algebra is locally artin if and only if it is a direct limit of artin *C*-algebras.

THEOREM 3.2. Let Λ be an artin C-algebra and \mathscr{S}_0 the Serre subcategory of Ab(Λ) consisting of the objects of finite length. If $A \in Ab(\Lambda)$, then the endomorphism ring End_{Ab(Λ)/ \mathscr{S}_0} $A_{\mathscr{S}_0}$ is a locally artin C-algebra.

Proof. By Proposition 2.1, it is enough to prove that, for every finitely generated $\mathscr{S}' \subseteq \mathscr{S}$, the endomorphism ring $\operatorname{End}_{\operatorname{Ab}(\Lambda)/\mathscr{S}'} A_{\mathscr{S}'}$ of the object A localized at \mathscr{S}' is an artin C-algebra. We shall show how $\mathscr{S}' = \mathscr{S}(\mathscr{C})$ for some covariantly finite subcategory $\mathscr{C} \subseteq \operatorname{mod} \Lambda$. By Theorem 2.2, the endomorphism ring $\operatorname{End}_{\operatorname{Ab}(\Lambda)/\mathscr{S}'} A_{\mathscr{S}'}$ is isomorphic to the C-algebra $\operatorname{End}_{(\mathscr{C},\operatorname{Ab})} A|_{\mathscr{C}}$, which, by Proposition 3.1, is an artin C-algebra.

Let $\mathscr{S}' \subseteq \mathscr{S}_0$ be finitely generated. Then there are finitely many simple objects S_1, S_2, \ldots, S_n that generate \mathscr{S}' . Thus every object of \mathscr{S}' has a composition series with factors among the S_i . Let M_1, M_2, \ldots, M_n be the finitely presented indecomposables corresponding to the S_i and $X \in \text{mod-}\Lambda$. Then F(X) = 0 for every $F \in \mathscr{S}'$ if and only if X does not have a direct summand isomorphic to one of the M_i . Let

$$\mathscr{C} := \{ X \in \operatorname{mod} \Lambda \colon F(X) = 0 \text{ for every } F \in \mathscr{S} \}.$$

Auslander and Smalø (cf. [3, Prop. 2.9]) have shown this category to be covariantly finite in mod- Λ . Furthermore, $\mathscr{S}' = \mathscr{S}(\mathscr{C})$ since any $F \in \mathscr{S}(\mathscr{C})$ must have finite length with factors among the S_i .

Let us consider some special cases of this result. The contravariant functor $M_{\Lambda} \mapsto (M_{\Lambda}, -)$ from mod- Λ to Ab(Λ) is a full and left exact embedding. Thus $\operatorname{End}_{\operatorname{Ab}(\Lambda)}(M, -) \cong (\operatorname{End}_{\Lambda} M)^{\operatorname{op}}$ and so one may think of the object $(M, -)_{\mathscr{S}_0}$ as representing the "localization" of M_{Λ} at \mathscr{S}_0 .

COROLLARY 3.3. Let $M_{\Lambda} \in \text{mod}-\Lambda$. Localization of the functor $(M_{\Lambda}, -)$ at \mathcal{S}_0 gives a homomorphism of *C*-algebras

$$\lambda_M : (\operatorname{End}_{\Lambda} M)^{\operatorname{op}} \to \operatorname{End}_{\operatorname{Ab}(\Lambda)/\mathscr{S}_0}(M, -)\mathscr{S}_0,$$

where the domain is artin and the codomain locally artin.

When $M_{\Lambda} = \Lambda_{\Lambda}$, this gives a *C*-algebra homomorphism $\lambda_{\Lambda} \colon \Lambda^{\text{op}} \to \text{End}_{Ab(\Lambda)/\mathscr{S}_0}(\Lambda, -)_{\mathscr{S}_0}$.

Let $S \in Ab(\Lambda)/\mathscr{S}_0$ be simple. Then $k_S = C/(C \cap \operatorname{ann}_C(S))$ is a field and the theorem takes on the following form.

COROLLARY 3.4. Let $S \in Ab(\Lambda)/\mathscr{S}_0$ be simple. Then the division ring $\Delta_S = End_{Ab(\Lambda)/\mathscr{S}_0} S$ is algebraic over k_S .

Let us explain how the simple objects of $(\text{mod}-\Lambda, \text{Ab})/\mathscr{S}_0$ correspond to certain pure-injective indecomposable left Λ -modules. The category (mod- Λ, Ab) is a locally coherent Grothendieck category whose injective objects [9, Appendix B] are precisely those isomorphic to functors of the form $-\otimes_{\Lambda} M$ where $_{\Lambda} M$ is a pure-injective left Λ -module. If $\mathscr{S}_0 \subseteq (\text{mod}-\Lambda, \text{Ab})$ is the Serre subcategory of objects F isomorphic to a direct limit of objects from \mathscr{S}_0 , then [8, Thm. 2.6]

$$\operatorname{coh-}\left[(\operatorname{mod-}\Lambda,\operatorname{Ab})/\vec{\mathscr{S}_0}\right] \cong \operatorname{Ab}(\Lambda)/\mathscr{S}_0.$$

Furthermore, the subcategory $\vec{\mathscr{S}}_0$ is localizing [7, Ch. III.3, Cor. 1] meaning that the localization functor from (mod- Λ , Ab) to (mod- Λ , Ab)/ $\vec{\mathscr{S}}_0$ has a right adjoint that allows us to identify (mod- Λ , Ab)/ $\vec{\mathscr{S}}_0$ with a full subcategory of (mod- Λ , Ab) in such a way [7, Ch. III.3, Cor. 2] that the injective objects of (mod- Λ , Ab)/ $\vec{\mathscr{S}}_0$ are those that are injective as objects of the category (mod- Λ , Ab).

If $S \in Ab(\Lambda)/\mathscr{P}_0$ is simple, the injective envelope E(S) of S in the category $(\text{mod}-\Lambda, Ab)/\mathscr{P}_0$ is of the form $-\otimes_{\Lambda} U[S]$, where ${}_{\Lambda} U[S]$ is a

pure-injective, necessarily indecomposable, left $\Lambda\text{-module}.$ The endomorphism ring

$$\operatorname{End}_{\Lambda} U[S] = \operatorname{End}_{(\operatorname{mod} - \Lambda, \operatorname{Ab})} (- \otimes_{\Lambda} U[S]) = \operatorname{End}_{(\operatorname{mod} - \Lambda, \operatorname{Ab})} E(S)$$

is a local ring whose residue division ring, or top, is just

$$\operatorname{top}(\operatorname{End}_{\Lambda} U[S]) = \operatorname{top}(\operatorname{End}_{(\operatorname{mod} - \Lambda, \operatorname{Ab})} E(S)) = \operatorname{End}_{(\operatorname{mod} - \Lambda, \operatorname{Ab})/\mathscr{S}_0} S = \Delta_S.$$

The division ring top $(\operatorname{End}_{\Lambda} U[S]) = \Delta_{S}$ is thus, by Corollary 3.4, algebraic over the field $k_{S} = C/C \cap \operatorname{ann}_{C}[\operatorname{top}(\operatorname{End}_{\Lambda} U[S])].$

A left Λ -module $_{\Lambda}M$ is said to be *endofinite* if it has finite length when considered as a module over the endomorphism ring End_{Λ} M in the natural way. Every finitely generated module over an artin C-algebra has finite length as a C-module and is therefore endofinite. Every endofinite module $_{\Lambda}M$ is pure-injective [5, Thm. 3.1 and Prop. 4.1]. An indecomposable endofinite module $_{\Lambda}G$ is called *generic* [5, Sect. 7] if it is not finitely generated.

Recall [7, Ch. IV.1] that the Krull–Gabriel dimension KG-dim(Ab(Λ)) of the category Ab(Λ) is equal to zero if Ab(Λ) = \mathscr{S}_0 . In this case Λ is of *finite representation type*, that is, there are, up to isomorphism, only finitely many finitely generated indecomposable right Λ -modules. The Krull–Gabriel dimension KG-dim(Ab(Λ)) is equal to 1 if Ab(Λ) $\neq \mathscr{S}_0$, but every object of Ab(Λ)/ \mathscr{S}_0 has finite length.

PROPOSITION 3.5. If KG-dim(Ab(Λ)) = 1, then the simple objects of Ab(Λ)/ \mathcal{S}_0 correspond to the generic left Λ -modules.

Proof. Suppose KG-dim(Ab(Λ)) = 1. Then the category (mod- Λ , Ab)/ $\vec{\mathscr{S}}_0$ is locally finite and therefore every injective object is of the form $-\otimes_{\Lambda} M$ with $_{\Lambda} M$ endofinite [8, Prop. 7.6]. Because it is a locally finite category, the function $S \mapsto E(S)$ that associates to a simple object its injective envelope is not only one-to-one, but, as every object has a simple subobject, it is a bijective correspondence between the simple objects and the injective indecomposable objects of (mod- Λ , Ab)/ $\vec{\mathscr{S}}_0$ are precisely

The indecomposable injective objects of $(\text{mod}-\Lambda, \text{Ab})/\mathscr{S}_0$ are precisely those indecomposable injective objects $-\otimes_{\Lambda} U$ of $(\text{mod}-\Lambda, \text{Ab})$ that do not have a subobject from \mathscr{S}_0 or, equivalently, that do not have a simple subobject. But an indecomposable object of the form $-\otimes_{\Lambda} U$ has a simple subobject [11, Lemma 11.2] if and only if $_{\Lambda} U$ is finitely generated. Thus the simple objects of $(\text{mod}-\Lambda, \text{Ab})/\mathscr{S}_0$ correspond to the pure-injective indecomposables $_{\Lambda} U$ that are not finitely generated. Because $(\text{mod}-\Lambda, \text{Ab})/\mathscr{S}_0$ is locally finite, these are precisely the generics.

THEOREM 3.6. If Λ is an artin C-algebra, then KG-dim(Ab(Λ)) \neq 1.

Proof. Let us assume that KG-dim(Ab(Λ)) = 1 and aim for a contradiction. By Proposition 3.5, there exists a generic left Λ -module and, furthermore, every generic $_{\Lambda}G$ has the property that the top(End $_{\Lambda}G$) is algebraic over the field $k_G = C/\operatorname{ann}_C(\operatorname{top}(\operatorname{End}_{\Lambda}G))$. But this contradicts a theorem of Crawley-Boevey [5, Thm. 9.6], which asserts that if a generic left Λ -module exists, then there is one such module $_{\Lambda}G$ such that the top(End $_{\Lambda}G$) contains an element transcendental over the field k_G .

For the case of a finite-dimensional algebra over an algebraically closed field, Theorem 3.6 has been proved by Krause [11, Cor. 11.4]. Because every finite ring R is an artin Z(R)-algebra, where Z(R) denotes the center of R, the following corollary is a special case of the theorem.

COROLLARY 3.7. If R is a finite ring, then $KG-dim(Ab(R)) \neq 1$.

The following example of a ring R for which KG-dim(Ab(R)) = 1 was shown to me by Goodearl. Let k be a field and denote by k^{ω} the ring of countable sequences with entries in k, with addition and multiplication defined componentwise. Let R be the subring of k^{ω} that consists of eventually constant sequences. The ring R is commutative and von Neumann regular so that the category Ab(R) is equivalent, via the functor $(M, -) \mapsto M$, to the category mod-R of finitely presented R-modules. The simple objects of mod-R are the ideals $e_i R$, where e_i denotes an element of R with a unique nonzero entry that occurs in the *i*th place. Localizing at the Serre subcategory of finitely presented R-modules of finite length, one obtains a category equivalent to the category of finitely presented modules over the ring $R/k^{(\omega)}$, where $k^{(\omega)} = \sum_{n < \omega} e_N R$ is the maximal ideal of R of sequences that are eventually zero. As $R/k^{(\omega)}$ is a field, this is the category of its finite-dimensional vector spaces and so every object has finite length.

REFERENCES

- 1. M. Auslander, Coherent functors, *in* "Proceedings of the Conference on Categorical Algebra, La Jolla, 1965" (S. Eilenberg, D. K. Harrison, S. MacLane, and H. Röhrl, Eds.), Springer-Verlag, New York/Berlin, 1966.
- 2. M. Auslander, "Representation Dimension of Artin Algebras," Queen Mary College Mathematics Notes.
- M. Auslander and I. Reiten, Homologically finite subcategories, *in* "Representations of Algebras and Related Topics," (H. Tachikawa and S. Brenner, Eds.), London Mathematical Society Lecture Notes Series, Vol. 168, pp. 1–42, Cambridge Univ. Press, Cambridge, U.K., 1992.

- 4. M. Auslander and S. Smalø, Preprojective modules over artin algebras, J. Algebra 66 (1980), 62–122.
- W. W. Crawley-Boevey, Modules of finite length over their endomorphism ring, *in* "Representations of Algebras and Related Topics" (H. Tachikawa and S. Brenner, Eds.), London Mathematical Society Lecture Notes Series, Vol. 168, pp. 127–184, Cambridge Univ. Press, Cambridge, U.K., 1992.
- 6. P. Freyd, Representations in abelian categories, *in* "Proceedings of the Conference on Categorical Algebra, La Jolla, 1965" (S. Eilenberg, D. K. Harrison, S. MacLane, and H. Röhrl, Eds.), Springer-Verlag, New York/Berlin, 1966.
- 7. P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323-448.
- 8. I. Herzog, The Ziegler spectrum of a locally coherent Grothendieck category, *Proc. London Math. Soc.*, to appear.
- 9. C. U. Jensen and H. Lenzing, "Model Theoretic Algebra, with Particular Emphasis on Fields, Rings, Modules," Gordon & Breach, New York, 1989.
- 10. H. Krause, Functors on locally finitely presented categories, preprint, Universität Bielefeld, 1995.
- 11. H. Krause, Generic modules over artin algebras, preprint, Universität Bielefeld, 1995.
- 12. L. Newelski, A proof of Saffe's conjecture, Fund. Math. 134 (1990), 143-155.
- 13. M. Prest, The (pre)sheaf of definable scalars, preprint, University of Manchester, 1995.
- 14. B. Stenström, "Rings of Quotients," Springer-Verlag, New York/Berlin, 1975.