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Abstract 

Let R be a left pure-semisimple ring. It is proved that if R has self-duality or if R 
is a polynomial identity ring, then R is of finite representation type. If there exists an 
example of a left pure-semisimple ring which is not of finite representation type, we 
show that then there exists an example which is hereditary, but not right artinian. We 
reduce the question of the existence of such an example to a problem regarding simple 
bimodules over division rings. 

Introduction 

A ring R (associative, with identity) is called left pure-semisimple if every 
left (unital) R-module is a direct sum of indecomposable left R-modules. 
Chase [8] showed that every such ring is left artinian. A left pure-semisimple 
ring is said to be offinite representation type if there are (up to isomorphism) 
only finitely many indecomposable left R-modules. There is no known example 
of a left pure-semisimple ring which is not of finite representation type and it 
is conjectured that such an example does not exist: 

The Pure-semisimple Conjecture. Every left pure-semisimple ring is of finite 
representation type. 

Warfield [ 221 verified the Pure-semisimple Conjecture for commutative 
rings and Auslander [4] extended this result to artin algebras. Some of the 
history of this problem is chronicled in [ 10, p. xiii] and [ 28 1. 
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The left pure-semisimple rings have been characterized model-theoretically 
[ 121 as those rings R such that every complete theory of left R-modules 
is totally transcendental. The model-theoretic import of the Pure-semisimple 
Conjecture is then derived from the fact [ 17, Section 11.41 that a ring R is 
of finite representation type iff every complete theory of left R-modules has 
finite Morley rank. And although the results of this article are cloaked in the 
language of algebra and categories, many proofs rely heavily on model-theoretic 
techniques [ 17,251. For example, our main application of Yoneda’s Lemma is 
a homogeneity principle we call the Generator Lemma. 

The main body of this paper rests upon an analysis (Section 4) of the right 
preinjective modules and left preprojective modules over a left pure-semisimple 
ring. A systematic study of such modules was undertaken by Auslander and 
Smalo [6] in the context of artin algebras. The left preinjective modules over 
a left pure-semisimple ring have been studied by Zimmermann-Huisgen [ 27 1. 

We prove, in the fourth section, that if R is a left pure-semisimple ring, then 
there are only finitely many preprojective left R-modules and that this number 
is a bound on the number of preinjective right R-modules. The test for finite 
representation type is then stated as follows: 

Theorem 5.2. A left pure-semisimple ring R is of finite representation type iff 
the number of preprojective left R-modules is equal to the number of preinjective 
right R-modules. 

From this test it follows that the Pure-semisimple Conjecture holds for rings 
with self-duality, a class of rings which contains the artin algebras. 

Corollary 5.3. If R is a left pure-semisimple ring and there exists a Morita 
duality V : mod-R + R-mod, then R is offinite representation type. 

If there exists a counterexample to the Pure-semisimple Conjecture, we use 
the test to obtain a counterexample R which is not right Morita (a ring is 
right Morita if it is right artinian and every indecomposable injective right 
R-module is finitely generated). 

A counterexample R to the Pure-semisimple Conjecture is called minimal if 
given any nontrivial two-sided ideal I of R the quotient ring R/I is of finite 
representation type. It is obvious that given a counterexample to the conjecture 
one obtains a minimal counterexample by modding out by a sufficiently large 
ideal. We prove that a minimal counterexample contains a unique minimal 
ideal (Proposition 5.8 ) . 

In the last section, we generalize certain of Simson’s results [21] in the 
hereditary case. Namely, we apply Auslander’s theory of Grassmanians 121 
to a minimal counterexample which is not right Morita to get the following 
theorem: 
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Theorem 6.5. If there is a counterexample to the Pure-semisimple Conjecture, 
then there are division rings F and G and a simple G-F-bimodule ~BF such 
that the formal lower triangular matrix ring 

is a counterexample to the Pure-semisimple Conjecture which is not right Morita. 

In essence, this paper describes a procedure which, given an arbitrary coun- 
terexample to the Pure-semisimple Conjecture, produces the counterexample 
of Theorem 6.5. Keeping track of the operations that are performed to arrive 
at this last counterexample yields the following theorem: 

Theorem 6.7. Every left pure-semisimple polynomial identity ring is of finite 
representation type. 

Finally, we prove that in the case the counterexample Rg of Theorem 6.5 
is right artinian then the formal lower triangular matrix ring R~B,F) is a 
counterexample which fails to be right artinian. 

Theorem 6.9. If a counterexample exists to the Pure-semisimple Conjecture, 
then there is a counterexample R which is hereditary and not right artinian. 

By a ring R we mean an associative ring with identity and by an R-module 
we mean a unital R-module. The Jacobson radical of R will be denoted by 
J(R). The category R-Mod is the category of left R-modules while Mod-R is 
the category of right R-modules, with morphisms always acting on the left. The 
full subcategory consisting of the finitely presented right R-modules is denoted 
by mod-R, its sinister analogue by R-mod. The category of abelian groups is 
denoted by Ab. 

The first three sections are of a preliminary nature. In the first, we consider 
the finitely generated objects of the category (mod-R, Ab) of functors from the 
category mod-R to the category Ab. We relate these functors to the positive- 
primitive formulae in the language for right R-modules which, in turn, are 
intimately related to finite matrix subgroups. In the second section, we describe 
those rings R such that every finitely generated object of (mod-R, Ab) has a 
projective cover and we explain the correspondence which exists for such 
rings between the indecomposable finitely presented right R-modules and the 
simple objects of (mod-R,Ab). In the third section, we review Auslander’s 
characterizations [3,4] of left pure-semisimple rings in terms of the category 
(mod-R, Ab). 
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1. Finitely generated functors 

Let R be a ring. A module A4 E Mod-R is finitely presented if it is the 
cokernel of a morphism g between finitely generated free modules. This may 
be represented by an exact sequence 

R rng -+R”-+M-0 

which is called a free presentation of M. The full subcategory of Mod-R of 
finitely presented right R-modules is denoted by mod-R. If M, N E mod-R 
and f : A4 + N is a morphism, then the cokernel of f is also finitely 
presented. While the category Mod-R is abelian, the same is not always true 
of its subcategory mod-R. All of these considerations pertain equally as well to 
left R-modules, the category of Iinitely presented left R-modules denoted by 
R-mod. 

The class of covariant additive functors F : mod-R -+ Ab may be endowed 
with the structure of a category (mod-R, Ab) with morphisms the natural trans- 
formations of functors. If v : F + G is a morphism in (mod-R, Ab), then Kerr, 
the kernel of q, is defined as (Ker q) (M) = Ker VM and the image of q, Im q is 
defined as (Imq) (M) = ~~(44). These are again objects in (mod-R, Ab) as is 
the cokernel Cokerq, defined by (Cokerq) (M) = G(M)/I~Y]M. The natural 
transformation q is a monomorphism (an epimorphism) if Ker q (Coker q) is 
zero. It is an isomorphism in the categorical sense if it is both a monomorphism 
and an epimorphism. With these definitions, it is routine to verify that the 
category (mod-R, Ab) is abelian. 

The objects of (mod-R, Ab) which first spring to mind are the functors 
(M, -) = HomR (M, -) where A4 E Mod-R. A functor F E (mod-R, Ab) is 
called representable if it is isomorphic to such a functor with A4 E mod-R. The 
key result regarding the category (mod-R, Ab) is the following: 

Yoneda’s Lemma. Let F E C = (mod-R, Ab) and M E mod-R. The morphism 
of abelian groups 

@F,M : Homc(W,-),F) -+ F(M) 

defined by OF,M (q) = V/M( 1 M) is an isomorphism, natural both in F and in 
M. 0 

Every morphism f : it4 --f N in mod-R gives rise to a natural transforma- 
tion (f, -) : (N,-) -+ (M, -). Yoneda’s Lemma implies that every natural 
transformation q : (N, -) + (M, -) with M, N E mod-R is of this form. 

If F E (mod-R,Ab), we say that G is a subfunctor of F, or G c F, if 
for each M E mod-R, we have the inclusion G(M) C F(M) of abelian 
groups and for every morphism f : A4 + N in mod-R the Ab-morphism 
G(f) is the restriction F (f ) IG(M). For example, if q : F + G is a natural 
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transformation, then Kerq is a subfunctor of F while Im ye is a subfunctor 
of G. If G C F is a subfunctor, then the quotient functor F/G is defined 
by (F/G)(M) = F(M)/G(M); the cokernel of a morphism is an example. 
Note that the subfunctors of F form a complete lattice under the operations of 
intersection and sum: If Gr , G2 C F, define (Gt n G2 ) (M) = G1 (M) n G2 (M) 
and (Gt + Gt)(M) = Gr(M) + Gz(M). A functor F is called simple if it 
contains no nontrivial subfunctors. 

The functor F is said to be finiteZy generated if there are a module M E 
mod-R and a E F(M) with the property that whenever G C F and a E 
G(M), then G = F. Such an element a E F (M) is called a generator of 
F. For example, the element 1~ E (M, M) is a generator of (M, -). Given 
G E (mod-R, Ab) we say that a E G(M) generates the functor F if F c G and 
a E F(M) is a generator of F. This functor F may be described in terms of 
a as F = n{F’ C G 1 a E F’(M)}. It is easily verified that if a E F(M) is a 
generator and q : F --f G is a morphism in (mod-R, Ab), then q~(a) E G(M) 
is a generator of Im q. 

Proposition 1.1. A functor F E (mod-R, Ab) is finitely generated iff there is an 
epimorphism rl : (M, -) + F from a representable object to F. 

Proof. Let q : (M, - ) -+ F be a morphism which corresponds, via Yoneda’s 
Lemma, to the element a E F(M); thus ye is determined by VM( 1 M) = a. 
Now Im q is the subfunctor of F generated by a E F(M). Hence a E F(M) 
is a generator iff q is an epimorphism. 0 

The following homogeneity principle will find repeated application in the 
sequel. It relates the notion of generator to a method for constructing mor- 
phisms. 

The Generator Lemma. Let F E (mod-R, Ab) befinitely generated with genera- 
tor a E F(M). Zf c E F(N), N E mod-R, then there is a morphism f : M + N 
such that F(f) (a) = c. Conversely, any element a’ E F (M’) with this property 
is a generator of F. 

Proof. For a E F(M), define the functor Tr, by 

Tr,(N) = F(M,N)a = {F(f)(a) If:M-+ N}. 

This is a subfunctor of F and clearly a E Tr, (M). As a E F(M) is a generator, 
it follows that Tr, = F and hence that c E Tr, (N). 

For the converse, let a’ E F (M’) have the stated property and suppose that 
G G F with a’ E G(W). We will show that F C G. Indeed, if c E F(N), then, 
by hypothesis, there is a morphism f : M’ --$ N such that F (f ) (a’ ) = c. But 
then G(f )(a’) = F(f )(a’) = c and so c E G(N). q 
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Next, we will describe the finitely generated subfunctors of (RR, -) in model- 
theoretic terms (cf. [ 17, Section 2.2 I). This will clarify the relationship of 
these functors to linear algebra over the ring R. Let CR = (+, -, 0, r)~@ be the 
language for right R-modules; the first three symbols are intended to interpret 
the underlying abelian group structure of a right R-module M, while for each 
Y E R, there is a unary function symbol r (acting on the right) intended to 
interpret the action of r E R. It is easy to express in the language LR the 
axioms for a right R-module-we denote this set by TR. Since quantification 
over the ring R is not permitted in the language CR, the set of axioms TR does 
not in general form a finite set. 

A positive-primitive formula in the language of right R-modules (abbreviation: 
right pp-formula over R) is nothing more that an existentially quantified system 
of linear equations with coefficients in R (acting on the right). More precisely, 
let A be a row vector with entries in R, say of length ~1, and let B be a matrix 
over R having the same number of columns as A; so B is an nz x n matrix. A 
right pp-formula ~1 (x) over R in the free variable x is a formula of CR of the 
form 

A 
3Y(X,Y) B G 0 0 

where y = (vi,... , ym) is the m-tuple of the existentially bound variables. 
Thus a right pp-formula over R is completely determined by a row vector A 
and a matrix B with the same number of columns. We use the symbol 5 to 
express equality of pp-formulae. Generally, we will use the Greek letters ~1 (x) 
or w(x) to talk about pp-formulae. 

Given a right R-module M, the right pp-formula q(x) above defines the 
subgroup 

q(M) = {a E M 1 31,. ..,cm E M (a,cl ,..., c,) (:) =O> 

of the underlying abelian group structure of M. The relation a E ~1 (M) is 
expressed model-theoretically using the satisfaction symbol MR I= v,(a); we 
say that a E M is a realization of q. The subgroups of it4 arising in this fashion 
are called the finite matrix subgroups of M; they were introduced by Gruson 
and Jensen and, independently, by Zimmermann, as the subgroups of MR of 
finite definition. In the Model Theory of Modules, they have been studied, 
most notably by Baur, as the pp-definable subgroups of MR. 

The assignment M H y(M) is functorial in the sense that if f : A4 + 

N is an R-morphism, then f (cp (M) ) c v, (N), which induces a morphism 
q (f ) : v, (M) -+ ~1 (N) of abelian groups. Restricted to mod-R, this defines a 
subfunctor of (RR, -), which we denote by v, (-) , or simply ~1. 
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Proposition 1.2 (see [ 17, Corollary 12.41) . A subfunctor of the forgetful functor 
(RR, -) is finitely generated iff F = q (-) for some right pp-formula a, (x) over 
R. 

Proof. Let q~ (x) be a right pp-formula over R of the form (1). Let MR be the 
finitely presented right R-module with free presentation 

(2) 

where g denotes multiplication on the left by the matrix (i). Let eo, el, . . . , e, 
be the canonical basis for RI+“. We will use the Generator Lemma to show that 
a = p(e0) E M is a generator of p(-): Suppose XR E Mod-R and b E p(X). 
Take cl,..., cm E X such that 

(b,cl,...,cm) 

and let f : R1+M -+ X be a morphism such that f (eo) = b and for each i < m, 
f (ej) = cj. 

By hypothesis, the composition f g = 0, so that we can complete the diagram 
with h : MR + XR, f = hp. It follows that h(a) = hp(eo) = f (eo) = b and 
hence that a E M is a generator of q~ (-). 

Conversely, if F C (RR, -) is finitely generated with generator a E M, then 
there are natural numbers m and II and a free presentation (2) of MR such that 
p (eo ) = a. Retracing the argument above, we can recover a right pp-formula 
q(x) over R whose corresponding functor p(-) is generated by a E M. It 
follows that F = ~1. 0 

If a E q (M) is a generator of the functor v, (-), then a E M is called a 
free realization [ 17, Proposition 8.121 of q (x). Proposition 1.2 may be used 
to verify that the finitely generated subfunctors of (RR, -) form a lattice: Let 
q, I,U S (RR, -) be finitely generated subfunctors corresponding to the right 
pp-formulae 

V(X) L 0 and v(x) + 3z(x,z) 

respectively. As the bound tuples y and z consist of dummy variables, we may 
assume they have no entries in common. Defining (v, A t,v ) (x ) to be the right 
pp-formula 
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it is clear that for each M E mod-R, (u, A w)(M) = p(M) n y(M), so the 
intersection p n v/ is equal to the finitely generated functor (9 A w) (-). We 
leave it to the reader to express the right pp-formula over R which defines the 
functor q + w. 

Suppose that q (x ) and y (x ) are right pp-formulae over R such that the 
equation v (-) = w(-) holds in (mod-R,Ab) and let a E M be a generator 
for this functor. The proof of Proposition 1.2 indicates that for any right 
R-module X E Mod-R, we have ~1 (X) = v(X). This, together with Godel’s 
Completeness Theorem yields the following: 

Proposition 1.3. Given two right pp-formulae v(x) and v(x) over R, the fol- 
lowing are equivalent: 

(1) V(-) = w(-). 
(2) For each X E Mod-R, q(X) = v(X). 
(3) TR k (Vx)(q(x) ++ w(x)), that is, there is a Jirst-order proof in 

language CR of the sentence (Vx)(yl(x) H v(x)) from the axioms 
for a right R-module. 0 

the 
TR 

More generally, the arguments above show that the inclusion 9 (-) C_ w(-) 
in (mod-R,Ab) is equivalent to TR k (Vx)(q(x) + w(x)). 

All that we have done for right R-modules may be done on the left side as 
well [ 17, Section 8.41. The language for left R-modules RC = (+, -, 0, r)rER 
has the same symbols as CR. The unary function symbols r, however, act on the 
left. The left pp-formulae over R are then just existentially quantified systems 
of linear equations with the coefficients (from R) acting on the left. As in 
Proposition 1.2, the finitely generated subfunctors of (RR,-) E (R-mod,Ab) 
are of the form ~1 (-) where ~1 (x) is a left pp-formula over R. Prest and, 
independently, Zimmermann-Huisgen and Zimmermann have related the left 
and right pp-formulae over R by means of the following definition. 

Definition. Let v, (x ) 5 (3~) (x, y ) (2) A 0 be a right pp-formula over R; so 
that B is an m x n matrix and A is a row vector with n entries. Define the left 
pp-formula q* (x ) over R as 

3z(:, ;> (:) -0 

where z = (zr,..., z,) is the n-tuple of existentially bound variables and the 
0 below the 1 is an m x 1 column vector. 
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This is well-defined on the level of functors: If ~1 (-) = cy (-), then v, * (-) = 

v/* (-) [ 17, Theorem 8.211. More generally, the operation v, H v* is inclu- 
sion reversing: If I,Y C ~1 are subfunctors of (RR, -), then q~* & y * holds in 
(R-mod, Ab ) . 

Starting with a left pp-formula q~ (x) over R 

we can define the right pp-formula over R 

V’(X) = (jz) (x,z) 
1 0 ( ) c D -0. 

This operation has properties similar to its homonym and it is easy to check 
that if q(x) is a left or right pp-formula over R, then v**(-) = q~(-). It 
follows that the operations q~ H p* are mutual inverses and that the lattice of 
finitely generated subfunctors (RR, -) is anti-isomorphic to that of the finitely 
generated subfunctors of (RR, -). This anti-isomorphism is called pp-duality. 
The next result, due to Zimmermann-Huisgen and Zimmermann, clarifies the 
relationship between the functor v(-) E (mod-R, Ab) and its pp-dual 9’ (-). 

Proposition 1.4 (see [ 28, Lemma 2, Proposition 31 ). Let R’hfR be an R’-R- 

bimodule such that MR is a finitely presented right R-module. If RI E is a left 
R’-module, then HOIIIRt (R'hfR, ~1 E) has the structure of a left R-module given 
by (rf) (m) = f (mr). Given a right pp-formula p(x) over R, the$nite matrix 
subgroup v, (M) of MR is an R’-submodule of RIM and if R, E is injective, then 

$~*(HOITIR~(RJMR,R~E)) = {f : RIM + RJE: f (q(M)) = 0} 

z HOW? (R~(M/P(M)),R~E). 

IJ; furthermore, RYE is a cogenerator, then the map 

V,(M) H V* (HOmRl (R~MR, R/E) ) 

is an anti-isomorphism of the respective lattices offinite matrix subgroups. q 

2. Projective covers and Krull-Schmidt rings 

In this section we treat projective covers in the category (mod-R, Ab) and 
we characterize those rings R for which every finitely generated object of 
(mod-R, Ab) has a projective cover. We begin by characterizing the finitely 
generated projective objects as the representable objects. Most of the arguments 
are classical (cf. [ 1, Section 171). 

Let M E mod-R and let 7 : G + (M, -) be an epimorphism in (mod-R, Ab). 
As q~ : G(M) + (M,M) is onto, choose a E G(M) such that nM(a) = 1~. 
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Proposition 2.2. Let H E (mod-R, Ab) be finitely generated and let a E H (44) 

be a projective cover of H. If f : MR + NR is a morphism in mod-R such that 
H ( f ) (a) E H(N) is another generator of H, then f is a split-monomorphism. 
If g : NR -+ MR is a morphism in mod-R and there is a generator b E H(N) 
of H such that H(g) (b) = a, then g is a split-epimorphism. 

Proof. Let f : MR + NR be given as stated. By the Generator Lemma, there is 
a morphism h : NR -+ MR such that H(hf) (a) = H(h)H(f )(a) = a. Hence 
hf : hfR + bfR is an isomorphism and f is a split-epimorphism. The second 
statement is proved similarly. c] 

Suppose that N E mod-R is indecomposable and that every proper quotient 
of the indecomposable projective (N, -) has a projective cover. If F c (N,-), 
then the quotient map (N, -) + (N, -)/F must be a projective cover and, 
therefore, every proper subfunctor of (N, -) is small in (N, -). Consequently, 
the sum of two proper subfunctors of (N, -) is again proper. Consider the 
subfunctor 

Rad(N,-) = x{F 1 F c (N,-)}. 

Because (N, -) is finitely generated, Rad( N, -) is a proper subfunctor of (N, -) 
which contains all other proper subfunctors. We call a finitely generated functor 
F local if it contains a proper subfunctor Rad F which contains all other proper 
subfunctors of F. 

Definition. A finitely presented R-module A4 is called strongly indecomposable 
if the functor (M, -) is local. 

If (M, -) is local then, by the Generator Lemma, the subgroup Rad(M, M) 
consists of the non-units of (M, M) and so EndR M is a local ring. Con- 
versely, if EndR M is local, then the map XR H {f E (M, x) 1 f is not a 
split-monomorphism} is a functor equal to Rad(A4, -). Therefore, a finitely 
presented R-module is strongly indecomposable iff EndR M is a local ring. 

Theorem 2.3. The following are equivalent for a ring R: 
(1) Every finitely generated object F of the category (mod-R, Ab) has a 

projective cover. 
(2) The ring R is semiperfect and every M E mod-R is a direct sum M = 

@YE, Mi of strongly indecomposable modules Mi. 
(3) Every finitely generated projective object of (mod-R, Ab) is a coproduct 

of local functors. 

Proof. The proof of the equivalence (1) e (3) is classical [ 1, Sections 17 
and 241 and the implication (2) + (3) follows from the preceeding discussion 
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and Proposition 2.1. We will show how Condition ( 1) implies that the ring R 
is semiperfect; then every finitely presented right R-module is a direct sum of 
indecomposables each of which must be strongly indecomposable. 

So assume Condition ( 1) and let RX be a finitely generated left R-module. 
To show that R is semiperfect, it suffices to produce a projective cover of 
RX in the category R-Mod. Let p : RR” -+ Rx be an epimorphism of left 
R-modules. As the functor M @R - is right exact for each A4 E mod-R, this 
induces an epimorphism -@p : -@R Rn --+ - @.R X in the category (mod-R, Ab). 
Now - @R R” g (R;, -) is representable so that - @R X is finitely generated. 
By hypothesis, - @R X has a projective cover F + - @R X, whose domain is a 
coproduct factor of - @R R” E F IJ G. Then RR” = RF(R) CD RG( R) implies 
that RF(R) is a projective left R-module and F % - @R F(R). Now it is 
straightforward to verify that the R-epimorphism p]F(R) : RF(R) + Rx is a 
projective cover of Rx. 0 

As the proof shows, insisting that R be semiperfect is unnecessary in Con- 
dition (2) of Theorem 2.3. Nevertheless, we emphasize that R is semiperfect 
because Warfield [23, Section 21 showed that for such a ring R, the Auslander- 
Bridger Transpose [ 51 may be defined in such a way so that it becomes a 
bijective correspondence between the finitely presented right R-modules and 
the finitely presented left R-modules (up to isomorphism) . Furthermore, this 
Transpose commutes with direct sums and respects strong indecomposibility. 
Condition (2) of Theorem 2.3 thus holds for R iff the analogous statement for 
left R-modules holds. Consequently, the equivalent conditions of Theorem 2.3 
are left-right symmetric, that is, they are true of the ring R iff they are true of 
the opposite ring R”P. 

Definition. A ring R is called Krull-Schmidt if it satisfies any of the equivalent 
conditions of Theorem 2.3 or, equivalently, any one of their left counterparts. 

The following important correspondence, which holds in the context of 
JG-ull-Schmidt rings, pervades the sequel. We will state it for right R-modules 
only. The proof is immediate from the existence and uniqueness of projective 
covers and Yoneda’s Lemma. 

Theorem 2.4. Let R be a Krull-Schmidt ring. The assignment 

hfR H SM = (M,-)/RadW,-) 

is a bijective correspondence between the finitely presented indecomposable right 
R-modules MR and the simple functors S E (mod-R, Ab). Given such a functor 
S, then S = SM where MR is the unique indecomposable in mod-R such that 

S(M) # 0. 0 
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Theorem 2.4 may be used to distinguish a special class of finitely presented 
indecomposable modules over a Krull-Schmidt ring: Call an indecomposable 
M E mod-R isolated if Rad(M, -) is a finitely generated functor. Let MR be 
isolated and let a E M, a # 0 generate the subfunctor q of the forgetful functor. 
The epimorphism q : (Ad,-) + ~(-1 determined by VM( 1 M) = a is then a 
projective cover of q (-). By Proposition 1.2, the functor q (Rad(M, -) ) is of 
the form I,v(-) for some right pp-formula over R and so the simple functor 
SM = (M, -)/ Rad(M, -) Z p/w. The pair of functors ry c a, has the property 
that if cr is any (finitely generated) functor such that I+V c 0 c 9, then D = I+V 
or (T = 9; such a pair of finitely generated subfunctors of the forgetful functor 
is called a minimal pair. 

Proposition 2.5. A finitely presented indecomposable right R-module kfR is iso- 
lated ijjf there is a minimal pair I,U c v, of finitely generated subjiinctors of the 
forgetful functor (RR,-) such that SM g ~J/I+v. 

Proof. One direction has already been proved. Assume that M E mod-R is 
indecomposable and that a minimal pair y c ~7 exists such that SM FZ ~/I,u. 
Let a E v(M) \ y(M) generate the functor q’. Then SM E ~‘/(~‘A I,V) where 
(v’ A w) c v’ is another minimal pair. The epimorphism q : (M, -) -+ 9’ 

defined by VM ( 1 M) = a is part of the short exact sequence 

0 + Kerq of Rad(M,-) ‘?(v’r\ w) --f 0. 

As (@ A y ) is finitely generated, and our goal is to prove Rad (M, -) also to 
be such, it suffices to verify that Kerq is finitely generated. Think of q as a 
morphism from (M, -) to (R, -) so that ye = (f, -) for some f : RR + MR 
(in fact f ( 1) = a). If C = Coker f, then by the right exactness of the functor 
HomR (-, XR ) the exact sequence 

induces an exact sequence in (mod-R, Ab) 

0 + (C,-) i (M,-) A(R,-) 

showing that Ker q is finitely generated. 0 

Let NR be a finitely presented indecomposable right module over a Krull- 
Schmidt ring R; then R’ = EndR NR is a local ring. If R/E is the injective hull 
of the unique simple left R/-module, then R/E is an injective cogenerator and 
the full force of Proposition 1.4 may be applied to the left R-module 

~(Nfl) = HOm,y(R’NR,R~E). (3) 

If NR is isolated with SN E p/w, then by Proposition 1.4, (w*/q*) (~Nfl) # 0. 
Now RN” has a local endomorphism ring [27, p. 3121 and I,U* c q* is a 
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minimal pair of finitely generated subfunctors of (RR, -), so if ~Nfl is linitely 
presented, then it must be isolated. 

Corollary 2.6. Let R be a Krull-Schmidt ring and NR a finitely presented 
isolated right R-module with SN s q/w. If the left R-module ~Nfl de$ned by 
(3) is finitely presented, then R Nl is isolated and S,H 2 ( y* / q* 1. 0 

3. Left pure-semisimple rings 

A ring R is called left pure-semisimple if the subfunctors of (RR, -) E 
(mod-R,Ab) satisfy the ascending chain condition. Since every functor F E 
(mod-R,Ab) is the sum of its finitely generated subfunctors (by Yoneda’s 
Lemma), this is equivalent to the condition that every subfunctor of (RR, -) E 
(mod-R,Ab) is finitely generated. By Proposition 1.2, the ring R is left pure- 
semisimple iff every subfunctor of (R R, -) is of the form I$ (-) where $0 is a 
right pp-formula. 

Let us show that if R is left pure-semisimple, then every finitely generated 
functor F E (mod-R, Ab) satisfies the ascending chain condition on subfunc- 
tors. By Proposition 1.1, it is enough to verify this for every representable 
functor (MR,-) with A4 E mod-R. There is an epimorphism f : R! + MR 
from some tinitely generated free module to MR. This induces a monomor- 
phism of functors (f, -) : (M, -) + (R”, - ) E (R,-)n. Since the ascending 
chain condition clearly holds for subfunctors of (R, -)n, it must hold for 

(M, -). 
The characterizations of left pure-semisimple rings are legion. Those which 

will be useful to us are included in the next theorem. 

Theorem 3.1 (see [3,4,8,14,26] ). Every left pure-semisimple ring is left ar- 
tinian. A ring R is left pure-semisimple iff one of the following equivalent 
conditions holds: 

(1) Every left R-module is a direct sum of indecomposable modules. 
(2) Every left R-module is a direct sum offinitely generated modules. 
(3) The functor (RR,-) E (R-mod, Ab) satisfies the descending chain condi- 

tion on finitely generated subfunctors. q 

This last characterization of left pure-semisimple rings is an immediate con- 
sequence of pp-duality. As every left pure-semisimple ring R is left artinian, we 
see that the finitely presented left R-modules are precisely the finitely generated 
left R-modules. It also follows that every left pure-semisimple ring is Krull- 
Schmidt and hence that every finitely generated functor F E (R-mod, Ab) is a 
finite sum of local functors; we will need this in the next proof. 
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Definition (see [3, p. 2901). A sequence of morphisms F = {J; : Mj -+ 

Mi+ 1 }i<w of left R-modules is noetherian if there is a natural number IZ < o 
such that fn...fifo = 0 or for every k > n, the morphism fk is an isomor- 
phism. 

The following characterization of left pure-semisimple rings is well-known. 
We prove only one direction as an illustration of the techniques used in the 
sequel. 

Lemma 3.2 (see [ 3,4,11,15] ). Let R be a Krull-Schmidt ring. Then R is left 
pure-semisimple iff every sequence of morphisms F = {J; : Mi -+ Mi+ 1 }i<o of 

yinitely presented) d m ecomposable left R-modules is noetherian. 

Proof. We will just prove that under this noetherian condition R is left pure- 
semisimple. Suppose that the descending chain condition fails for the finitely 
generated subfunctors of (RR, -). Call a finitely generated subfunctor v of 
(RR, -) unfounded if it contains a strictly descending chain of finitely generated 
subfunctors; so our assumption is that (RR, -) is unfounded. Clearly, every 
unfounded ~1 strictly contains another unfounded I,U and if we decompose an 
unfounded p as a finite sum v = xi,1 pi of local subfunctors ql, then one of 
the vi must be unfounded as well. Thus arises a strictly descending sequence 
of local subfunctors of (RR, -): 

For each i < o.~, let ai E pi(Mi) be a projective cover of vi(-). Every Mi 
is therefore indecomposable. By the Generator Lemma there is a morphism 
5 : M, + Mi+l such that f (a,) = ai, 1. It is clear from the definition of 
the f; that for each n < o, the composition fn.. fi fo # 0. And because the 
descending chain is strict, no f; is an isomorphism. 0 

Let R and R’ be rings. An equivalence between the category of finitely 
generated right R-modules and the category opposite of the finitely generated 
left R’-modules is called a Morita duality. A necessary condition for such a 
duality to exist is that R be right artinian and that R’ be left artinian. Thus 
the categories in question are mod-R and R’-mod and Morita duality is a 
contravariant functor D between the two. 

A ring R (respectively R’) is called right (respectively left) Morita if there 
exists a ring R’ (respectively R) and a Morita duality 27 : mod-R -+ R/-mod. A 
necessary and sufficient condition for R to be right Morita is that R be right 
artinian and that there be a finitely generated injective cogenerator ER in the 
category Mod-R of right R-modules. If R’ = EndR ER, then the contravariant 
functor D = HOlnR (-, ~1 ER) : mod-R + R’-mod is a Morita duality. There is, 
of course, an analogous characterization of left Morita rings from which it is 
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easy to spot that every left pure-semisimple ring is left Morita. The following 
theorem is due to Simson. 

Theorem 3.3 (see [ 201). Let V : mod-R + RI-mod be a Morita duality. Then 
R is left pure-semisimple iff R’ is left pure-semisimple. 

This will follow from a result of Zimmermann-Huisgen and Zimmermann 
just as soon as we introduce another definition. 

Definition (see [ 3, p. 2901). A sequence of morphisms G = {gi : Ni+ 1 + 

Ni)io 0 f left R-modules is artinian if there is a natural number n < u such 
that gogi . . . g, = 0 or for every k 2 n, the morphism gk is an isomorphism. 

Proposition 3.4 (see [ 28, Lemma Tr] and [ 11, Proposition] ). Let R be a semi- 
primary ring, that is, the Jacobson radical J(R) of R is nilpotent and R/J(R) 
is semisimple artinian. Then the following are equivalent: 
( 1) Every sequence of morphisms .F = {J; : Mi + Al+ l}icw offinitely presented 

indecomposable left R-modules is noetherian. 
(2) Every sequence of morphisms G = { gi : Ni+ 1 --t Ni)i<, offinitely presented 

indecomposable right R-modules is artinian. q 

Proof of Theorem 3.3. Let D : mod-R + R’-mod be a Morita duality. Then both 
of the rings R and R’ are Krull-Schmidt and semiprimary. By Lemma 3.2, the 
ring R is left pure-semisimple iff every chain of morphisms between finitely 
presented indecomposable left R-modules is noetherian. By Proposition 3.4, 
this is equivalent to every chain of morphisms between finitely presented in- 
decomposable right R-modules being artinian which, by the Morita duality, is 
equivalent to every chain of morphisms between finitely presented indecom- 
posable left R’-modules being noetherian. Finally, this last clause is equivalent, 
by Lemma 3.2, to R’ being left pure-semisimple. 0 

Suppose that R is left pure-semisimple and that NR is a finitely pre- 
sented indecomposable right R-module. Because every subfunctor of (N, -) E 
(mod-R, Ab) is finitely generated, NR is isolated. The indecomposable left R- 
module ~Nfl defined by (3) is finitely generated and hence, by Corollary 2.6, 
it is isolated. 

Proposition 3.5. Let R be left pure-semisimple. The rule NR H ~Nfl is a btjective 
correspondence between the finitely presented indecomposable right R-modules 
and the isolated left R-modules. 

Proof. The only point that needs to be clarified is that this assignment is 
surjective. If X E R-mod is isolated, then the corresponding simple functor 
5’~ E v/w where ry c q is a minimal pair of finitely generated subfunctors 
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of (RR,-). If NR E mod-R is such that S,v E I+v*/~*, then by Corollary 2.6, 
Xz N’. q 

If R is a Krull-Schmidt ring and NR E mod-R is indecomposable, then 
there is a ring isomorphism between the local ring RN = EndR NR and the 
endomorphism ring of RN’ [27, p. 3121. It is shown in [ 16, Corollary 2.51 
that for each indecomposable N E mod-R, the rule N H Nfl is part of a Morita 
duality D)N : RN-mod + mod-RN. It is for this reason that the correspondence 
N + Nn is called endoduality and that the left R-module RN’ is called the 
endodual of NR. The existence of this endoduality essentially depends on the 
following result. 

Proposition 3.6 (see [ 16, Theorem 2.31). Let R be a left pure-semisimple ring. 
Every finitely presented right R-module MR is endofinite, that is, A4 has finite 
length as an EndR hfR-mOdUh?. Every isolated left R-module is endofinite. 0 

The second statement follows from the first together with Proposition 1.4 
and the following easy consequence of the Generator Lemma. 

Proposition 3.7. Let R be any ring and MR a finitely presented right R-module. 
Then ktR is endofinite iff there is a composition series in the lattice of finite 
matrix subgroups of MR. When this is the case, an abelian subgroup of A4 is a 
finite matrix subgroup of kLR iff it iS an EndR MR-module. 0 

4. Preinjective modules 

In this section, we will consider the modules called preinjective. Particular 
attention will be paid to their behavior under Morita duality and endoduality. 
The study of such modules was initiated by Auslander and Smalo [6] in the 
context of artin algebras. Over a left pure-semisimple ring they were studied 
by Zimmermann-Huisgen [ 27 1. 

A subcategory of mod-R is called additive if it is closed under isomorphism, 
direct sums and direct summands. If C is a subcategory of mod-R, then 
addC denotes the smallest additive subcategory of mod-R containing C. That 
a category is additive is expressed by the equation C = add C. If C = {M} 
consists of a single object, then addC will be denoted by add(M). If C = 
addC C mod-R, define mod-R 1 C to be the subcategory of mod-R consisting 
of those objects without a summand in C. 

Let R be a Krull-Schmidt ring and MR E mod-R. Then add(M) is the 
category of finitely presented right R-modules all of whose indecomposable 
summands are also summands of MR. The category mod-R 1 add(M) is then 
additive. If F E (mod-R,Ab) has finite length, consider a composition series 
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F = F. > F, > ... > F, = 0. 

Every composition factor Fj/Fj+ 1 is a simple functor corresponding to some 
indecomposable Nj E mod-R, so if K E mod-R is an indecomposable such that 
F(K) # 0, then for some i, K 2 N,. Letting N = $, Nj, we have that F = 0 

when restricted to the subcategory mod-R ) add(N). 

Assumption. For the remainder of this section R will denote a left pure- 
semisimple ring. 

Proposition 4.1. Let R be left pure-semisimple. A finitely generated functor v, C 
(RR,-) has finite length iff there is a jkitely presented module MR E mod-R 
such that y(K) = 0 for all KR E mod-R 1 add(M). 

Proof. Let A4 E mod-R be such that q~ (K) = 0 for all K E mod-R 1 add(M). 
We will show that the lattice of (finitely generated) subfunctors of q~ is isomor- 
phic to the lattice of finite matrix subgroups of MR contained in 01 (MR), which 
has a composition series by Proposition 3.7. The map y c-i vu(M) is clearly 
onto and if vl c I,U~ C q~,, then there is a finitely presented indecomposable 
NR E mod-R such that ( I~~/I,v, ) (NR) # 0. By hypothesis NR is isomorphic to 
a summand of MR and hence ~1 (M) c ly2 (Al). 0 

By the ascending chain condition on the subfunctors of (RR, -), there is a 
maximal subfunctor (RR, -). of finite length; it contains all other finite length 
subfunctors. We will study the support of this functor. 

Definition. An indecomposable module NR E mod-R is called preinjective if 
there is a finitely presented right R-module MR such that N E mod-R 1 

add(M) and whenever the morphism f : NR + KR is a monomorphism with 
K E mod-R 1 add(M), then f is a split-monomorphism. We will say that MR 
witnesses the preinjectivity of NR. 

Theorem 4.2. Let R be left pure-semisimple and right artinian. A finitely pre- 
sented indecomposable N E mod-R is preinjective iff (RR, N)o # 0. 

Proof. Let NR E mod-R be preinjective and let MR E mod-R be a witness to 
this. Consider the reject of NR in mod-R / add(M $ N): 

Rej(NR) = n{Ker f 1 f : N + Y and Y E mod-R I add(M@ N)}. 

As R is right artinian, NR has finite length and this intersection may be taken 
over a finite subset. By hypothesis, Rej ( NR ) # 0. Pick a E Rej ( NR ) which is 
nonzero and let q be the finitely generated subfunctor of (RR, -) generated 
by a E NR. Since the Rej ( NR ) is an EndR N-module, q (N) c Rej (N). By the 
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Generator Lemma, v, (K ) = 0 for each KR E mod-R 1 add (A4 $ N) and so by 
Proposition 4.1, v, has linite length. 

For the converse, let p be a minimal functor of finite length with the property 
that q (N) # 0. By Yoneda’s Lemma, there is a nonzero morphism q : (N, -) -+ 

cp. As Im y & v, and (Im q) (N) # 0 it must be that q is an epimorphism and, 
therefore, a projective cover. There are only finitely many indecomposables 
Mi E mod-R such that (Rady,) (Mi) # 0. Let M = eiMi. We claim that 
MR witnesses the preinjectivity of NR. First, N E mod-R 1 add(M) since, by 
the choice of v, (Rad p) (N) = 0. Second, let K E mod-R 1 add(M) and 
f : N -+ K a monomorphism. As a = V,V ( 1 N) E ~1 (N) is a projective cover 
and f(a) E 9 (K) \ (Rad p) (K) is a generator of p, the monomorphism f 
splits, by Proposition 2.2. 0 

Thus there are only finitely many preinjective right R-modules. Indeed, a 
finitely presented indecomposable right R-module is preinjective iff it corre- 
sponds, via Theorem 2.4 to a composition factor of (RR,-)o. 

Definition. An indecomposable module RY E R-mod is called preprojective if 
there is a finitely presented left R-module Rx such that Y E R-mod 1 add(X) 
and if the morphism f : Rz --+ RY is an epimorphism with Z E R-mod I 

add(X), then f is a split-epimorphism. 

The notion of a preprojective module is the categorical dual of the notion 
of preinjective. More precisely, if 27 : mod-R + R’-mod is a Morita duality, 
then a module NR E mod-R is preinjective iff the module D(N) E R’-mod is 
preprojective. Since every left pure-semisimple ring is left Morita, the following 
is a consequence of Theorems 3.3 and 4.2. 

Corollary 4.3. If R is left pure-semisimple, then there are only finitely many 
preprojective left R-modules. 

The relationship between the preinjective right R-modules and the prepro- 
jective left R-modules is, as we shall see, more interesting with regard to 
endoduality. Call a subfunctor F C (RR, -) cofinite in (RR, -) if the quotient 
functor (RR,-)/F has finite length. 

Theorem 4.4. Let R be left pure-semisimple and F E (R-mod, Ab) cofinite in 
(RR,-). If RY is a finitely presented indecomposable left R-module with the 
property that Y > F (Y ), then RY is preprojective. 

Proof. Let F C (RR, -) be a maximal functor cofinite in (RR,-) such that 
Y 3 F ( Y ). By the definition, F cannot be written as a nontrivial intersection 
F = F, rl F2 of properly larger subfunctors of (RR, -). Thus the finite length 
functor G = (RR, -)/F has a unique simple subfunctor necessarily isomorphic 
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that is, it is not known whether pure-semisimplicity is a left-right symmetric 
notion. For artin algebras, Auslander [4] has settled the following conjecture 
in the positive. 

The Pure-semisimple Conjecture. Every left pure-semisimple ring is of finite 
representation type. 

If R is of finite representation type, then Condition (4) of Theorem 5.1 
follows from Condition (3 ) and left-right symmetry. The Condition (2) follows 
from Condition (4) and Proposition 3.5. When R is of finite representation 
type, then we have the following equalities of functors: 

(RR,-JO = (RR,-), (RR,-)’ = 0. 

It follows from Theorem 4.2 that every indecomposable right R-module is 
preinjective, while Theorem 4.4 implies that every indecomposable left R- 
module is preprojective. 

Theorem 5.2. A right artinian and left pure-semisimple ring R is of finite rep- 
resentation type iff the number of preinjective right R-modules is the same as 
the number of preprojective left R-modules. In the terminology of Corollary 4.5, 
this is equivalent to the equality 

z,(R) = m,(R). 

Proof. If R is of finite representation type, then it is left and right pure- 
semisimple. Every indecomposable left R-module is therefore isolated. By 
Proposition 3.5, endoduality is a bijection between the indecomposable right 
R-modules and the indecomposable left R-modules. The number of left pre- 
projectives is therefore equal to that of the right preinjectives. 

For the converse, suppose that R is not of finite representation type. We will 
exhibit a non-isolated preprojective left R-module. The result then follows from 
Proposition 3.5 and Corollary 4.5. By hypothesis, we have that (RR,-)’ is a 
nonzero functor in the category (R-mod, Ab). Let v] : (M, -) + (RR, -)O be a 
projective cover and let RN be an indecomposable summand of M = N@K. If 
RN were isolated, then F = Rad (N, -) IJ (K, -) would be a finitely generated 
subfunctor of (M, -) and so q (F ) would be a finitely generated functor colinite 
in (RR, -), but properly contained in (RR, -)O. That is a contradiction. That RN 
is preprojective follows from Theorem 4.4 and the fact that N 1 q (F) (N). 0 

A ring R is said to have self-duality if there is a Morita duality V : 

mod-R + R-mod. Every artin algebra has self-duality. It is clear that a left 
pure-semisimple ring with self-duality has as many left preprojective modules 
as it does right preinjective modules. 
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Corollary 5.3. A left pure-semisimple ring with self-duality is offinite represen- 

tation type. 

Definition. A Morita sequence is a finite sequence of rings (RI, Rz, . . . , R, ) such 
that for each k < n there exists a Morita duality 2)k : mod-& -+ &+i-mod. 

Given a Morita sequence (RI, RI,. . . , R, ) with RI a left pure-semisimple 
ring, we may infer from Theorem 3.3 that for each i < n, the ring Ri is also 
left pure-semisimple. By Theorems 3.3 and 5.1, we have the following. 

Proposition 5.4. If 22 : mod-R + RI-mod is a Morita duality, then R is offinite 
representation type tff R’ is. q 

So if the initial entry R1 of a Morita sequence (RI, RZ, . . . , R, ) is a coun- 
terexample to the Pure-semisimple Conjecture, then so is every subsequent 
ring Rj for i _< n. 

Proposition 5.5. Let R be a counterexample to the Pure-semisimple Conjecture. 
The length n of any Morita sequence (R = RI, Rz, . . . , R, ) is bounded by the 
number of preprojective left R-modules, that is, we have the inequality 

Proof. By the Morita duality D, : mod-R, + Ri+i-mod, we have that for each 
i < n, ir (Ri) = $11 (Ri, I ). As RI is a counterexample to the Pure-semisimple 
Conjecture, so is every ensuing Ri. If i < n, then Ri is, in addition, right artinian 
so Theorem 4.5 applies to yield the inequality zr (Ri) < ~1 (Ri). Combining 
this with the above gives that for each i < n, 

p/(&+1 1 < p/(h). 

Now every projective indecomposable is preprojective so ~1 (R, ) > 0 and hence 
for every j < n, 631 (R,-j) > j. Letting j = n - 1 yields the proposition. 0 

If (Rl,R2,... , R,) is a Morita sequence, then so is any initial segment 

(Ri,Rz,.. . , R, ) with m 5 n. The former sequence is then called an extension 
of the latter. It is clear that the Morita sequence (RI, R2, . . . , R,) has a proper 
extension iff the final entry R, is right Morita. 

Corollary 5.6. If there exists a counterexample to the Pure-semisimple Conjecture, 
then there exists a counterexample which is not right Morita. 

Proof. Let R be a counterexample and consider a Morita sequence (R = 

Rl,Rz,.. . , R,) which has no proper extensions; such a sequence exists by the 
previous proposition. The ring R, is then a counterexample which is not right 
Morita. 0 
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that it contains a unique minimal ideal Z and the quotient ring R/Z is of li- 
nite representation type. We will demonstrate how the formal lower triangular 
matrix ring (R/J(R) )I corresponding to the R/J (R)-R/ J (R)-bimodule Z is 
another counterexample to the Pure-semisimple Conjecture. This counterex- 
ample (R/J(R))1 is not right Morita, it is (left and right) hereditary and its 
Jacobson radical is a minimal ideal. A general treatment of Formal triangular 
matrix rings is offered in [ 13, Section 4A]. 

Let J denote the Jacobson radical of R. The ring (R/ J)I, sometimes denoted 
as 

(RIJ)I = (R!J R;J)’ 

is the formal lower triangular matrix ring consisting of matrices 

n+J 0 
i r2 + J > 

where r1,r2 E R and i e I. 

Addition is defined entrywise while multiplication is given by 

( 

rl+J 0 
>( 

ri + J 0 

> ( 

r1t-i + J 0 

i r2 + J ‘I 1 r;+J = ) irI, + r2ir r2r$ + J ’ 

The Jacobson radical J ( (R/ J)r ) consists of the strictly lower triangular matri- 
ces. The (left, right) ideals of (R/J )I contained in J ( (R/ J)I ) coincide with 
the (left, right) ideals of R contained in 1. Thus J ( (R/ J)I ) is a minimal 
ideal. As the quotient ring (R/J)I/ J( (R/J)I) g R/J CE R/J is semisimple 
artinian, the ring (R/ J)I is left artinian. 

The left (R/ J)I-modules are in bijective correspondence with the class of 
triples (X’, X”; )3) where X’ and X” are left R/J-modules and ,l : RIJZ@R,JX’ -+ 
RlJ X” is an R/J-morphism. The associated module may be represented as the 

set of column vectors (i,‘,) with X’ E X’ and x” E X”, the action of (R/J )I 
given by 

( ” : J r2 ! J) (z”) = (i(i@:‘;; r2.x”)’ 

This formula leaves no choice as to how a morphism of triples f : (X’, X”; 1) + 

(Y’, Y”; y) ought to be defined: It is a pair f = (f’, f”) of R/ J-morphisms 
such that the diagram 

z @ X’ 2-+ 1” 

lr@f’ 

I I f” 

I@ Y’ y- Y” 

commutes. Let X = (X’, X”;2) be a left (R/ J)l-module and let Xl & X’ be 
the R/J-submodule defined as 
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x, = {X’EX’p’iEI, A(i@X’) = O}. 

175 

It is straightforward then to calculate the socle of X as sot(X) = (XI, X”; 0). 
A left (R/J)r-module X is called a Grassmanian if XI = 0. The Grassmanians 
form an additive subcategory denoted by Gr(R/J,Z) 2 (R/J)I-Mod. Since 
every left (R/J )I-module X factors as a direct sum X = Xn @ (XI, 0; 0) where 
Xc is a Grassmanian, it is clear that every representation in add(R/ J, 0; 0) is 
injective and that Gr(R/J,I) = (R/J)I-Mod 1 add(R/J,O;O). 

The Grassmanian functor Gr : R-Mod + Gr(R/ J, I) is defined as 

Gr(M) = (M/annI(M),soc(M);aM), 

where QM : RjJI @‘R/J Ml annI (M) + sot(M) is given by cy~(i 8 (m + 
annt (M) ) = im. The following is due to Auslander. 

Theorem 6.1 (see [2, Theorem 3.1, p. 641). Let Ct C: R-Mod be the additive 
subcategory of R-Mod whose objects are the left R-modules RM such that the 
annihilator annt (M) of I in M is an injective left R/I-module. The restriction 
Gr]c, of the Grassmanian functor is a representation equivalence, that is, the 
functor Gr : CI + Gr (R/ J, I) has the following properties.. 

( 1) The functor Gr 1 C, is dense, that is, for every X E Gr(R/ J, I), there is an 
RM E Ct C R-Mod such that Gr(M) % X. 

(2 ) The functor Gr Ic, is full. 
(3) If f : RM + RN is a morphism in Ct for which Gr(f) : Gr(M) + 

Gr( N) is an isomorphism, then f is an isomorphism. 0 

Proposition 6.2. Let R be a minimal counterexample to the Pure-semisimple 
Conjecture which is not right Morita. If I is the unique minimal ideal of R 
and J the Jacobson radical of R, then the formal lower triangular matrix ring 
(Rl J ) I is left pure-semisimple. 

Proof. Since the ring (RI J)t is left artinian, it is Krull-Schmidt. Towards 
application of Lemma 3.2, suppose that there is a non-noetherian sequence of 
morphisms {f;: : Xi + Xi+l} between finitely generated indecomposable left 
(RI J)I-modules. If some X,, is not Grassmanian, then, since it is indecompos- 
able, it must be a simple injective representation of the form X, = (S, 0; 0) 
where S is a simple left R/J-module. Because fk # 0 for all k 2 n, this implies 
that for every k 2 n, Xk E X, and that every fk is an isomorphism. From 
this contradiction, we infer that each Xi is Grassmanian and so by the first 
two properties stated in the theorem on Grassmanians, we may rewrite our 
non-noetherian sequence as {Gr(gi) / Gr(Mi) + Gr(Mi+ I)} where {gi 1 Mi --+ 
Mi+ I} is a sequence of morphisms between indecomposable, and hence finitely 
generated, left R-modules in CI. By the third property given in the theorem on 
Grassmanians, the sequence {gi 1 Mi + Mi+l} is not noetherian, contradicting 
the hypothesis that R is left pure-semisimple. 0 
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In what follows, we will show that the ring (R/ J)r is not right Morita 
and is therefore another counterexample to the Pure-semisimple Conjecture. 
If R is not right artinian, then, since R/Z is right artinian, the ring (R/J)1 
cannot be right artinian and we are done. To prove the general case, we will 
apply the theorem on Grassmanians on the right side. So recall that a right 
(R/J)I-module is of the form Y = (Y’, Y”; p) where Y’ and Y” are right 
R/J-modules and p : Y” @R/J ZR/J + YA,, is an R/J-morphism. The right 
Grassmanians are defined as those Y for which the socle sot(Y) = (Y’, 0; 0). 

Theorem 6.3. Zf R is a minimal counterexample to the Pure-semisimple Con- 
jecture and R is not right Morita, then the formal lower triangular matrix ring 
(R/J)1 is yet another non-right Morita counterexample. 

Proof. We may assume, without loss of generality, that R, and hence (R/ J)r, 
is right artinian. There exists an indecomposable injective right R-module 
ER which is not finitely generated. As R/Z is of finite representation type, 
and therefore right Morita, the injective right R/Z-module annl (E) is linitely 
generated. For a submodule MR of ER which contains annI = annl (M), 
consider the right Grassmanian Gr(MR) = (soc(M),M/annl(M);a~) = 
(soc(E),M/annl(E);~~~). It corresponds to a right (R/J)I-module with sim- 
ple socle (sot(E), 0; 0). As the length of MR grows, so does that of Gr(M). 
The indecomposable injective right (R/J )I-module E (sot (E ), 0; 0) cannot 
therefore be finitely generated. 0 

Write R/J = @y=, R, as a direct sum of simple artinian rings. As Z = 
@y= I RiZ is a minimal ideal, there is a unique i, say i = 1, such that RIZ # 0 
and in particular R1Z = I. Similarly, there is a unique j such that ZRj = I. If 
j # 1, we will set j = 2. In either case, there is a decomposition 

where only the first factor is not semisimple artinian. This first factor, call it 
R’, is therefore a counterexample to the Pure-semisimple Conjecture which is 
not right Morita. 

Proposition 6.4, Let PI,. . . , P,,, be a complete list (up to isomorphism), without 
repetitions, of the indecomposable projective left R’-modules. The basic ring 

D(R’) = FndRf (6 Pi) 
i=l 

is a non-right Morita counterexample to the Pure-semisimple Conjecture. 
Furthermore, the Jacobson radical of B(R’) is a minimal ideal. 
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Proof. As R’ is semiperfect, it is Morita equivalent to its basic ring t3(R’) by 
[ 1, Proposition 27.141. Hence the Jacobson radical J (B(R’)) is a minimal 
ideal. By [ 1, Proposition 2 1.5 ( 1) ] for left modules, every left B (R' )-module is 
a direct sum of indecomposables and B (R' ) is therefore left pure-semisimple. 
That a (R' ) is not right Morita follows from [ 1, Propositions 2 1.6 (2)) 2 1.8 (2) 
and (3)] for right modules. q 

Let us calculate B(R’) for the two cases j = 1 and j = 2. If j = 1, then 

has only two indecomposable projective left R’-modules Pi and P2 and R’ 
decomposes as 

R’ = (O,R,;O) $ (Rl,Z;a~) = P; $ P;. 

If we denote by F the division ring (PI, PI ) = (Pz, Pz), then 

(Pl,Pl) (P2,Pl) 

(P,,P,) (P2,P2) 

where (PI, P2) has an F-F-bimodule structure induced by F = (P2, PI) on 
the left and F = (PI, PI ) on the right. 

If j = 2, then we have RlZR2 = Z and 

As a left R/-module R’ decomposes into projective indecomposables as 

R’= P,“‘$P;@Py@P; 

where 

PT” = (O,Rl,O), P2” = (R~,~;cQ), P3” = (R1,O;O), P4” = (0,R2;0). 

We have the division rings F = (Pl,Pl) = (P3,Pj) and G = (P2,Pz) = 
(Pd, P4) and the only nontrivial Horn set between distinct projective indecom- 
posables is (PI, P2 ) . Therefore, 

(4) 

Theorem 6.5. There is an enumeration PI, . . . , P2j of indecomposable projective 
left RI-modules such that the only nontrivial Horn set between distinct projective 
indecomposables is HomRl (PI, P2 ). The endomorphism ring of each P, is a 
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division ring. Let ~BF = J (R’) denote the simple G-F-bimodule (PI, P2) 
where F = (PI, P1 ) and G = (P2, P2). The lower triangular matrix ring 

is a non-right Morita counterexample to the Pure-semisimple Conjecture. 

Proof. The first two statements have been verified above. When j = 1, the 
ring R’ is already of the sought form with F = G. When j = 2, the last 
statement follows from (4). 0 

The indecomposable injective left RB-modules are El = (F (B, G)o, CC; Ev) 
where Ev : oB @F (B,G) + aG is given by Ev(b @ h) = u(b) and E2 = 
(FF, 0; 0). The respective endomorphism rings are (El, El ) = Go* and 
(E2,Ez) = FOP and it is immediate that (El,El) = o( (B, G), F)F and 
(Ez, El ) = 0. Since RB is left pure-semisimple it is left Morita with a Morita 
duality I9 : RB-InOd + mod-S where 

S = EndR,(Et @El) = 
GOP 0 

G((B,G),F)F Fop 

By Theorem 3.3, the ring S is left pure-semisimple and hence left artinian. 
Because S is right Morita, it is right artinian. Thus the G-F-bimodule oBb = 
( (B, G), F) is finite-dimensional both as F-vector space and as G-vector space. 

Proposition 6.6. Let F and G be division rings, each of which is finite-dimensional 
as a vector space over its respective center, and let ~BF be a G-F-bimodule. If 
the formal lower triangular matrix ring 

is left pure-semisimple, then it is right Morita. 

Proof. Dowbor and Simson [9, Proposition 1.31 proved that if F and G are as 
given and oB$ is a G-F-bimodule finite-dimensional both as F-vector space 
and as G-vector space, then the same is true of the F-G-bimodule F (B’, F )o. 
From the discussion preceding this proposition, we may apply this result to the 
G-F-bimodule B’ = o( (B, G), F)F, proving that the F-G-bimodule F (B, G)o 
is also finite-dimensional on both sides. Another application of the same shows 
that ~BF is finite dimensional on both sides and hence that Rg is right artinian. 

The injective right RB-modules are (0, G; 0), which is simple, and 
( FF, (B, F ) G; Ev). Yet another application of the result by Dowbor and Simson 
shows that (B, F ) o is a finite-dimensional right F-vector space. Both of these 
injectives are then finitely generated and RB is therefore right Morita. 0 
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Starting from an arbitrary counterexample R, we have arrived at the coun- 
terexample of Theorem 6.5 by performing three types of operations. Namely, 
we have applied Morita duality, Morita equivalence and we have, on more than 
one occasion, modded out by an ideal. It follows that each of the remaining 
division rings F and G is nothing more than the endomorphism ring of some 
simple R-module over the original ring R. If R is a polynomial identity ring, 
then by Kaplansky’s Theorem (cf. [ 18, Theorem 1.1, p. 37]), both F and G 
are finite-dimensional vector spaces over their respective centers. 

Theorem 6.7. Every left pure-semisimple polynomial identity ring is of finite 
representation type. 0 

We noticed above how the ring Rg fails to be right Morita iff one of the 
right vector spaces RF and (B, F )o is infinite dimensional. Suppose that RB 
is a non-right Morita counterexample to the Pure-semisimple conjecture. If 
Rg is right artinian, then (B, F)o is not finite-dimensional. We will prove 
that, in that case, the formal lower triangular matrix ring R(B,F) is yet an- 
other counterexample to the Pure-semisimple Conjecture, one that is not right 
artinian. 

Proposition 6.8. Let F and G be division rings and GBF a G-F-bimodule such 
that the ring Re is a right artinian, but not right Morita counterexample to the 
Pure-semisimple Conjecture. Then the formal lower triangular matrix ring 

RW) = ( (cF, ;) 
is a non-right artinian counterexample to the Pure-semisimple Conjecture. 

Proof. First note that dimF (B, F) = dim BF is finite so that R(B,F) is left 
artinian. We will apply Lemma 3.2 to show that R(B,F) is left pure-semisimple; 
note that a left R (B,F)-module is finitely presented iff it is finitely generated. 
By the use of reflection functors [7,19], we will indicate how the categories 
RB-mod 1 add(0, G;O) and R(B,F) -mod ( add( G, 0; 0) are equivalent. The result 
then follows immediately. 

Let X = (FX’, &“;A) E RB-mod [ add(O, G; 0). This is equivalent to the 
G-morphism i being an epimorphism. Let us define the reflection functor 

C+ : Re-mod 1 add(O,G;O) + R(B,F)-mod 1 add(G, 0; 0) 

at X by considering /z as part of a short exact sequence 

O+&erA=+&?J’FX +x”-0. I .A 

As FX’ and oB are finite-dimensional, so are oB @F X’ and G Ker;l. As BF is 
finite-dimensional, there is an isomorphism 
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GB@FX'= G(F(B,F)G,FX') 

natural for finite-dimensional FX’. The image of ker A under the natural iso- 
morphism 

(o Kerh, GB @F x') 

is an F-monomorphism 

c+(X) = (cKer1, 

g (cKer~,c(F(B,F),FX')) 

2 (F(B,F) @cKer&~X’) 

denoted by (kerA)‘: F(B,F) @oKerA -+ Fx’. Define 

FX; (kerA)‘) E R(B,F,-mod 1 add(G, 0; 0). 

The functor C- : R(B,F)-mod / add( G, 0; 0) + RB-mod ) add (0, G; 0) is 
defined for Y = ( GY’ , FY”; y ) E R(B,F)-mod 1 add( G, 0; 0) by considering the 
cokernel of the F-monomorphism y : F (B, F) @G Y’ --) FY” and retracing 
the definition of C+. The pair (C+, C- ) then constitutes an equivalence of 
categories [ 7,191. 0 

Theorem 6.9. If there is a counterexample to the Pure-semisimple Conjecture, 
then there exists a counterexample R which is (left and right) hereditary, not 
right artinian and whose Jacobson radical J(R) is a minimal ideal. 0 

Let us check how some of the general results regarding left pure-semisimple 
rings apply to a counterexample Rg where GBF is a simple G-F-bimodule 
infinite-dimensional as an F-vector space. If VF 5 BF is a finite-dimensional 
F-subspace Of RF, the triple ( (B/V)F, GG; TV) where nv : G@GBF --f (B/V)F 
is the natural quotient map, corresponds to a finitely presented indecomposable 
right RB-module. The endomorphism ring is easily computed as 

G(V) = {g E G ( gl/ 5 V}. 

This is a division ring contained in G and by Proposition 3.6, G is linite- 
dimensional as a left vector space over G ( V ) . However, as a right vector space 
over G(V), G cannot be finite-dimensional. For if G = CT= i giG( I’), then 
the G-F-subbimodule 

GVF = &iG(V)VF = kgivF 
i=l i=l 

of GBF would be finite-dimensional over F, contradicting the simplicity of 

GBF. 

Fix a natural number n. The multiplicative group GX of nonzero elements 
acts on the set of n-dimensional F-subspaces of BF. Two such vector spaces 
YF and I%$ lie in the same G”-orbit iff the finitely presented indecomposable 
right RB-modules ( (B/V)F, GG, nv) and ( (B/W)F, GG, nw) are isomorphic. 
By [ 17, Section 8.41, [ 281 or [24], it is known that there are only finitely many 
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isomorphism types and hence just finitely many G”-orbits of n-dimensional 
F-subspaces of BF. 
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