
Proc. London Math. Soc. (3) 112 (2016) 714–752 C�2016 London Mathematical Society
doi:10.1112/plms/pdw006

Powers of the phantom ideal

X. H. Fu and I. Herzog

Abstract

The mono-epi (ME) exact structure on the morphisms of an exact category (A; E) is introduced
and used to prove ideal versions of Salce’s Lemma, Christensen’s (Ghost) Lemma, and
Wakamatsu’s Lemma for an exact category. Salce’s Lemma establishes a bijective correspondence
I �→ I⊥ between the class of special precovering ideals of (A; E) and that of its special
preenveloping ideals. ME-extensions of morphisms are used to define an extension I � J of ideals.
Christensen’s Lemma asserts that the class of special precovering (respectively, special preen-
veloping) ideals is closed under products and extensions and that the bijective correspondence of
Salce’s Lemma satisfies (IJ )⊥ = J⊥ � I⊥ and (I � J )⊥ = J⊥I⊥. Wakamatsu’s Lemma asserts
that if a covering ideal I is closed under ME-extensions, then it is a special precovering ideal.

As an application, it is proved that if G is a finite group and Φ is the ideal of phantom
morphisms in the category k[G]-Mod, then Φn−1 is the object ideal generated by projective
modules, where n is the nilpotency index of the Jacobson radical J. If R is a semiprimary ring,
with Jn = 0, then Φn is generated by projective modules. For a right coherent ring R over which
every cotorsion left R-module has a coresolution of length n by pure injective modules, Φn+1 is
generated by flat modules.

1. Introduction

Let T be a triangulated category and T c be the subcategory of compact objects (see [38]).
A morphism f : X → Y in T is a phantom morphism [36, Def 2.4] if, for every morphism
c : C → X, with C ∈ T c, the diagram

C c � X

�
�

�
�
��

0
�

f

Y

is commutative. The first examples of phantom morphisms arose in algebraic topology
(see [34]), in the work of Adams and Walker [1], with T the stable homotopy category of
spectra. In the representation theory of groups, Benson and Gnacadja [9] discovered examples
of phantom morphisms when T = k[G]-Mod is the stable category of modules over the group
algebra k[G], where k is a field.

For the triangulated category T = k[G]-Mod, phantom morphisms were first investigated by
Gnacadja [26]. A morphism f : X → Y in k[G]-Mod induces a phantom morphism in k[G]-
Mod provided that, for every finitely presented left k[G]-module C, the composition fc factors
through some projective module P,
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C c � X

� �

f

P � Y

The second author [31] considered the same condition on a morphism f : X → Y in the
category R-Mod of left modules over an associative ring R with identity. This is equiva-
lent [24, Proposition 36] to the condition that the induced natural transformation TorR1 (−, f) :
TorR1 (−,X) → TorR1 (−,Y) vanishes, so that in the context of R-modules a phantom morphism
is the morphism version of a flat module.

Phantom morphisms constitute an ideal, denoted by Φ, in both a triangulated category T
and the module category R-Mod. Neeman [36] was the first to consider phantom morphisms
in a general setting, introducing conditions sufficient for the triangulated category T to be
phantomless, Φ = 0. For the stable homotopy category of spectra, as well as more general
triangulated categories satisfying Brown Representability, Christensen and Strickland [17,
Theorem 1.2] and Neeman [37, Corollary 4.4] proved that Φ2 = 0. Recently, Muro and
Raventos [35, Corollary 6.26] showed that if the subcategory of compact objects is replaced
by the (more general) notion of the category of α-compact objects, α being a regular cardinal,
then the ideal Φα of α-phantoms satisfies (∩n<ωΦn

α)2 = 0. Benson [6, 7], however, proved that
if the group G contains an elementary p-group of rank at least 3, then Φ2 �= 0 in the stable
category k[G]-Mod.

Benson and Gnacadja [8] noted that if the pure global dimension of the category k[G]-Mod is
bounded by n, then Φn+1 = 0 in the stable category k[G]-Mod. In most cases, it is possible to
artificially boost the pure global dimension of a group algebra k[G] by increasing the cardinality
of k, but their work suggests that there exists a finite bound, the phantom number of G, for
the nilpotency index of the phantom ideal Φ in k[G]-Mod for every field k. This is confirmed
by the theory developed in this article as follows.

To understand the statement of the theorem, recall that a ring R is semiprimary if the
Jacobson radical J = J(R) is nilpotent and R/J is semisimple artinian. If X is a subcategory
of A, then 〈X 〉 denotes the ideal generated by the isomorphisms 1X , X ∈ X , and any ideal of
the form I = 〈X 〉 is called an object ideal, more precisely, the object ideal generated by X .

Theorem (Theorem 9.1). If R is a semiprimary ring with Jn = 0, then Φn = 〈R-Proj〉 in
the module category R-Mod.

The proof follows the strategy used by Chebolu, Christensen, and Mináč [14] to obtain a
similar bound for the ghost number of a finite p-group. If M is a left R-module, then the Loewy
series {J iM}i�n is a filtration of M, of length at most n, whose factors are semisimple, hence
pure injective. One then develops a theory of special precovering ideals in an exact category (in
this case R-Mod) to prove an analogue (Theorem 8.4) of Christensen’s Lemma [15, Theorem
1.1]. This version of Christensen’s Lemma implies that every R-module M that can be filtered
by a series of length n whose factors are pure injective is right Ext-orthogonal to Φn. In the
case of a Quasi-Frobenius (QF) ring [39], this leads to a characterization (Proposition 9.2) of
the nilpotency index of the phantom ideal in the stable category R-Mod. This yields a uniform
bound given by n − 1, because every module decomposes as a direct sum M = E ⊕ M ′, where
E is projective/injective and the Loewy length of M ′ is bounded by n − 1, where n is the
nilpotency index of J. After seeing our work, David Benson obtained the same bound by a
very simple and direct proof, which he has allowed us to include here.
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Theorem (Theorem 9.3). If R is a QF ring with nonzero Jacobson radical J, then Jn = 0
implies that Φn−1 = 0 in the stable category R-Mod.

For example, if G = Z/2 × Z/2 is the Klein 4-group, and the characteristic of k is 2, then
J3 = 0 in k[G], so that Theorem 9.3 implies that Φ2 = 0 in the stable category k[G]-Mod, a
result established by Benson and Gnacadja [8, § 4.6] when k is countable. On the other hand, it
is a consequence of the Pure Semisimple Conjecture for QF rings [30, Corollary 5.3] that a QF
ring is phantomless if and only if it is of finite representation type [24, Proposition 41]. Because
the group algebra k[Z/2 × Z/2] is not of finite representation type [5, Theorem 4.4.4], Φ �= 0
in the stable category. Theorem 9.3 leads to the following positive resolution of a problem [8,
Question 5.2.3] posed by Benson and Gnacadja.

Corollary (Corollary 9.4). Let G be a finite group and k be a field. If Φ denotes the ideal
of phantom morphisms in the stable category k[G]-Mod of modules over the group algebra k[G],
then Φ|G|−1 = 0.

It should be noted that Theorem 9.1 is far more general, covering all artin algebras, and
therefore every finite-dimensional algebra, as well as every finite ring. For the class of coherent
rings, we build on the work of Xu [47] to attain the following related criterion, which also
improves the bound provided by the left pure global dimension of R.

Corollary (Corollary 9.8). Let R be a right coherent ring such that every cotorsion left
R-module C has a coresolution

0 � C � I0 � I1 � · · · � In � 0

with each Ik pure injective. Then Φn+1 = 〈R-Flat〉.

The relationship between phantom morphisms and the theory of purity had already been
noted by Christensen and Strickland [17]. For the derived category D(R) of a ring R, this was
made more precise by Beligiannis [3] and Christensen, Keller, and Neeman [16], who used the
difference between the pure global dimension of R and its homological dimension to construct
examples where Brown Representability fails. For example, if k is an uncountable field of
characteristic 2, then the Brown Representability for Homology fails in the stable category
k[Z/2 × Z/2]-Mod, while Φ2 = 0 still holds by Theorem 9.3. Indeed, the construction by Gray
and McGibbon [28] of a phantom preenvelope in the stable homotopy category of spectra is
the suspension of something analogous to a pure syzygy of a module. In a compactly generated
triangulated category, Krause [33, Theorem D] proved the existence of phantom precovers by a
dual argument, considering the desuspension of something analogous to the pure cosyzygy of a
module. Employing an argument reminiscent of triangle constructions in the stable category of
modules over a group algebra k[G], the second author [31, Proposition 6] proved the existence of
phantom precovers in the module category R-Mod : given a left R-module M, let p : R(α) → M
be an epimorphism from a free R-module, and take the pushout along the pure injective
envelope e : K → PE(K) of the syzygy K = Ω(M),

0 � K � R(α) p � M � 0

�

e

�

0 �PE(K) � F
ϕ � M � 0



POWERS OF THE PHANTOM IDEAL 717

The morphism ϕ : F → M is then a phantom precover. This simple construction stands in
stark contrast to the technically involved proofs, due to Bican, El Bashir, and Enochs [12] (see
also [18, 19]), of the existence of flat precovers in a module category.

Based on this construction of a phantom precover, Guil Asensio, Torrecillas, and the
authors formulated a theory [24] of ideal approximations in the setting of an exact category
(A; E) (see [13, 25]). This theory generalizes to ideals of morphisms the classical theory of
approximations, that is, precovers and preenvelopes, for subcategories of objects, pioneered by
Auslander and Smalø [2, Chapter VII] and Enochs [20] (see [4, 21, 27, 47]). An ideal I of
A is precovering if, for every object A in A, there exists a deflation i : I → A in I such that
every morphism i′ : I ′ → A in I factors through i,

I ′
�������������������� �

i′

I i � A

Ideal Approximation Theory [22, 24, 32, 41] for exact categories is devoted to the study of
precovering ideals, and the dual notion of preenveloping ideals, with emphasis on the notion
of a special precovering (respectively, special preenveloping) ideal. A special I-precover of an
object A is a deflation i1 : I1 → A that occurs in a conflation Ξ arising as a pushout

Ξ′ : K0 � I0 � A

�

k

�
Ξ : K1 � I1

i1 � A

along a morphism k ∈ I⊥. An ideal I is special precovering (respectively, special preenvelop-
ing) if every object has a special I-precover (respectively, special I-preenvelope).

In this article, we develop Ideal Approximation Theory further by introducing an exact
structure on the category Arr(A) of morphisms (arrows) of an exact category (A; E). The
category Arr(A) has the natural exact structure whose conflations are the morphisms of
conflations in (A; E). This exact category, which we denote by (Arr(A); Arr(E)), has been
studied by Estrada, Guil Asensio, and Özbek [22], who observe its shortcomings in their
Remark 3.4. In Definition 3.1, we introduce the notion of a mono-epi (ME) morphism of
conflations and denote by ME ⊆ Arr(E) the collection of such morphisms of conflations.

Theorem (Theorem 3.2). The mono-epi substructure (Arr(A);ME) ⊆ (Arr(A); Arr(E)) is
exact.

We use the exact structure on (Arr(A);ME) to find a place within Ideal Approximation
Theory for three of the pillars of the classical theory: Salce’s Lemma [45], Christensen’s
Lemma [15, Theorem 1.1] and Wakamatsu’s Lemma [46]. An ideal version of Salce’s Lemma
was already proved in [24] as the implication (2) ⇒ (3) of Theorem 1. The hypotheses are
weakened here to obtain the following.

Theorem (Theorem 6.3). (Salce’s Lemma) Let (A; E) be an exact category with enough
injective morphisms and enough projective morphisms. The rule I �→ I⊥ is a bijective
correspondence between the class of special precovering ideals I of (A; E) and that of its
special preenveloping ideals K. The inverse rule is given by K �→ ⊥K.
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Just as the classical Salce’s Lemma gives rise to the central notion of a complete cotorsion
pair, Theorem 6.3 leads to the notion of a complete ideal cotorsion pair (I, I⊥), where I is
a special precovering ideal. The exact structure on (Arr(A);ME) allows us to introduce the
concept of an ME-extension i � j of morphisms and then, if I and J are ideals of A, the concept
of an extension of ideals I � J = 〈i � j | i ∈ I, j ∈ J 〉.

Theorem (Theorem 8.4). (Christensen’s Lemma) Let (A; E) be an exact category with
enough injective morphisms and enough projective morphisms. The class of special precovering
(respectively, preenveloping) ideals is closed under products IJ and extensions I � J .
Moreover, the bijective correspondence I �→ I⊥ satisfies

(IJ )⊥ = J⊥ � I⊥ and (I � J )⊥ = J⊥I⊥.

Theorem 8.4 is an analogue of Christensen’s Ghost Lemma [15, Thm 1.1], which serves as
the model for several results that play a key role in the respective theories of dimensions of
triangulated categories [44, Lemma 4.11], representation dimensions of artin algebras ([10, 11,
43] and [13, Lemma 2.1]), and strongly finitely generated triangulated categories [40, Theorem
4]. If I and J are object ideals, then so is the extension ideal I � J (Theorem 4.4). Theorem 8.4
implies that if (I, I⊥) and (J ,J⊥) are complete ideal cotorsion pairs such that I⊥ and J⊥ are
object ideals, then so is (IJ ,J⊥ � I⊥). Such complete ideal cotorsion pairs are the analogues
in the present context of the projective classes studied by Christensen.

In many arguments, we can avoid the hypothesis that there exist enough injective or
projective morphisms, by working directly with the syzygy morphism of a special precover
or, for a special precovering ideal I, with an ideal Ω(I) ⊆ I⊥ generated by syzygy morphisms.
For example, we generalize Christensen’s Lemma for projective classes by calling a special
precovering ideal I object-special (Definition 7.1 and Proposition 7.2) if some syzygy ideal of
Ω(I) is an object ideal, and proving that such ideals are closed under products (Corollary 23).
The ability to do this seems to be a virtue of Ideal Approximation Theory, formally expressed
by Theorem 6.4 and Proposition 7.3, that is absent in the classical theory. Another example
of this phenomenon is the Chain Rule for syzygies (Theorem 8.1).

According to Theorem 8.4, the bijective correspondence I �→ I⊥ of Salce’s Lemma associates
an idempotent special precovering ideal to a special preenveloping ideal closed under ME-
extensions, and vice versa. In the last section of the paper, we take up these two classes of
ideals, but under the hypothesis that they be covering, rather than special precovering.

Theorem (Theorem 10.1). (Wakamatsu’s Lemma) Every covering ideal I, closed under
ME-extensions, is an object-special precovering ideal.

2. Preliminaries

Let A be an additive category. An ideal I of A is an additive subbifunctor of the additive
bifunctor Hom(−,−) : Aop ×A → Ab, where Ab denotes the category of abelian groups: to
every pair (A,B) of objects in A, the subfunctor I associates a subgroup I(A,B) ⊆ Hom(A,B)
such that if g : A→B belongs to I(A,B), then the composition fgh : X → Y belongs to
I(X,Y ), whenever f : B → Y and h : X → A are morphisms in A.

If M is a class of morphisms in A, then 〈M〉 denotes the smallest ideal of A that contains
M. For example, the product of two ideals I and J of A is given by

IJ := 〈ij | i ∈ I and j ∈ J are composable〉.
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To every ideal I is associated the category Ob(I) := {X ∈ A | 1X ∈ I} of objects of I, so
that I is an object ideal if and only if I = 〈1X |X ∈ Ob(I)〉.

An additive subcategory C ⊆ A is a subcategory that is closed under finite direct sums
and direct summands. The additive closure of a subcategory X of A is the smallest additive
subcategory add(X ) that contains X . If X is closed under finite direct sums, then an object of
A belongs to add(X ) provided it is a summand of some object of X .

Proposition 2.1. Given an ideal I of A, the subcategory Ob(I) of A is additive. Given
a subcategory C closed under finite direct sums, the object ideal 〈C〉 consists of the morphisms
f : A → B in A that factor as f : A → C → B through some object C in C. The rule C �→ 〈C〉
is a bijective correspondence between the class of additive subcategories C of A and the object
ideals of A; the inverse rule is given by I �→ Ob(I).

Proof. To see that Ob(I) is closed under direct summands, suppose that A ⊕ B belongs
to Ob(I). Let ιA : A → A ⊕ B (respectively, πA : A ⊕ B → A) be the structural injection
(respectively, projection) associated to the summand A. Then 1A = πA1A⊕BιA also belongs to
I. To see that Ob(I) is closed under finite direct sums, note that 1A⊕B = ιA1AπA + ιB1BπB .

Let C be a subcategory of A that is closed under finite direct sums. A morphism that factors
through some object of C clearly belongs to 〈C〉. Conversely, every morphism in 〈C〉 is of the
form

∑
i ai1Ci

bi and therefore factors through the finite direct sum ⊕iCi ∈ C.
To prove that the given correspondence is bijective, recall that if I is an object ideal, then

〈Ob(I)〉 = I, whereas if C is an additive subcategory, then an object A belongs to Ob(〈C〉) if
and only if 1A factors through an object C ∈ C. But then A is a direct summand of C and so
too belongs to C.

The ideas of the proof of Proposition 2.1 may also be used to infer the following.

Proposition 2.2. If X is a subcategory of A, then add(X ) = Ob(〈X 〉).

In this paper, we rely heavily on the theory of exact categories. We closely follow Bühler’s
comprehensive treatment [13] as the standard reference, but we use the terminology of
Keller [25]. An exact structure (A; E) on an additive category A consists of a collection E
of distinguished kernel–cokernel pairs

Ξ : A m � B e � C

called conflations. The morphism m is called the inflation of Ξ; the morphism e the deflation.
More generally, a morphism m (respectively, e) is called an inflation (respectively, deflation)
if it is the inflation (respectively, deflation) of some conflation in E . The collection E is closed
under isomorphism and satisfies the following axioms:

E0: for every object A ∈ A, the morphism 1A is an inflation;
Eop

0 : for every object A ∈ A, the morphism 1A is a deflation;
E1: inflations are closed under composition;
Eop

1 : deflations are closed under composition;
E2: the pushout of an inflation along an arbitrary morphism exists and yields an inflation;
Eop

2 : the pullback of a deflation along an arbitrary morphism exists and yields a deflation.
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The arrow category Arr(A) of a category A is the category whose objects a : A0 → A1 are the
morphisms (arrows) of A, and a morphism f : a → b in Arr(A) is given by a pair of morphisms
f = (f0, f1) of A for which the diagram

A0
f0 � B0

�

a

�

b

A1
f1 � B1

commutes. We will adhere to the convention that in a two-dimensional diagram, arrows will be
depicted vertically, as above, while morphisms are depicted horizontally. In a three-dimensional
diagram, arrows will appear orthogonal to the page, while morphisms of arrows will appear to
be inside the page. There is a full and faithful functor A → Arr(A) given by A �→ 1A : A → A.
An arrow a : A0 → A1 is isomorphic to an object 1A of A if and only if it is an isomorphism.
In that case, a ∼= 1A0

∼= 1A1 .
If (A; E) is an exact category, then it is readily verified that (Arr(A),Arr(E)) satisfies the

axioms for an exact category [13, Corollary 2.10], where a kernel–cokernel pair

ξ : a f � b
g � c

of Arr(A) belongs to Arr(E) provided that it is a morphism

Ξ0 : A0
f0 � B0

g0 � C0

�

a

�

b

�

c

Ξ1 : A1
f1 � B1

g1 � C1

of conflations in (A; E). The full and faithful embedding (A; E) ⊆ (Arr(A); Arr(E)) is exact, in
the sense that if Ξ : A → B → C is a conflation in E , then 1Ξ : 1A → 1B → 1C is one in Arr(E).

3. The ME exact structure of arrows

Let (A; E) be an exact category. If a conflation ξ : i → a → j in Arr(E) is considered as a
morphism of conflations in (A; E), then it has a pullback–pushout factorization [13, Proposition
3.1]

Ξ0 : I0 � A0 � J0

�

i

�

Ξ′ : I1 � A′ � J0

� �

j

Ξ1 : I1 � A1 � J1
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where Ξ′ is a conflation in (A; E). Looking at this factorization, we see that ξ is null homotopic
(see Definition 5.1) if and only if the conflation Ξ′ in (A; E) is split. To motivate the next
definition, let us recall that the category E whose objects are the conflations of (A; E), and
whose morphisms are the morphisms of (Arr(A); Arr(E)) modulo split exact conflations, is an
abelian category [23]. If a conflation ξ in (Arr(A); Arr(E)) is considered as a morphism in E ,
then the pullback–pushout factorization of ξ is just the epi-mono factorization obtained from
the abelian structure of E .

Definition 3.1. A conflation ξ : i → a → j in Arr(E) is called ME if there is a factorization

Ξ0 : I0 � A0
e0 � J0

a1

� �

j

Ξ : I0
m′ � A e � J1

�

i a2

�

Ξ1 : I1
m1 � A1 � J1

of ξ, where the middle row is a conflation in (A; E). Denote by ME ⊆ Arr(E) the collection of
ME conflations in Arr(E).

An ME-inflation is therefore a monomorphism m : i → a of arrows for which the arrow a
admits a factorization a = a2a1 so that the morphism m′ : I0 → A in the commutative diagram

I0
m0 � A0

�

a1

I0
m′ � A

�

i PO

�

a2

I1
m1 � A1

is an inflation in (A; E), and the bottom square is a pushout diagram.

Theorem 3.2. The ME substructure (Arr(A);ME) ⊆ (Arr(A); Arr(E)) is exact.

Proof. Let us verify Axioms E0, E1, and Eop
2 of an exact structure for (Arr(A);ME), the

verification of the other axioms being dual. Axiom E0 that, for every arrow a ∈ Arr(A), the
identity morphism 1a : a → a is an ME-inflation is easy to verify by the characterization above
of an ME-inflation. To verify Axiom E1, which asserts that the composition of two ME-inflations
is again such, consider such a composition i

m→ a
n→ b as depicted by the diagram
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I0
m0� A0

n0 � B0

�

b1

I0 � A0
n′ � B

�

a1
PO

I0
m′ � A

�

b2

i

�
PO

�

a2

I1
m1� A1

n1 � B1

all of whose horizontal maps are inflations in (A; E). The pushout in the lower right rectangle
may be factored by taking the pushout of n′ and a1 to obtain the diagram

I0
m0� A0

n0 � B0

�

b1

I0 � A0
n′ � B

�

a1
PO

�

b2
1

I0
m′ � A n′′ � B′

i

�
PO

�

a2
PO

�

b2
2

I1
m1� A1

n1 � B1

which coarsens to

I0
m0� A0

n0 � B0

�

b2
1b

1

I0
m′ � A n′′ � B′

�

i PO
�

b2
2

I1
m1� A1

n1 � B1

as required.
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To verify Axiom Eop
2 for an exact category, suppose that an ME-conflation ξ : i → b → j is

given and let g : d → j be an arbitrary morphism in Arr(A). The pullback along g with respect
to the ME factorization of ξ is obtained by taking the pullbacks in (A; E) along the vertical
morphisms depicted in the diagram

D0

�
���
d

D1

�
��

�
��

�

g0

D1

�

g1

I0 � B0 � J0

�
��

�
�� �

��� b1

�

g1 �
���

j

I0 � B � J1

�
���

i
�

��� b2
�

��
�

��

I1 � B1 � J1

When these pullbacks are taken, one obtains the commutative diagram

I0 � A0 � D0

�
�

�

�
�

� �
�

��
a1

�
�

��
d

I0 � A � D1

�
�

��
i

�
�

��
a2

�

f0

�
�

�

�
�

�

�

g0

I1 � A1 � D1

�

f ′

�

g1

I0 � B0 � J0

�
�

�

�
�

�

�

f1
�

�
��

b1

�

g1
�

�
��

j

I0 � B � J1

�
�

��
i

�
�

��
b2

�
�

�

�
�

�

I1 � B1 � J1

where the top level yields an ME-decomposition of the pullback of ξ along g.

We will use the notation B = A � C to indicate the existence of a conflation A → B → C in
an exact category (A; E). If i and j are arrows in A, then we say that an arrow a in Arr(A)
is an ME-extension of j by i, defined a = i � j, if there exists an ME-conflation i → a → j. For
example, if A → B → C is a conflation in E , then the corresponding conflation 1A → 1B → 1C

in Arr(E) is clearly an ME-conflation, so that 1B = 1A � 1C holds in (Arr(A);ME).
The following proposition is an application of Theorem 3.2.
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Proposition 3.3. If i, j, and k ∈ Arr(A), then i � (j � k) = (i � j) � k.

Proof. The statement of the proposition should be interpreted as saying that an arrow a
is of the form i � (j � k) if and only if it is of the form (i � j) � k. Consider the commutative
diagram

i i

� �
b � a � k

� �
j � c � k

in Arr(A). If a = i � (j � k), then there is a diagram of this form, where the bottom row is an
ME-conflation, so that c = j � k, and the middle column is an ME-conflation, so that a = i � c.
By Axiom Eop

1 for an exact category, the middle row is also an ME-conflation. The left column
is also an ME-conflation, because it is obtained by pullback of the middle column along the
inflation in the bottom row. The proof of the converse uses the dual argument.

4. Extension ideals

If M and N are classes of morphisms in A, then M � N denotes the class of morphisms
that arise as ME-extensions a � b, where a ∈ M and b ∈ N . Moreover, if K is a third class of
morphisms, then the notation M � N � K is unambiguous, by Proposition 3.3. If I and J are
ideals, then the ideal I � J := 〈I � J 〉 is the extension ideal of J by I. Because i = i � 0 and
j = 0 � j, the extension ideal I � J contains both of the ideals I and J . The elements of this
extension ideal are described as follows.

Lemma 4.1. Let I and J be ideals of A. An arrow a : A0 → A1 in A belongs to I � J if
and only if it satisfies one (respectively, both) of the following equivalent conditions:

(1) a is a composition of morphisms a : A0
a1

→ A
a2

→ A1 that are part of a commutative
diagram

A0

�

a1
�

�
�

�
��

j

Ξ : I m � A e � J

�
�

�
�
��

i

�

a2

A1

where i ∈ I, j ∈ J , and the middle row is a conflation Ξ in E ;
(2) there are morphisms r and s in A such that a = r(i � j)s, where i ∈ I and j ∈ J .
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Proof. Let us prove that the morphisms a that satisfy Condition (1) form an ideal that
contains every ME-extension i � j. If a = i � j is an ME-extension of morphisms, then there is an
ME-conflation ξ : i → a → j. By Definition 3.1, the arrow a may be factored as a = a2a1 with
je0 ∈ J and m1i ∈ I, as required. It is easy to see that the morphisms satisfying Condition (1)
are closed under left and right multiplication. Finally, let us prove that if two parallel arrows a1,
a2 : A0 → A1 possess a factorization satisfying Condition (1), then so does a1 + a2 : A0 → A1.
We can factor an, n = 1, 2 as an = a2

na1
n, and there are commutative diagrams

A0

�

a1
n

�
�

�
�

���

jn

Ξn : In mn � An en � Jn

�
�

�
�

���

in

�

a2
n

A1

for n = 1, 2. The in belong to I, the jn to J , and the Ξn are conflations for n = 1, 2. By
Proposition 2.9 of [13], a direct sum of conflations is itself a conflation, so that

A0

(
a1
1

a1
2

)

�

�
�

�
�

�
�

�
�

��

(
j1
j2

)

Ξ1 ⊕ Ξ2 : I1 ⊕ I2

(
m1 0
0 m2

)
� A1 ⊕ A2

(
e1 0
0 e2

)
� J1 ⊕ J2

�
�

�
�

�
�

�
�

��

(i1, i2)

�

(a2
1, a

2
2)

A1

yields a decomposition of a1 + a2 with (i1, i2) ∈ I and ( j1
j2

) ∈ J .
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(1) ⇒ (2). Suppose now that the factorization a : A0
a1

→ A
a2

→ A1 satisfies Condition (1). Take
the pullback of Ξ along j and the pushout along i to obtain

Ext(j, I)(Ξ) : I � A′
0

e0 � A0

�

j′
�

�
�

�
�

��

a1

�

j

Ξ : I m � A e � J

�

i

�
�

�
�

�
��

a2

�

i′

Ext(J, i)(Ξ) : A1
m1 � A′

1
� J

Then i′j′ = i � j. Because j = ea1 and the top right commutative square is a pullback diagram,
there is a section s : A0 → A′

0 of e0, e0s = 1A0 , such that j′s = a1. Similarly, there is a retraction
r : A′

1 → A1 of m1 such that ri′ = a2. Thus a = a2a1 = ri′j′s = r(i � j)s.
Obviously, every morphism that satisfies Condition (2) belongs to I � J .

In order to prove that the operation that associates to two ideals I and J the extension
ideal I � J is associative, we will make use of the following observation.

Lemma 4.2. If i and j are composable morphisms, and k is an arbitrary morphism, then,
for every ME-extension a = (ij) � k, there are morphisms i′ and j′ such that a = i′(j � k) =
(i � k)j′.

Proof. Consider a ME factorization of an ME-conflation ξ : ij → a → k

Ξ0 : J0 � A0 � K0

�

a1

�

k

Ξ : J0 � A � K1

�

j

�

a2

Ξ′ : J1 � A′ � K1

�

i

�

a3

Ξ1 : I1 � A1 � K1
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where a = a3a2a1 and the pushout of Ξ along ij has been factored as the composition of the
pushout along j followed by the pushout along i. To see the first equality, let i′ = a3; then
a = i′(j � k). To see the other, compose the top two morphisms of conflations and replace the
composition with its pullback–pushout factorization to obtain

Ξ0 : J0 � A0 � K0

�

j

�

j′

J1 � A � K0

�

k′

�

k

Ξ′ : J1 � A′ � K1

�

i

�

a3

Ξ1 : I1 � A1 � K1

Then a = a3k′j′ = (i � k)j′, as required.

Proposition 4.3. If I, J and K are ideals of (A; E), then (I � J ) � K = 〈I � J � K〉 =
I � (J � K).

Proof. We only prove the first equality; the proof of the other is similar. By Lemma 4.1,
every element of I � J is of the form a = r(i � j)s, with i ∈ I and j ∈ J . By Lemma 4.2, if
k ∈ K, then

a � k = [r(i � j)s] � k = r′[(i � j)s � k] = r′(i � j � k)s′

for some r′ and s′. Thus (I � J ) � K ⊆ 〈I � J � K〉. The converse inclusion follows from
Proposition 3.3.

If X and Y are subcategories of A, then X � Y denotes the subcategory of objects Z that
arise as the middle term of a conflation Ξ : X → Z → Y in (A; E).

Theorem 4.4. If I and J are object ideals, then so is I � J = 〈Ob(I) � Ob(J )〉. In that
case, Ob(I � J ) = add[Ob(I) � Ob(J )].

Proof. Suppose that I ∈ Ob(I) and J ∈ Ob(J ), and consider an object X = I � J that is
an extension of J by I. Then 1X = 1I � 1J belongs to I � J . Thus Ob(I) � Ob(J ) ⊆ Ob(I � J )
and, in particular, 〈Ob(I) � Ob(J )〉 ⊆ I � J .

To prove the converse, consider an ME-extension a = i � j with i ∈ I and j ∈ J . By
hypothesis, the morphism i factors as i : I0

i′→ I → I1, where I is an object of I, and j factors
as j : J0 → J

j′
→ J1 through an object J of J . The ME factorization of the ME-conflation

ξ : i → a → j factors further as
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Ξ0 I0 � A0 � J0

� �

ΞJ : I0 � J ′ � J

� �

j′

Ξ : I0 � A � J1

i′

� �

ΞI : I � I ′ � J1

� �

Ξ1 I1 � A1 � J1

where every row is a conflation. The ME-extension i′ � j′ appears as the middle arrow of the
morphism of conflations from ΞJ to ΞI , whose pushout–pullback factorization is given by

ΞJ : I0 � J ′ � J

i′

� �

I � A′ � J

� �

j′

ΞI : I � I ′ � J1

This proves that i′ � j′, and therefore i � j, factors through A′ = I � J, which belongs to
Ob(I) � Ob(J ). Thus I � J ⊆ 〈Ob(I) � Ob(J )〉, and the equality is proved. The last statement
is immediate from the equality. It is intended to emphasize that while the subcategory
Ob(I) � Ob(J ) is closed under finite direct sums, it need not be closed under direct
summands.

5. Ext-Orthogonality

Let (B,A) be a pair of objects in an exact category (A; E). Two conflations of the form
Ξi : A → Ci → B, i = 0, 1, are said to be equivalent if there exists an isomorphism ξ : Ξ0 → Ξ1
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of the form

Ξ0 : A � C0 � B

�

1A

� �

1B

Ξ1 : A � C1 � B

The equivalence classes form a class Ext(B,A) := ExtA(B,A) that acquires the structure of an
abelian group, with respect to the Baer sum operation. If j : B′ → B is a morphism, then the
pullback of Ξ ∈ Ext(B,A) yields an element Ext(j,A)(Ξ) ∈ Ext(B′,A). Similarly, if i : A → A′,
then the pushout yields the conflation Ext(B, i)(Ξ) ∈ Ext(B,A′). We will assume in this paper,
that the each of the classes Ext(B,A) is a set, so that these properties define a bifunctor
Ext : Aop ×A → Ab.

Definition 5.1. A pair (j, i) of morphisms in A is Ext-orthogonal, defined Ext(j, i) = 0
if every ME-extension ξ : i → a → j in Arr(A) is null homotopic. This means that there are
morphisms h : A0 → I1 and g : J0 → A1 as in the diagram

Ξ0 : I0 � A0
e0 � J0

�

i
�

�
�

�
��

h

�

a
�

�
�

�
��

g

�

j

Ξ1 : I1
m1 � A1 � J1

satisfying a = m1h + ge0.

Caution: Ext-orthogonality for a pair of morphisms (i, j) is properly weaker than the condition
Ext(j, i) = 0 in the exact category (Arr(A); Arr(E)), which means that every ME-extension
ξ : i → a → j is split exact, and will not be used in this paper (see [22, Remark 3.4]). Indeed,
the next proposition shows that the definition of Ext-orthogonality given above is equivalent
to the definition of Ext-orthogonality introduced in [24].

Proposition 5.2. If i : A → A′ and j : B′ → B are morphisms in A, then the pair (j, i)
of morphisms in (A; E) is Ext-orthogonal if and only if the induced morphism

Ext(j, i) : Ext(B,A) −→ Ext(B′,A′)

of abelian groups is zero.

Proof. Every ME-conflation ξ : i → c → j has an ME-factorization of the form
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Ext(j,A)(Ξ) : A � C0 � B′

� �

j

Ξ : A � C � B

�

i

�

Ext(B, i)(Ξ) : A′ � C1 � B

for some Ξ ∈ Ext(B,A), and every Ξ ∈ Ext(B,A) gives rise in this manner to an ME-conflation
ξ : i → c → j. The pullback–pushout factorization factors through the conflation Ext(i, j)(Ξ)
(see [24, Proposition 3] for a more thorough explanation). But Ext(i, j)(Ξ) is split if and only
if ξ is null homotopic.

If I is an ideal, then the ideal right Ext-perpendicular to I is defined to be

I⊥ = {j |Ext(i, j) = 0 for all i ∈ I}.

If J is an ideal, then the left Ext-perpendicular ideal ⊥J is defined dually.

Theorem 5.3. If I and J are ideals, then (IJ )⊥ ⊇ J⊥ � I⊥.

Proof. By Proposition 4.1, a morphism c : C0 → C1 in J⊥ � I⊥ may be expressed as a
composition c = c2c1 given by the commutative diagram

C0

�

c1
�

�
�

���

i⊥

Ξ : J ′ m � C e � I ′

�
�

�
���

j⊥
�

c2

C1

where Ξ is a conflation, i⊥ ∈ I⊥ and j⊥ ∈ J⊥. Let i : I0 → I1 be a morphism in I and
j : J0 → I0 be a morphism in J , and apply the transformation Ext(ij,−) = Ext(j,−)Ext(i,−)
to obtain the commutative diagram



POWERS OF THE PHANTOM IDEAL 731

Ext(I1,C0)

�
�

���

Ext(i,C0)

Ext(I0,C0)

�

�
�

�
�

�
�

�
���

Ext(I1, i⊥)

Ext(I0, c1)

�

Ext(I1,C) � Ext(I1, I′)

�
�

���

�
�

���
Ext(i, I′)

Ext(I0,Ξ) : Ext(I0, J′) � Ext(I0,C) � Ext(I0, I′)

�
�

���

Ext(j, J′)
�

�
���

Ext(J0, J′) � Ext(J0,C)

�

Ext(I0, c2)

�
�

�
�

�
�

�
���

Ext(J0, j⊥)

�

Ext(I0,C1)

�
�

���
Ext(j,C1)

Ext(J0,C1)

Compose the labeled arrows to obtain the commutative diagram

Ext(I1,C0)

Ext(i, c1)

�

�
�

�
�

�
�

�
���

Ext(i, i⊥)

Ext(I0,Ξ) : Ext(I0, J′)
Ext(I0,m)� Ext(I0,C) Ext(I0, e)� Ext(I0, I′)

�
�

�
�

�
�

�
���

Ext(j, j⊥)

�

Ext(j, c2)

Ext(J0,C1)
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Because Ext(i, i⊥) = 0, we get that ImExt(i, c1) ⊆ KerExt(I0, e). Similarly, the hypothesis that
Ext(j, j⊥) = 0 implies ImExt(I0,m) ⊆ KerExt(j, c2). The middle row is exact, so it follows that
Ext(ij, c) = Ext(ij, c2c1) = Ext(j, c2)Ext(i, c1) = 0.

The ideal Hom consists of all morphisms in A. A morphism i : E → E′ is injective if it
belongs to the right perpendicular ideal Hom⊥, denoted by E-inj. Thus Ext(−, i) = 0, which
means that, for every conflation Ξ : E → C → B, the pushout Ext(B, i)(Ξ) of Ξ along i is split.
As a consequence of Theorem 5.3, a right Ext-perpendicular ideal satisfies the following closure
property (cf. [24, Proposition 9]).

Corollary 5.4. If I is an ideal in A, then I⊥ = (Hom I)⊥ = I⊥ � E-inj.

An ideal I is idempotent if I2 = I. In that case, Theorem 5.3 implies that I⊥ = (I2)⊥ ⊇
I⊥ � I⊥. An ideal J is closed under ME-extensions if J � J = J .

Corollary 5.5. If I is an idempotent ideal, then I⊥ is closed under ME-extensions.

6. Salce’s Lemma

Recall from the Introduction that a special I-precover of an object A ∈ A is a morphism
i1 : C1 → A in I that arises from a pushout

Ξ0 : K0 � C0 � A

�

k

�

c

Ξ1 : K1 � C1
i1 � A

along a morphism k ∈ I⊥. The morphism k is then called the I-syzygy of A and is denoted
by k = ωI(A) or, for brevity, just ω(A). A special I-precover of A is therefore a morphism
i1 : C1 → A in I that is part of an Arr(E)-conflation of the form

ξ : ω(A) � c i � 1A,

where ω(A) ∈ I⊥. Because the right term is 1A, the conflation is an ME-conflation.

Definition 6.1. An ideal I of A is a special precovering ideal if every object in A has a
special I-precover. An ideal J ⊆ I⊥ is an I-syzygy ideal if it contains an I-syzygy ω(A) for
every object A ∈ A. Such an ideal will be denoted by ω(I).

For example, if an ideal I is special precovering, then I⊥ = ω(I) is the largest I-syzygy ideal.
The proof of the following proposition implies [24, Proposition 11] that a special I-precover of
an object A is an I-precover.

Proposition 6.2. If I is a special precovering ideal of (A; E), and ω(I) is an I-syzygy
ideal, then ⊥ω(I) = I.

Proof. Because ω(I) ⊆ I⊥, it follows certainly that I ⊆ ⊥ω(I). To prove the converse
inclusion, let A ∈ A and consider a special I-precover i1 : C1 → A as above, and take the
pullback of Ξ0 along i′ ∈ ⊥ω(I),
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Ξ′
0 : K0 � C ′ � I ′

�

c′

�

i′

Ξ0 : K0 � C0 � A

�

ω(A)

�

c

Ξ1 : K1 � C1
i1 � A

This is an ME-conflation of the form ω(A) → cc′ → i′. As ExtA(i′, ω(A)) = 0, this conflation
is null homotopic. The homotopy then yields a factorization

I ′

�
�

�
�

��

g

�

i′

K1 � C1
i1 � A

which implies i′ = i1g ∈ I.

Given an ideal J , the notion of a special J -preenvelope is defined dually. The ideal J is
a special preenveloping ideal if every object B in A has a special J -preenvelope. A pair of
ideals (I,J ) is an ideal cotorsion pair if J = I⊥ and I = ⊥J . Proposition 6.2 implies that
if I is a special precovering ideal, then the ideal pair (I, I⊥) is an ideal cotorsion pair that
is cogenerated by ω(I), in the sense that (I, I⊥) = (⊥ω(I), (⊥ω(I))⊥). An ideal cotorsion
pair (I,J ) is complete if I is special precovering and J is special preenveloping. The next
result is Salce’s Lemma, which implies that if I is a special precovering ideal, then the ideal
cotorsion pair (I, I⊥) is complete. It generalizes the implication (2) ⇒ (3) of [24, Theorem 1],
by weakening the hypothesis to one that is self-dual.

Recall that the exact category (A; E) has enough injective morphisms if, for every object
A ∈ A, there is an injective inflation e : A → E. The notion of a projective morphism and that
of an exact category having enough projective morphisms are defined dually.

Theorem 6.3 (Salce’s Lemma). Let (A; E) be an exact category with enough injective
morphisms and enough projective morphisms. The rule I �→ I⊥ is a bijective correspondence
between the class of special precovering ideals I of (A; E) and that of its special preenveloping
ideals J . The inverse rule is given by J �→ ⊥J .

Proof. We use the hypothesis that there exist enough injective morphisms to prove that
if I is a special precovering ideal, then I⊥ is a special preenveloping ideal. The proof that if
J is a special preenveloping ideal, then ⊥J is a special precovering ideal is dual; it uses the
dual hypothesis that there are enough projective morphisms. That the inverse rule is given by
J �→ ⊥J follows from Proposition 6.2, because ω(I) ⊆ I⊥.

Let us proceed as in the proof of [24, Theorem 18]. Given an object A ∈ A, we construct
a special I⊥-preenvelope of A. There is a conflation Ξ : A

e→ E → N, where e : A → E is



734 X. H. FU AND I. HERZOG

an injective morphism. The cokernel N has a special I-precover i1 : C1 → N that arises
as part of an ME-conflation ω(N) → c

i→ 1N . Take the pullback in (Arr(A); Arr(E)) of
1Ξ : 1A

e→ 1E → 1N along i : c → 1N to obtain

ω(N) ω(N)

�

k

�
1A

j � b � c

� �

i

1Ξ : 1A
e � 1E � 1N

This construction illustrates Theorem 3.2 nicely, as all the rows and columns are evidently ME
conflations. Let us regard this commutative diagram as a diagram in A,

W0 W0

�
�

��
ω(N) �

�
��

ω(N)

W1

�

k0

W1

�

A
j0�

�

k1

B0

�

� C0

�
�

�

�
�

� �
�

��
b

�
�

��
c

A
j1� B1 �

�

C1

�i0

A

�

� E

�i1

� N

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

A e � E � N

We claim that the morphism j1 : A → B1 is an I⊥-special preenvelope. Because it is obtained
by pullback along i1 ∈ I, it is enough to verify that j1 ∈ I⊥. Let us extract from the diagram
above the commutative diagram

A

�

j0
�

�
�

���

e

W0 � B0 � E

�
�

�
���

k1ω(N)
�

b

B1
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where the middle row is the conflation that appears in the back middle column of the previous
diagram. Because k1ω(N) ∈ I⊥ and e ∈ E-inj, Proposition 4.1 implies that j1 belongs to I⊥ �
E-inj. By Corollary 5.4, this latter ideal is contained in I⊥, as required.

Let us explain how the proof of Theorem 6.3 encompasses the proof of the classical Salce’s
Lemma. The functor (A; E) → (Arr(A);ME), given by A �→ 1A is an exact functor and an
arrow a : A0 → A1 belongs to the image of this functor if and only if it is an isomorphism
(object in Arr(A)). As a consequence of the Five Lemma [13, Corollary 3.2 and Exercise 3.3],
whenever two out of three arrows in a morphism of conflations in (A; E) are isomorphisms,
then so is the third. In the classical version of Salce’s Lemma, the morphism c in the proof of
Theorem 6.3 may be taken to be an isomorphism. But then so are ω(N) and b. Such a proof
therefore takes place in the subcategory (A; E) and yields the classical Salce’s Lemma (cf. [24,
Question 29]).

In the proof of Salce’s Lemma, the morphism ω(N) may be taken from a given I-syzygy ideal
ω(I). The I⊥-preenvelope j1 : A → B1 constructed in that proof then belongs to ω(I) � E-inj.
This implies that every morphism in I⊥ whose domain is A factors through j1 and, therefore,
belongs to ω(I) � E-inj. Thus I⊥ = ω(I) � E-inj for every I-syzygy ideal ω(I). Corollary 5.4,
on the other hand, implies that if J ⊆ I⊥ is an ideal, then J � E-inj is also contained in I⊥. In
view of that corollary, the equation I⊥ = ω(I) � E-inj expresses that every I-syzygy ideal ω(I)
nearly generates the ideal I⊥. It turns out that this property characterizes I-syzygy ideals.

Theorem 6.4. Let I be a special precovering ideal of an exact category (A; E) with enough
injective morphisms. An ideal J ⊆ I⊥ is an I-syzygy ideal if and only if J � E-inj = I⊥.

Proof. One direction of the equivalence has just been established, so suppose that the ideal
J satisfies the equality J � E-inj = I⊥ and let A ∈ A. There is a special I-precover i1 : C1 → A

Ξ0 : W0 � C0 � A

�

ω

�

c

Ξ1 : W1 � C1
i1 � A

where ω ∈ I⊥ = J � E-inj is a given I-syzygy of A. By Lemma 4.1, the morphism ω : W0 → W1

may be expressed as a composition, shown in the middle column of

W0

�

ω1

�
�

�
�

���

e

J m � W
p � E

�
�

�
�

���

j

�

ω2

W1
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where j : J → W1 belongs to J , e is an injective morphism, and the middle row is a conflation
in (A; E). It suffices to verify that j is itself an I-syzygy of A. Let us show, moreover, that
Ξ1 ∈ Ext(A,W1) arises as the pushout along j of some conflation in Ext(A, J). Apply the
covariant functor Ext(A,−) to the preceding diagram to obtain

Ext(A,W0)

Ext(A, ω1)

�

�
�

�
�

�
�

�
���

0

Ext(A, J) Ext(A,m)� Ext(A,W) Ext(A,p)� Ext(A,E)

�
�

�
�

�
�

�
���

Ext(A, j)

�

Ext(A, ω2)

Ext(A,W1)

and note that Ext(A, e) = 0. The middle row is exact, so that Ext(A, ω1)(Ξ0) belongs to the
image of Ext(A,m). If Υ ∈ Ext(A, J) is a preimage, then

Ext(A, j)(Υ) = Ext(A, ω2)Ext(A,m)(Υ) = Ext(A, ω2)Ext(A, ω1)(Ξ0) = Ext(A, ω)(Ξ0) = Ξ1,

as claimed. Thus j = ωI(A) is an I-syzygy of A.

7. Object-special precovers

Let A be an object of (A; E) and I be an ideal. A special I-precover of A is said to be an
object-special I-precover of A if there is an I-syzygy ω(A) of A that is an isomorphism. Then
there is an object, let us denote it by Ω(A), such that ω(A) ∼= 1Ω(A). A special I-precover
i′1 : C ′

1 → A appears as part of the ME-conflation in the top row of

ξ′ : ω(A) � c′ i′ � 1A

�

f

�
ξ : 1Ω(A) � c i � 1A

Taking the pushout of ξ′ in (Arr(A);ME) along an isomorphism f : ω(A) → 1Ω(A) yields the
ME-conflation ξ, which is given by
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Ξ0 : Ω(A) � C0 � A

�

c

Ξ1 : Ω(A) � C1
i1 � A

The kernel Ω(A) of i1 : C1 → A belongs to Ob(I⊥) and is called an object I-syzygy of A. To
avoid confusion, the object I-syzygy of A may be denoted more precisely as ΩI(A).

Definition 7.1. An ideal I is an object-special precovering ideal if every object A in A
has an object-special I-precover.

An object E of A is injective if the morphism 1E : E → E is injective. The subcategory
of A of injective objects is denoted by E-Inj := Ob(E-inj). We say that the category (A; E)
has enough injective objects if, for every object A, there exists an inflation e : A → E with E
injective.

Proposition 7.2. A special precovering ideal I is object-special precovering if and only if
some I-syzygy ideal ω(I) is an object ideal. If the category (A; E) has enough injective objects,
then this is equivalent to the ideal I⊥ being an object ideal.

Proof. If I is an object-special precovering ideal, then take ω(I) to be any object ideal
〈Ω(A) |A ∈ A〉 generated by object I-syzygies. Conversely, if some I-syzygy ideal ω(I) is an
object ideal, then it is possible to find, for every A ∈ A, an I-syzygy that factors through an
object Ω(A) in Ob(I⊥). The proof of Proposition 25 of [24] shows then how to construct a
deflation i : C → A in I with kernel Ω(A).

If (A; E) has enough injective objects, and ω(I) is an object ideal, then Theorem 4.4 implies
that ω(I) � E-inj is itself an object ideal. By Theorem 6.4, ω(I) � E-inj = I⊥.

A subcategory C of A that is closed under finite direct sums is an I-syzygy subcategory if
it generates an I-syzygy ideal, 〈C〉 = ω(I). An I-syzygy subcategory will be denoted by Ω(I).

Proposition 7.3. Suppose that (A; E) has enough injective objects and that I is an object-
special precovering ideal in A. A subcategory C of Ob(I⊥) that is closed under finite direct
sums is an I-syzygy subcategory if and only if add(C � E-Inj) = Ob(I⊥).

Proof. If Ω(I) is an I-syzygy subcategory, then add(Ω(I) � E-Inj) = Ob(I⊥), by [24,
Theorem 27]. Conversely, suppose that C is a subcategory of Ob(I⊥), closed under finite direct
sums, and satisfying add(C � E-Inj) = Ob(I⊥). Then

Ob[〈C〉 � E-inj] = add(Ob(〈C〉) � E-Inj)
= add(add(C) � E-Inj)

⊇ add(C � E-Inj) = Ob(I⊥).

The first equality follows from Theorem 4.4; the second from Proposition 2.2. By Proposi-
tion 7.2, I⊥ is an object ideal, so that 〈C〉 � E-inj = I⊥. By Theorem 6.4, the ideal 〈C〉 = ω(I)
is then an I-syzygy ideal, as required.
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8. Christensen’s Lemma

This section is devoted to the study of special IJ -precovers, in case I and J are special
precovering ideals. So let A be an object of A, and suppose that there exists a special I-precover
i1 : CI

1 → A of A that appears as part of the ME-conflation in Arr(A) given by

ξI : ωI � cI i � 1A,

where cI : CI
0 → CI

1 and CI
1 has a special J -precover j′1 : CJ

1 → CI
1 that arises as part of the

ME-conflation of arrows

ξ′J : ωJ � cJ
j′ � 1CI

1
.

Compose the ME-conflation ξ′J with the pullback along the morphism given by the arrow
cI : CI

0 → CI
1 to obtain the ME-conflation

W0 � C � CI
0

�

c

�

cI

W0 � CJ
0

� CI
1

�

ωJ

�

cJ

W1 � CJ
1

j′1 � CI
1

which will be called ξJ . If we further denote cJ c by cIJ , then we may express this as the
ME-conflation

ξJ : ωJ � cIJ
j � cI .

It is important to observe that j1 = j′1 ∈ J . By Theorem 3.2, a commutative diagram

ωJ ωJ

� �
ωJ � ωI � cIJ

ij � 1A

� �

j

ωI � cI i � 1A

arises in Arr(A), all of whose rows and columns are ME-conflations, by Axiom Eop
1 for an exact

category. Now (ij)1 = i1j1 ∈ IJ and Theorem 5.3 implies that ωJ � ωI ∈ (IJ )⊥. It follows
that the ME-conflation in the middle row yields a special IJ -precover i1j1 : CIJ

1 → A of A.
If the notation above is amended slightly, then the equation ωIJ = ωJ � ωI suggests that the
relationship between the domain of a special I-precover of A and its I-syzygy is analogous
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to the relationship, expressed by the Chain Rule, between a differentiable function and its
differential.

Theorem 8.1 (The Chain Rule). Let I and J be ideals and A ∈ A. If i1 : CI(A) → A
is an I-special precover with I-syzygy ωI(A) and j1 : CJ (CI(A)) → CI(A) is a J -special
precover of CI(A) with J -syzygy ωJ (CI(A)), then i1j1 : CJ (CI(A)) → A is an (IJ )-special
precover of A with (IJ )-syzygy

ωIJ (A) = ωJ (CI(A)) � ωI(A).

If the precovers i1 and j1 are object-special, with kernels ΩI(A) and ΩJ (CI(A)), respectively,
then

ΩIJ (A) = ΩJ (CI(A)) � ΩI(A).

Proof. All that needs to be verified is the last statement. If i1 and j1 are object-special pre-
covers, then we may take the I-syzygy ωI(A) and the J -syzygy ωJ (CI(A)) to be isomorphisms.
The ME-extension ωIJ (A) = ωJ (CI(A)) � ωI(A) is then also an isomorphism. Furthermore,
if ΩI(A) and ΩJ (CI(A)) are the associated object syzygies, then the isomorphism ωIJ (A)
is isomorphic in the arrow category to the identity morphism on some extension of objects
ΩJ (CI(A)) � ΩI(A).

The Chain Rule yields the following important property of special precovering ideals.

Corollary 8.2. If I and J are special precovering ideals of the exact category (A; E),
then so is the product ideal IJ , with

ω(IJ ) = ω(J ) � ω(I).

If I and J are object-special precovering ideals, then so is IJ , and Ω(IJ ) = Ω(J ) � Ω(I).

Let I = J in Corollary 8.2 and iterate the process finitely many times to see that every
special (respectively, object-special) precovering ideal I of (A; E) gives rise to a filtration

Hom = I0 ⊇ I ⊇ I2 ⊇ · · · ⊇ In ⊇ · · ·
of special (respectively, object-special) precovering ideals. If I is an object-special precovering
ideal, and Ω(I) is an I-syzygy subcategory, then Corollary 8.2 implies that, for every n > 0, an
In-syzygy subcategory is given by the category Ω(In) = Ω(I)�n, the n-fold extension of Ω(I).
The objects U of this category are those for which there exists a filtration, that is, a sequence

0 = U0
i1 � U1

i2 � · · · in �Un = U

of inflations, of length n, whose cokernels lie in Ω(I). An important special case of Corollary 8.2
is when ω(I) = I⊥ and ω(J ) = J⊥.

Corollary 8.3. Let I and J be special precovering ideals of an exact category (A; E)
that has enough injective morphisms. Then (IJ )⊥ = J⊥ � I⊥.

Proof. By the Chain Rule, J⊥ � I⊥ is an IJ -syzygy ideal, so that (J⊥ � I⊥) � E-inj =
(IJ )⊥, by Theorem 6.4. By Proposition 4.3 and the fact that I⊥ is an I-syzygy ideal, the
left-hand side of the equation is equal to J⊥ � (I⊥ � E-inj) = J⊥ � I⊥.

Collecting the observations of the previous two corollaries and their duals provides the
centerpiece of our paper.
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Theorem 8.4 (Christensen’s Lemma). Let (A; E) be an exact category with enough injec-
tive morphism and enough projective morphisms. The class of special precovering (respectively,
preenveloping) ideals is closed under products IJ and extensions I � J . Moreover, the bijective
correspondence I �→ I⊥ satisfies

(IJ )⊥ = J⊥ � I⊥ and (I � J )⊥ = J⊥I⊥.

Proof. By Corollary 8.2, the class of special precovering ideals is closed under products. The
hypothesis allows us to invoke Salce’s Lemma (Theorem 6.3) to prove that the class of special
preenveloping ideals are closed under extensions: if K1 and K2 are special preenveloping ideals,
then K1 = J⊥ and K2 = I⊥ for some special precovering ideals J and I. By Corollary 8.2,
the product ideal IJ is itself a special precovering ideal, so Salce’s Lemma implies that (IJ )⊥

is a special preenveloping ideal. By Corollary 8.3, (IJ )⊥ = J⊥ � I⊥ = K1 � K2. Because the
hypothesis of the theorem is self-dual, it follows that the class of special precovering ideals is
closed under extensions, while that of the special preenveloping ones is closed under products.
The first equation comes from Corollary 8.3, while the second is nothing more that its dual.

9. The phantom ideal

The phantom ideal Φ in R-Mod is an object-special precovering ideal, with a Φ-syzygy
subcategory given by the category Ω(Φ) = R-Pinj of pure injective left R-modules [24, § 6]. By
Corollary 8.2, every finite power Φn of the phantom ideal is itself an object-special precovering
ideal, with a Φn-syzygy subcategory given by Ω(Φn) = (R-Pinj)�n. This is the additive category
of modules U that possess a filtration of length n with pure injective factors. Proposition 7.3
then implies that Ob[(Φn)⊥] = add[(R-Pinj)�n � R-Inj].

Recall from the Introduction that a ring R is semiprimary if the Jacobson radical J = J(R)
is nilpotent, and R/J is semisimple artinian. The least number n for which Jn = 0 is called
the nilpotency index of J.

Theorem 9.1. If R is a semiprimary ring with Jn = 0, then Φn = 〈R-Proj〉.

Proof. We will prove that Ob[(Φn)⊥] = R-Mod, by showing that every left R-module M
has a filtration of length n whose factors are pure injective, and thus belongs to (R-Pinj)�n.
The conclusion Φn = 〈R-Proj〉 then follows. Indeed, consider the Loewy series

M ⊇ JM ⊇ J2M ⊇ · · · ⊇ Jn−1M ⊇ JnM = 0.

Each of the factors is semisimple, and therefore pure injective. This follows from the observation
that if N is a semisimple R-module, then it may be considered as an R/J-module. As such, it is
injective, and therefore pure injective. But the quotient map R → R/J is a ring epimorphism,
so that the action of R on N yields a pure injective R-module, by [42, Theorem 5.5.3]. Another
way to see that a semisimple module M over a semiprimary ring is pure injective is to note
that it is of finite endolength [42, Corollary 4.4.24].

An important special case of Theorem 9.1 is when the ring R is QF [39]. This means that the
category of projective left R-modules coincides with the category of left injective R-modules. It
is well known that this property is left–right symmetric and that every QF ring is semiprimary.
If R is a QF ring, then the stable category of R-Mod is obtained as the quotient category of
R-Mod modulo the ideal 〈R-Proj〉 generated by the projective/injective modules. It is denoted
by R-Mod and has the structure of a triangulated category. The phantom ideal Φ in R-Mod
contains 〈R-Proj〉 and so induces an ideal, also denoted by Φ, in the stable category. It is obvious
that, for a QF ring, the equation Φn = 〈R-Proj〉 holds in the module category R-Mod if and
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only if Φn = 0 in the stable category. The following proposition characterizes the nilpotency
index of the phantom ideal in the stable category of modules over a QF ring.

Proposition 9.2. If R is a QF ring, then Φn = 0 in the stable category R-Mod if and only
if every left R-module is a direct summand of a module that possesses a filtration of length n
with pure injective factors.

Proof. The equation Φn = 0 holds in the stable category if and only if Φn = 〈R-Proj〉 in the
module category R-Mod, which is equivalent to R-Mod = Ob[(Φn)⊥] = add[(R-Pinj)�n � R-Inj],
by the discussion above. It is enough therefore to show that, for a QF ring, (R-Pinj)�n � R-Inj =
(R-Pinj)�n. But if a module M belongs to (R-Pinj)�n � R-Inj, then there is a filtration of M

M = M0 ⊇ M1 ⊇ · · · ⊇ Mn ⊇ Mn+1 = 0

of length n + 1, all of whose factors are pure injective. The first factor M0/M1 is even injective,
hence projective, so that M = M0/M1 ⊕ M1, and we obtain the filtration

M = M0/M1 ⊕ M1 ⊇ M0/M1 ⊕ M2 ⊇ · · · ⊇ M0/M1 ⊕ Mn ⊇ 0

of length n, all of whose factors are pure injective.

If R is a QF ring, then the nilpotency index n of the Jacobson radical is a strict upper
bound for the nilpotency index of the phantom ideal in the stable module category. We will
give two proofs of this result. Both depend on the well-known fact that if R is a QF ring,
then every left R-module M admits a direct sum decomposition M = E ⊕ M ′, where E is a
projective/injective module and M ′ has no projective/injective summands. Furthermore, the
Loewy length of M ′ is at most n − 1. For, the injective envelope of M ′ is part of the short
exact sequence

0 � M ′ �E(M ′) p�Ω−1(M ′) � 0,

where the morphism p : E(M ′) → Ω−1(M ′) is the projective cover of the cosyzygy of M ′. It
follows that M ′ is a small submodule of its injective envelope M ′ ⊆ JE(M ′), and hence that
Jn−1M ′ = 0. The second proof of the next theorem is due to David Benson. It is a direct proof
that does not rely on the present theory.

Theorem 9.3. If R is a QF ring with Jacobson radical J, then Jn = 0 implies that Φn−1 = 0
in the stable category R-Mod.

Proof. Given a left R-module M, with decomposition M = E ⊕ M ′ as above, we obtain a
filtration

M ⊇ JM ′ ⊇ J2M ′ ⊇ · · · ⊇ Jn−1M ′ = 0,

of length at most n − 1. The first factor is the pure injective module E ⊕ M ′/JM ′, while the
others are semisimple. By Proposition 9.2, Φn−1 = 0 in the stable category R-Mod.

For the second proof, consider a phantom morphism ϕ : M → N in R-Mod such that N
has no projective/injective summands. If i : S ⊆ M is a simple submodule, then, because R
is left artinian, the module S is finitely presented. The composition ϕi : S → N then factors
through a projective module P, which is also injective, so that we may take P = E(S), the
injective envelope of S. If ϕi were nonzero, then the image of ϕ would contain a submodule
isomorphic to E(S), contrary to the assumption on N. It follows that Kerϕ ⊇ soc(M) and that
a composition of k phantoms
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M0
ϕ1 � M1

ϕ2 � M2
ϕ3 � · · · ϕk � Mk

between modules that have no projective/injective summands must contain the kth socle of
M0 in its kernel, whence Φn−1 = 0 on the stable category R-Mod.

Because the nilpotency index of the Jacobson radical J of a group algebra k[G] is bounded
by the k-dimension |G| of the algebra, Theorem 9.3 provides an upper bound on the nilpotency
index of the stable phantom ideal that makes no reference to the ground field k. This answers
a question [8, Question 5.6.3] of Benson and Gnacadja in the affirmative.

Corollary 9.4. Let G be a finite group and k be a field. If Φ denotes the ideal of phantom
morphisms in the stable category k[G]-Mod of modules over the group algebra k[G], then
Φ|G|−1 = 0.

The Jennings-Quillen Theorem [5, p. 87] may be used to obtain upper bounds for the
nilpotency index of the Jacobson radical as in [14]. For example, if G is a regular p-group
of rank r, this provides a phantom number of (p − 1)r, but if G is a cyclic p-group, then the
nilpotency index of the Jacobson radical is |G|, because the group algebra k[G] is uniserial,
and therefore of finite representation type. Then every left k[G] module is pure injective, so
that Proposition 9.2 implies that k[G]-Mod is phantomless.

A module F belongs to the ideal Φ provided that TorR1 (−,F) = 0 or, equivalently, if it is
flat. Denote by R-Flat ⊆ R-Mod the subcategory of flat modules. The object ideal 〈R-Flat〉 of
morphisms that factor through a flat module is contained in Φ and, because it is idempotent,
we see that the filtration

Hom = Φ0 ⊇ Φ ⊇ Φ2 ⊇ · · · ⊇ Φn ⊇ · · · ⊇ 〈R-Flat〉

of finite powers of Φ is bounded below by 〈R-Flat〉. Recall that a module C is cotorsion
if Ext1R(F,C) = 0 for every flat module F, and that [12] every module M has a flat cover
f : F (M) → M whose kernel, denoted by Ω�(M), is cotorsion. Denote by R-Cotor ⊆ R-Mod the
subcategory of cotorsion left R-modules. The category R-Cotor of cotorsion modules contains
every pure injective module and is closed under extensions and direct summands, so that the
comments in the first paragraph of this section imply that Ob[(Φn)⊥] ⊆ R-Cotor.

Proposition 9.5. If R-Cotor ⊆ Ob[(Φn)⊥], then Φn = 〈R-Flat〉.

Proof. Let N be a module and consider the short exact sequence

0 �Ω�(N) � F (N) f � N � 0,

where f : F (N) → N is the flat cover of N, and the module Ω�(N) is cotorsion. The hypothesis
implies that Ω�(N) ∈ Ob[(Φn)⊥]. Because the morphism f belongs to Φn, it is an object-special
Φn-precover of N : every morphism in Φn with codomain N factors through F (N) and so
belongs to 〈R-Flat〉.

The remainder of this section is devoted to developing a criterion sufficient for the condition
Φn+1 = 〈R-Flat〉 to hold in R-Mod for a right coherent ring R.

Lemma 9.6. If the ring R is right coherent, then add[(R-Pinj)�n] is invariant under Ω�.
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Proof. Let us prove that every module U in (R-Pinj)�n has a flat syzygy, not necessarily
Ω�(U), that also belongs to (R-Pinj)�n. Because the flat cover of a finite direct sum of modules
is the direct sum of the respective flat covers [47, § 1.4], this will imply that if M belongs
to add[(R-Pinj)�n], then so does the kernel Ω�(M) of its flat cover. The proof proceeds by
induction on n. The case n = 1 is the statement that the flat syzygy of a pure injective left
R-module is itself pure injective, a result proved by Xu [47, Lemma 3.2.4].

If U ∈ (R-Pinj)�(n+1), then there is a short exact sequence, shown at the bottom of the
commutative diagram

0 0 0

� � �

0 �Ω�(U0) � K �Ω�(Un) � 0

� � �

0 �F (U0) �F (U0) ⊕ F (Un) �F (Un) � 0

� � �

0 � U0 � U � Un � 0

� � �

0 0 0

where U0 is pure injective, Un belongs to (R-Pinj)�n, and all the rows and columns are exact.
The left and right columns are given by the flat covers of U0 and Un, respectively. Because U0

is pure injective, it is cotorsion, so that the flat cover of Un lifts to U, which yields, as in the
Horseshoe Lemma [5, Lemma 2.5.1], a flat precover of U in the middle column. By the case
n = 1, the flat syzygy Ω�(U0) is pure injective. By the induction hypothesis, the flat syzygy
Ω�(Un) belongs to (R-Pinj)�n. Therefore, K belongs to (R-Pinj)�(n+1).

Theorem 9.7. Suppose that R is right coherent and let C be a cotorsion left R-module
with a coresolution

0 � C c � I0 � I1 � · · · � In � 0

in R-Mod with each Ik pure injective. Then C ∈ add[(R-Pinj)�(n+1)].
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Proof. The proof proceeds by induction on n. The case n = 0 is a tautology. To prove the
induction step, consider the commutative diagram

0 0

� �

Ω�(C ′) Ω�(C ′)

� �

0 � C � U �F (C ′) � 0

� �

0 � C c � I0 � C ′ � 0

� �

0 0

where the bottom row is the short exact sequence that begins the given coresolution, and the
rest of the diagram is obtained by pullback along the cokernel of c and the flat cover of C ′.
Both C and I0 are cotorsion, so that C ′ is also a cotorsion module with a coresolution by pure
injective modules of properly shorter length. The induction hypothesis therefore applies and
we may assume that C ′ belongs to add[(R-Pinj)�n]. By the previous lemma, so does the flat
syzygy Ω�(C ′). Because C is cotorsion, the flat cover of C ′ lifts to I0 and causes the middle
row of the diagram to split. It follows that C is a direct summand of U.

Now Ω�(C ′) belongs to add[(R-Pinj)�n], so there exists a module K such that Ω�(C ′) ⊕ K ∈
(R-Pinj)�n. The module U ⊕ K is an extension of the pure injective module I0 by Ω�(C ′) ⊕ K,
so that U ⊕ K belongs to (R-Pinj)�(n+1). Consequently, C ∈ add[(R-Pinj)�(n+1)].

Theorem 9.7 and Proposition 9.5 imply the following corollary.

Corollary 9.8. Let R be a right coherent ring such that every cotorsion left R-module
C has a coresolution

0 � C � I0 � I1 � · · · � In � 0

with each Ik pure injective. Then Φn+1 = 〈R-Flat〉.
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A ring R is said to be of left pure global dimension at most n if every left R-module has a
pure injective pure coresolution of length at most n. Such a ring clearly satisfies the hypothesis
of Corollary 9.8. This yields the following generalization of a result of Benson and Gnacadja [8],
which asserts that, for a group algebra k[G] of pure global dimension n, the finite power Φn+1

of the phantom ideal is the object ideal of morphisms that factor through a projective left
R-module.

Corollary 9.9. If R is a right coherent ring of left pure global dimension at most n, then
Φn+1 = 〈R-Flat〉.

Similarly, if every left R-module has an injective coresolution of length at most n, then the
hypothesis of Corollary 9.8 is satisfied.

Corollary 9.10. If R is a right coherent ring of homological dimension at most n, then
Φn+1 = 〈R-Flat〉.

A ring R is of flat global dimension at most n if every left R-module has a flat resolution
of length at most n. Then every cotorsion left R-module has injective dimension at most n,
so that the hypothesis of Theorem 9.7 is satisfied and Φn+1 = 〈R-Flat〉. To see why every left
cotorsion module C has injective dimension at most n, consider a flat resolution of F∗ → M

0 � Fn � · · · � F1 � F0 � M � 0,

of length n, of an arbitrary left R-module M. This resolution is Hom(−,C)-acyclic [29, Propo-
sition III.1.2A] so that Extk(M,C) is given by the homology of Hom(F∗,C) at Hom(Fk,C).
In particular, Extn+1(M,C) = 0. Since this is true for every left R-module M, it follows from
standard homological arguments that C has a coresolution by injective modules of length at
most n, and the hypothesis of Corollary 9.8 is again satisfied.

Corollary 9.11. If R is a right coherent ring of flat global dimension at most n, then
Φn+1 = 〈R-Flat〉.

For example, if a ring R is right semihereditary, then it is right coherent and of flat global
dimension at most 1 so that Φ2 = 〈R-Flat〉.

10. Wakamatsu’s Lemma

Theorem 8.4 implies that in the bijective correspondence I �→ I⊥ given by Salce’s Lemma
(Theorem 6.3), as well as its inverse K �→ ⊥K, idempotent ideals I2 = I correspond to ideals
closed under ME-extensions K � K = K. These two properties of an ideal are familiar from
the classical theory because if (F , C) is a complete cotorsion pair, then both ideals in the
complete ideal cotorsion pair (〈F〉, 〈C〉) (see [24, Theorem 28]) are idempotent and closed under
ME-extensions. They are idempotent, because they are object ideals; they are closed under
ME-extensions, because the underlying subcategories of objects are closed under extensions.
In this section, we take up the study of ideals having these properties, but not with the usual
assumption that they be special precovering, but, rather, covering. None of the results in this
section require the existence of enough injective or projective morphisms.

Let I be an ideal of an exact category (A; E) and A be an object of A. An I-precover
i : C → A of A is an I-cover if every endomorphism f : C → C that makes the diagram
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C

�
�

�
�

��

f

�

i

C i � A

commute is an automorphism. Recall that an I-precover is necessarily a deflation. The notion
of an I-envelope is defined dually. In what follows, we state the results in terms of covers,
rather than envelopes, leaving the formulations and proofs of the dual results to the interested
reader.

If i : C → A is an I-cover and i′ : C ′ → A is an I-precover, then there is a morphism from
c : C → C ′ over A that induces a morphism k on the kernels, and therefore an ME-conflation
of arrows

Ξ : K � C i � A

ξ

� �

k

�

c

Ξ′ : K ′ � C ′ i′ � A

The condition that i be an I-cover implies the existence of a retraction σ : Ξ′ → Ξ of ξ, which
implies that the conflation Ξ is a direct summand of Ξ′. In particular, both of the morphisms
c : C → C ′ and k : K → K ′ have retractions. This will be used in the proof of the following
lemma, which is the main result of this section.

Lemma 10.1. Let I be an ideal, closed under ME-extensions, in an exact category (A; E).
If A ∈ A and i : C → A is the I-cover of A, then the kernel K of i belongs to Ob(I⊥).

Proof. It must be shown that Ext(i′,K) = 0 for every morphism i′ : I ′0 → I ′1 in I. Equiv-
alently, every ME-conflation ξ : 1K

m→ a → i′ is null homotopic. This is depicted by the
diagram

K
m0� A0 � I ′0

�

1K

�

a

�

i′

K � A1 � I ′1

We will use the hypothesis that i : C → A is an I-cover to prove that m0 : K → A0 is a split
inflation. Let us take the pushout of ξ along the ME-conflation 1K → 1C

i→ 1A to obtain the
diagram

1K � 1C
i � 1A

�

m

�
a � b s � 1A

� �

j

i′ i′



POWERS OF THE PHANTOM IDEAL 747

in Arr(A). By Theorem 3.2, all the rows and columns of this diagram are ME-conflations.
Regarded as a diagram in A, it is given by

K � C i � A

�
�

��

�
�

��

�
�

��

�
�

��

�
�

��

�
�

��

K �

�
m0

C �

�

A

�

A0 �

�

B0
s0� A

�
�

���
a

�
�

���
b

�
�

��

�
�

��

A1 �

�

B1
s1�

�
j0

A

�

I ′0

�
j1

I ′0
�

�
���

i′
�

�
���

i′

I ′1 I ′1

If we can show that s0 : B0 → A belongs to I, then the properties of the I-cover i : C → A
will ensure that the inflation m0 : K → A0 has a retraction that yields a homotopy of ξ. Let
us factor s0 as s0 = s1b and extract from the above diagram the commutative diagram

B0

�

b
�

�
�

�
��

i′j0

C � B1 � I ′1
�

�
�

�
��

i
�

s1

A

where the composition of the middle column is given by s0 = s1b and the middle row is the
conflation that appears in the front middle column of the diagram above. Now i and i′j0 both
belong to I, which is closed under ME-extensions, so that Lemma 4.1 implies that s0 ∈ I, as
required.

Definition 10.2. An ideal I is covering if every object A in A has an I-cover.

If I is a covering ideal in an exact category (A; E), it is not known, even for the phantom
ideal Φ in R-Mod, if I2 is a covering ideal. The next result, whose proof is immediate from the
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previous lemma, is an ideal version of Wakamatsu’s Lemma [46]. The present proof subsumes
the proof of the classical Wakamatsu’s Lemma in the same way that the proof of Theorem 6.3
encompassed the proof of the classical version of Salce’s Lemma.

Theorem 10.3 (Wakamatsu’s Lemma). Every covering ideal I, closed under ME-
extensions, is an object-special precovering ideal.

Example 10.4. The phantom ideal Φ of R-Mod is covering by [31, Theorem 7]. That
it is closed under ME-extensions follows from the fact that it is right Tor-orthogonal to the
category of all right R-modules. Precisely, let h be a morphism in the extension ideal Φ � Φ.
By Lemma 4.1, the morphism h may be expressed as a composition h = h2h1 as shown in the
commutative diagram

A

�

h1
�

�
�

�
��

ϕ2

0 � X m � Z
p � Y � 0

�
�

�
�
��

ϕ1

�

h2

B

where ϕ1 and ϕ2 are phantom morphisms and the middle row is exact. Let N = NR be a
right R-module and apply the covariant functor Tor1(N,−) to the diagram above to obtain the
commutative diagram

Tor(N,A)

Tor(N,h1)

�

�
�

�
�

�
�

�
���

0

Tor(N,X) Tor(N,m)� Tor(N,Z) Tor(N,p)� Tor(N,Y)

�
�

�
�

�
�

�
���

0

�

Tor(N,h2)

Tor(N,B)
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of abelian groups, whose middle row is exact. As in the conclusion of the proof of Theorem 5.3,
Tor(N,h) = Tor(N,h2)Tor(N,h1) = 0, for every NR, which implies that h is a phantom mor-
phism. One concludes from Wakamatsu’s Lemma the (known) fact that Φ is an object-special
precovering ideal.

Let us now turn our attention to idempotent ideals. If I and J are ideals, then every
morphism in the product ideal is of the form f =

∑
k ikjk : A → B, where each jk : A→Xk

belongs to J and each ik : Xk → B belongs to I. If I is precovering, then every ik
factors through an I-precover iB : X → B, ik = iBgk, where gk : Xk → X. The morphism
f =

∑
k iBgkjk = iB(

∑
k gkjk) is therefore expressible as a composition of a morphism iB

in I and a morphism in J . The next result is a kind of dual to Wakamatsu’s Lemma,
because its subject are the idempotent covering ideals, rather than covering ideals closed under
ME-extensions.

Proposition 10.5. An idempotent covering ideal is an object ideal.

Proof. Let I be an idempotent covering ideal and suppose that i : C → A is an I-cover of
an object A. The foregoing comments imply that we may express i as a composition i = i1i2
of morphisms in I,

C i � A

�

i2

B
i1 � A

�

f

C i � A

Because i1 : B → A belongs to I, it will factor as shown above, i1 = if. Because i : C → A
is an I-cover, the endomorphism fi2 : C → C is an invertible morphism in I. It follows that
1C ∈ I, and therefore that every morphism in I with codomain A factors through the object
C ∈ Ob(I).

A ring R is called phantomless if the phantom ideal is an object ideal, Φ = 〈R-Flat〉.

Proposition 10.6. A ring R is phantomless if and only if the phantom ideal is idempotent.
This is equivalent to R-Cotor ⊆ Ob(Φ⊥).

Proof. The first equivalence follows from the fact [31, Theorem 7] that Φ is a covering ideal
and Proposition 10.5. The second statement follows from Proposition 9.5 and the definition of
a cotorsion module.

Proposition 10.7. A special (respectively, object-special) precovering ideal I is idem-
potent if and only if some I-syzygy ideal (respectively, subcategory) is closed under
ME-extensions (respectively, extensions).
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Proof. If I is idempotent, then ω(I) = I⊥ is closed under ME-extensions, by Corollary 5.5.
Conversely, suppose that some I-syzygy ideal ω(I) is closed under ME-extensions. By
Corollary 8.2, ω(I2) = ω(I) � ω(I) = ω(I). Let A be an object of A and consider a special
I2-precover i1 : C1 → A of A with I2-syzygy ω : W0 → W1 in ω(I2) as shown in

W0 � C0 � A

�

ω

�
W1 � C1

i1 � A

Then i1 ∈ I2 ⊆ I and ω ∈ ω(I2) ⊆ ω(I), so that i1 : C1 → A is a special I-precover. It follows
that every morphism in I with codomain A factors through i1 and therefore belongs to I2.
Thus I ⊆ I2.

If I is an idempotent object-special precovering ideal, then I⊥ is closed under ME-extensions.
The I-syzygy subcategory Ω(I) = Ob(I⊥) is then closed under extensions, because, as in the
proof of Theorem 4.4,

Ob(I⊥) � Ob(I⊥) ⊆ Ob(I⊥ � I⊥) = Ob(I⊥).

Suppose, on the other hand, that some I-syzygy subcategory Ω(I) is closed under extensions,
Ω(I) � Ω(I) ⊆ Ω(I). By Corollary 8.2, the subcategory Ω(I) � Ω(I) = Ω(I2) is an I2-syzygy
subcategory. If A is an object of A, and i : C → A is an object-special I2-precover

ΩI2(A) � C i � A,

whose kernel lies in Ω(I2) ⊆ Ω(I), then, because i ∈ I, the morphism is an object-special
I-precover. As above, I ⊆ I2 and I is idempotent.

Every pure injective module is cotorsion and the subcategory of cotorsion modules is closed
under extension. Proposition 7.3 thus yields the inclusions R-Pinj ⊆ Ob(Φ⊥) ⊆ R-Cotor. A
ring R is a called a Xu ring if the equality R-Pinj = R-Cotor holds. In that case, the Φ-syzygy
subcategory R-Pinj is closed under extensions, so that Proposition 10.7 implies that Φ is
idempotent and therefore that the ring R is phantomless. Xu rings have been characterized
in [47, Theorem 3.5.1] as follows. We offer a proof using the present theory.

Proposition 10.8 (Xu). Let R be an associative ring with identity. Every cotorsion left
R-module is pure injective if and only if the subcategory R-Pinj of pure injective left R-modules
is closed under extensions.

Proof. If every cotorsion module is pure injective, then it is immediate that the subcat-
egory R-Pinj is closed under extensions. Conversely, if R-Pinj is closed under extensions,
then R is phantomless and Ob(Φ⊥) = add(R-Pinj � R-Inj) = R-Pinj, by Proposition 7.3. By
Proposition 10.6, every cotorsion module belongs to Ob(Φ⊥).

In the sequel to this article, we will develop a theory to prove the dual of this proposition.
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