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In this note, we study rings over which every left module is a direct sum of finitely
generated modules. Chase [5] showed that all such rings are left artinian and Fuller
[8] proved that these are precisely the rings R with the property that every left R-
module RM has a decomposition RM = ©i e / Ut which complements direct summands.
This means that whenever RK is a direct summand of RM, there is a subset J of the
index set / such that RM = RK® R{®iej ^ ) - Zimmermann-Huisgen [22, Corollary 2]
showed that these are the left pure-semisimple rings defined below. And although left
pure-semisimple rings have many attractive features (see [15, p. 210]), it is not known
whether they are all of finite representation type, that is, left artinian with only finitely
many indecomposable left modules.

Auslander [1] showed that every left pure-semisimple artin algebra is of finite
representation type (an artin algebra is a ring which is finitely generated as a module
over an artinian centre). If A is an artin algebra and MA is a right A-module, then M
is also finitely generated as a module over the centre of A. Consequently, MA is of
finite length as a module over its endomorphism ring EndAM; a module with this
property is called endofinite. We observe below how, at least in this respect, left pure-
semisimple rings resemble artin algebras.

THEOREM 2.3. Every finitely presented right R-module over a left pure-semisimple
ring R is endofinite.

This is an extension of Chase's result which may be thought of as the same
statement restricted to the finitely generated projective right modules.

A short exact sequence of left /^-modules

/ g
0 >RM >RN >RK >0 (1)

is called pure-exact if it satisfies one of the following equivalent conditions [18,
Proposition 3].

• For each (finitely presented) right i?-module XR, the sequence of abelian groups

0 >X®RM >X®RN • X®RK >0

is exact.
• For every finitely presented left /^-module R Y, the sequence of abelian groups

Hom(7,/) Hom(7,g)
0 >HomR(Y,M) • HomR(Y,N) • HomR(Y,K) >0

is exact.
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Note that the first (respectively second) condition is really a condition on the
morphism / (respectively g); a morphism with this property is called a pure-
monomorphism (respectively pure-epimorphism). A left /^-module RM (respectively
RK) is called pure-injective (respectively pure-projective) if every pure-exact sequence
of the form (1) is split-exact.

The ring R is called left pure-semisimple if every pure-exact sequence of left R-
modules is split-exact. This is equivalent to the property that every left /?-module is
pure-injective (respectively pure-projective). A left /^-module RM is called Y-pure-
injective if for every index set /, the direct sum RMU) of/copies of RM is again pure-
injective. Evidently, every left module over a left pure-semisimple ring is Z-pure-
injective.

The condition that a ring R be of finite representation type is left-right symmetric
[7, Theorem 1.2], and it is shown in [17, 9, 22] that a ring is of finite representation
type if and only if it is left and right pure-semisimple. So to prove that a left pure-
semisimple ring is of finite representation type it is enough to show it is right pure-
semisimple. Since every endofinite module is I-pure-injective (see Proposition 1.1
below), Theorem 2.3 takes the following step in that direction.

COROLLARY 2.4. Every finitely presented right R-module over a left pure-
semisimple ring R is Y-pure-injective.

1. Preliminaries

Let R be a ring, associative and with a unit 1 e R. Recall from [14, §2.1] the notion
of a positive-primitive formula, or pp-formula (in one variable), in the language of right
/^-modules. This is nothing more than an existentially quantified system of linear
equations with coefficients in R. More precisely, let C = {c^f^}^ be an (m +1) x n
matrix with entries in R. Consider the system of linear equations whose matrix of
coefficients is C:

(c \
If we write the matrix C = I ° , where Co is the first row of C and C" is the remaining
m x n submatrix, we can express this system by the single equation

where y = (yl,---,ym)- Existentially quantifying over the variables y gives a formula
(f>(x) in the free variable x

0; (2)

this is the general form of a pp-formula in one variable for right /^-modules.
Given a right /^-module MR, the pp-formula <p(x) defines a subgroup <p(M) of M

defined by

[ (r\ 1
<f>(M) := laeM: there is a beAfm such that (a,b) " = 0[ .
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This is, in some sense, the subgroup of solutions to 0(x) in MR. A subgroup of M
defined in this way is called a. finite matrix subgroup, or pp-definable subgroup, of MR.
Finite matrix subgroups were introduced by Gruson and Jensen [11] and
Zimmermann [20]. As pp-definable subgroups, they have been studied by Baur [4] and
Garavaglia [10]. Two pp-formulae <f>{x) and ^(JC) are said to be equivalent if for every
right .R-module NR, they define the same finite matrix subgroup, <j>{N) = y/{N).

Positive-primitive formulae are defined similarly for left /^-modules. Our need for
these formulae stems from the following characterization of I-pure-injective modules.

PROPOSITION 1.1 [12; 20, Folgerung 3.4]. A left R-module RM is Z-pure-injective
if and only if it satisfies the descending chain condition (dec) on finite matrix subgroups.
Thus a ring R is left pure-semisimple if and only if every left R-module has the dec on

finite matrix subgroups.

Prest [13; 14, §8.4] noticed that there is a bijective correspondence between the
right pp-formulae and the left pp-formulae (modulo equivalence). For a right pp-
formula of the form (2), define 0*(x) to be the pp-formula for left /^-modules

where z = {zx,..., zn) and the 0 below the 1 is a column vector with m entries. That
this is well-defined can be shown using the following result of Zimmermann-Huisgen
and Zimmermann.

PROPOSITION 1.2 [23, Proposition 3]. Let MR be a right R-module and let S be a
ring such that there is an S-R-bimodule structure SMR. Let SW be an injective
cogenerator. The group M* = Homs(sMR, SW) has a left R-module structure given by
(rf)(a) =Aar)- If<l>(.x) w a right pp-formula, the finite matrix subgroup <f>(MR) of M is
an S-submodule and

</>*(RM*) = Homs(M/<f>(M),sW).

The function (f)(M R)y-KJ>*(RM*) is a bijective correspondence between the finite matrix
subgroups of MR and those of RM*.

In general, a finite matrix subgroup <f>(MR) of M need not be an /?-submodule of
MR. But if it happens to be such, it is clear by Proposition 1.2 that the finite matrix
subgroup 0*(fiM *) is then an /^-submodule of the left /^-module RM*. Proposition 1.2
may also be used to verify the following.

PROPOSITION 1.3 [13, Proposition 1.3; 23, Theorem 6]. A ring R is left pure-
semisimple if and only if every right R-module satisfies the ascending chain condition on
finite matrix subgroups.

2. Finitely presented indecomposables

Since every left pure-semisimple ring R is left artinian, the Auslander-Bridger
transpose [2] may be used to show that the finitely presented right /^-modules are also
well-behaved. When this is done as in [19, §2], it shows that every finitely presented
right 7?-module is a direct sum of finitely many indecomposables each of which has
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a local endomorphism ring. To prove our main result, that every finitely presented
right module over a left pure-semisimple ring is endofinite, it is enough to verify it for
indecomposable modules. So even if some of our statements hold for finitely
presented modules in general, we shall restrict them to the indecomposable case for
ease of argument.

Let AR be a finitely presented /^-module with a local endomorphism ring S =
EndRAR; so there is an 5-/?-bimodule structure SAR. Let SV be the minimal injective
cogenerator in the category of left 5-modules. This just means that s ^ i s the injective
envelope of the unique simple left S-module. Consider the left /^-module RA* =
Homs(sAR, SV). By [16, Exercise 1.33], we have that SA ®RA* s SV. Let T=EndRA*
be the endomorphism ring of RA*. Then

T= HomR(RA*,RHoms(sAR,sV)) = H o m s ( ^ ®RA«,SV) = Ends V.

The ring T, being the endomorphism ring of the indecomposable injective module SV,
must be local, so that RA* is an indecomposable left /^-module. If R is left pure-
semisimple, then Ry4s must be finitely generated. We shall also need the following
observation of Zimmermann-Huisgen and Zimmermann.

PROPOSITION 2.1 [23, Observation 8]. Let FR be a finitely presented right R-module
with the ascending chain condition on finite matrix subgroups, and let S = EndK F. A
subgroup of F is an S-submodule ofSF if and only if it is a finite matrix subgroup ofFR.
In particular, SF is noetherian.

PROPOSITION 2.2. If R is left pure-semisimple and AR is a finitely presented
indecomposable right R-module, then AR is endofinite.

Proof. Since S = Endft^4 is local and SA is noetherian, there is a descending
chain of S-submodules

SA 3 radsA 2 r ad |A 2 ... 2 r a d £ A ^ ...

where every nonzero rad's A contains rad*/1 A properly. Since every factor of this
filtration is semisimple of finite length, all we need to show is that there is a k such
that rad*,4 = 0. By Proposition 2.1, there is a pp-formula (j>{{x) such that (/>t(A) =
radl

s^. Note that each $t(A) is an S-^-subbimodule of SAR. If the above chain were
infinite, we would obtain, by Proposition 1.2, a strictly ascending chain

of submodules of RA*. But the left /^-module RA* is finitely generated and so must be
of finite length. This is a contradiction.

Now a finite direct sum of modules is endofinite if and only if each of its factors
is endofinite.

THEOREM 2.3. Every finitely presented right R-module over a left pure-semisimple
ring R is endofinite.

In conjunction with Proposition 1.1, Theorem 2.3 yields the following.

COROLLARY 2.4. Every finitely presented right R-module over a left pure-
semisimple ring R is 1,-pure-injective.
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EXAMPLE. Let F and G be division rings and GBF a G-F-bimodule. Consider the

matrix ring R = I I consisting of the matrices \ I where feF, beB and
\GBF GJ \° SJ

gsG. It is easy to check that R is left artinian if and only if the dimension of the
left G-vector space GB is finite and that R is right artinian if and only if the right F-
vector space BF is finite dimensional. Simson [15, Theorem 3.3] has shown that if there
is a hereditary example of a ring which is left pure-semisimple but not of finite

representation type, then there is an example of the form R = I I which, in
\GBF GJ

addition, fails to be right artinian.

Suppose R = \ „ J\ were such a counterexample, and let us see what Theorem
\GBF G)

2.3 says regarding the finitely presented local right /^-modules. (A local module is a
module with a unique maximal proper submodule.) By [16, Exercises 1.10,1.35], the
right /^-modules may be represented as triples (XF, YG,<x: Y® G

BF -* XF\ where XF is
a right F-vector space, YG is a right G-vector space and a is an F-linear map. The
indecomposable projective right i?-modules are P1 = e1R = (F, 0,0) and P2 = e2R =
(GBF, GG,f$: G ® GBF -> BF), where /? is the canonical isomorphism. Now EndRP2 =
e2 Re2 = G, so to say that P2 is endofinite just means that the dimension of GB is finite.

The finitely generated proper submodules of P2 are the modules (B'F, 0,0) where B'F
is a finite-dimensional F-subspace of BF. The finitely presented quotients of P2 are thus
of the form {{B/B')F,GG,n\ G® GBF^(B/B')F), where n is the composition of ^
above with the natural quotient map. The endomorphism ring EndR((B/B')F, GG, n)
= G' = {geG: g(B') c B'} is again a division ring. Because B'F is finite dimensional,
g(B') c B' implies g(B') = B' when g # 0. Now ((B/B')F, GG, n) is finite dimensional
over G' if and only if both of the left G'-vector spaces G{B/B') and GG are finite
dimensional. But if C.G is finite dimensional, then since GB is finite dimensional, we
already have that G{B/B') is finite dimensional. Thus a necessary condition that R be
a counterexample is that for every finite dimensional F-subspace B'F of BF, the
division ring G is finite dimensional as a left vector space over the division ring

One of the main tools used in the study of modules over an artin algebra A is the
Morita duality which exists between the finitely generated left A-modules and the
finitely generated right A-modules. The next result further attests to the resemblance,
in this regard, of a left pure-semisimple ring to an artin algebra.

COROLLARY 2.5. Let R be left pure-semisimple and AR a finitely presented
indecomposable right R-module. Let S = TindRAR be the endomorphism ring of AR, SV
the minimal injective cogenerator in the category of left S-modules, and let RA* =
Homs(sAR,sV). If r o p = E n d s F = E n d f l ^ , then the covariant functor £>(-) =
Homs( —, SVT) constitutes a Morita duality D: S'-mod -> mod-T between the category
of finitely generated left S-modules and that of finitely generated right T-modules.
Furthermore, D(SA) = A9

T.

Proof. It is enough to show that S is left artinian and that SV is a finitely
generated 5-module; by [3], the contravariant functor Hom5(—, SVT) is then a Morita
duality. Let aXi ...,aneAR be a sequence of generators for AR as an /^-module. The
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«-tuple a = (<215...,an) is an element of the finite length S-module sA
n. The cyclic

submodule SSL is faithful, so that S must be left artinian. To see that s V = SA ® RA%

is finitely generated, just use the fact that RA% and SA are finitely generated.

Corollary 2.5 asserts that when R is a left pure-semisimple ring, there is an
'endoduality' between the finitely presented indecomposable right /^-modules AR and
the left /^-modules RA*. By [6, Theorem 2.3], the modules RA% are precisely the
indecomposable left /^-modules which are the domain of a left almost split morphism.
Indeed, by [21, Satz 1], if A* is not injective, there is an almost split sequence of left
/^-modules

0 >A* >X >TrO0 >0,
where Tr(A) denotes the Auslander-Bridger transpose of AR.
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