The Recollements of Purity

IVO HERZOG The Ohio State University at Lima

(Joint with X.H. Fu)

Gordana's Birthday Conference August 16 - 19, 2019 University of Iowa

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わんで

Outline

2 Coherent functors

3 Recollements of abelian categories

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

4 Tilting and cotilting functors

Historical definition

Prüfer: Let *N* be an abelian group. A subgroup $M \le N$ is pure in *N* if it is relatively divisible in *N*: for every $n \in \mathbb{Z}$,

 $M \cap nN = nM$.

Definition (Fieldhouse)

Let *R* be an associative ring with 1. A left *R*-submodule $_RM \le _RN$ is surveying *M* if for every *m* × *n* matrix *A* with entries in *R*,

 $M^m \cap AN^n = AM^n$.

A short exact sequence in R-Mod,

$$0 \longrightarrow_R M \xrightarrow{i} >_R N \longrightarrow_R K \longrightarrow 0$$

is pure exact if $\text{Im } i \leq N$ is a pure submodule.

< ロ > < 団 > < 三 > < 三 > < 三 > < 三 > < 〇 < 〇</p>

Historical definition

Prüfer: Let *N* be an abelian group. A subgroup $M \le N$ is pure in *N* if it is relatively divisible in *N*: for every $n \in \mathbb{Z}$,

 $M \cap nN = nM$.

Definition (Fieldhouse)

Let *R* be an associative ring with 1. A left *R*-submodule $_RM \leq _RN$ is pure in $_RN$ if for every $m \times n$ matrix *A* with entries in *R*,

 $M^m \cap AN^n = AM^n$.

A short exact sequence in R-Mod,

$$0 \longrightarrow_R M \xrightarrow{i} >_R N \longrightarrow_R K \longrightarrow 0$$

is pure exact if $\text{Im } i \leq N$ is a pure submodule.

Historical definition

Prüfer: Let *N* be an abelian group. A subgroup $M \le N$ is pure in *N* if it is relatively divisible in *N*: for every $n \in \mathbb{Z}$,

 $M \cap nN = nM$.

Definition (Fieldhouse)

Let *R* be an associative ring with 1. A left *R*-submodule $_{R}M \leq _{R}N$ is pure in $_{R}N$ if for every $m \times n$ matrix *A* with entries in *R*,

$$M^m \cap AN^n = AM^n$$
.

A short exact sequence in R-Mod,

$$0 \longrightarrow_R M \xrightarrow{i} R N \longrightarrow_R K \longrightarrow 0$$

is pure exact if $\text{Im } i \leq N$ is a pure submodule.

(ロ) (日) (日) (日) (日) (日) (日)

Modern definitions

A short exact sequence in R-Mod,

$$0 \longrightarrow_R M \longrightarrow_R N \longrightarrow_R K \longrightarrow_0 N$$

is pure exact iff:

■ **Cohn:** for every finitely presented right *R*-module *X_R*, the sequence of abelian groups

$$0 \longrightarrow X \otimes_R M \longrightarrow X \otimes_R N \longrightarrow X \otimes_R K \longrightarrow 0$$

is exact; iff

Warfield: for every finitely presented left *R*-module $_{R}Y$, the sequence of abelian groups

$$0 \longrightarrow (Y, M) \longrightarrow (Y, N) \longrightarrow (Y, K) \longrightarrow 0$$

(日) (日) (日) (日) (日) (日) (日)

is exact. Abbreviation: $(Y, -) := \operatorname{Hom}_{R}(Y, -)$

Modern definitions

A short exact sequence in R-Mod,

$$0 \longrightarrow_R M \longrightarrow_R N \longrightarrow_R K \longrightarrow_0 N$$

is pure exact iff:

■ **Cohn:** for every finitely presented right *R*-module *X_R*, the sequence of abelian groups

$$0 \longrightarrow X \otimes_R M \longrightarrow X \otimes_R N \longrightarrow X \otimes_R K \longrightarrow 0$$

is exact; iff

Warfield: for every finitely presented left *R*-module _RY, the sequence of abelian groups

$$0 \longrightarrow (Y, M) \longrightarrow (Y, N) \longrightarrow (Y, K) \longrightarrow 0$$

(日) (日) (日) (日) (日) (日) (日)

is exact. Abbreviation: $(Y, -) := \text{Hom}_{R}(Y, -)$.

Outline

2 Coherent functors

3 Recollements of abelian categories

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

4 Tilting and cotilting functors

Fragments of exactness

Let $\ensuremath{\mathcal{A}}$ be a small abelian category.

 (\mathcal{A}, Ab) = the category of additive functors $F : \mathcal{A} \to Ab$.

Important subcategories of (A, Ab)

Fragments of exactness

Let \mathcal{A} be a small abelian category.

 (\mathcal{A}, Ab) = the category of additive functors $F : \mathcal{A} \to Ab$.

Important subcategories of (A, Ab)

R-mod = the category of finitely presented left *R*-modules.

Definition

A functor $F \in (R-mod, Ab)$ is finitely presented, or coherent, if there exists a presentation

$$(Y,-) \xrightarrow{(f,-)} (X,-) \longrightarrow F \longrightarrow 0$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

in (R-mod, Ab) by representable objects, $f : X \rightarrow Y$ in R-mod.

Example: The forgetful functor $(R, -) \cong R \otimes_R -$ is coherent.

Theorem (Auslander)

R-mod = the category of finitely presented left *R*-modules.

Definition

A functor $F \in (R-mod, Ab)$ is finitely presented, or coherent, if there exists a presentation

$$(Y,-) \xrightarrow{(f,-)} (X,-) \longrightarrow F \longrightarrow 0$$

(日) (日) (日) (日) (日) (日) (日)

in (R-mod, Ab) by representable objects, $f : X \to Y$ in R-mod.

Example: The forgetful functor $(R, -) \cong R \otimes_R -$ is coherent.

Theorem (Auslander)

R-mod = the category of finitely presented left *R*-modules.

Definition

A functor $F \in (R-mod, Ab)$ is finitely presented, or coherent, if there exists a presentation

$$(Y,-) \xrightarrow{(f,-)} (X,-) \longrightarrow F \longrightarrow 0$$

(日) (日) (日) (日) (日) (日) (日)

in (R-mod, Ab) by representable objects, $f : X \to Y$ in R-mod.

Example: The forgetful functor $(R, -) \cong R \otimes_R -$ is coherent.

Theorem (Auslander)

R-mod = the category of finitely presented left *R*-modules.

Definition

A functor $F \in (R-mod, Ab)$ is finitely presented, or coherent, if there exists a presentation

$$(Y,-) \xrightarrow{(f,-)} (X,-) \longrightarrow F \longrightarrow 0$$

in (R-mod, Ab) by representable objects, $f : X \to Y$ in R-mod.

Example: The forgetful functor $(R, -) \cong R \otimes_R -$ is coherent.

Theorem (Auslander)

The resolution/coresolution of a matrix A

Let $X_R \in \text{mod-R}$ be the module presented by the matrix A,

$$R_{R}^{n} \xrightarrow{A \times -} R_{R}^{m} \longrightarrow X_{R} \longrightarrow 0.$$

Definition: The resolution/coresolution of A

is the diagram in (mod-R, Ab) with exact rows

$$R^{n} \otimes_{R} - \xrightarrow{A \times -} R^{m} \otimes_{R} - \longrightarrow X \otimes_{R} - \longrightarrow 0$$
$$\| \qquad \| \\0 \longrightarrow (\operatorname{Tr} X, -) \longrightarrow (_{R}R^{n}, -) \xrightarrow{A \times -} (_{R}R^{m}, -),$$

where Tr X denotes the Auslander-Bridger Transpose.

The resolution/coresolution of a matrix A

Let $X_R \in \text{mod-R}$ be the module presented by the matrix A,

$$R_R^n \xrightarrow{A \times -} R_R^m \longrightarrow X_R \longrightarrow 0.$$

Definition: The resolution/coresolution of A

is the diagram in (mod-R, Ab) with exact rows

$$R^{n} \otimes_{R} - \xrightarrow{A \times -} R^{m} \otimes_{R} - \longrightarrow X \otimes_{R} - \longrightarrow 0$$
$$\| \qquad \|$$
$$0 \longrightarrow (\operatorname{Tr} X, -) \longrightarrow ({}_{R}R^{n}, -) \xrightarrow{A \times -} ({}_{R}R^{m}, -),$$

where Tr X denotes the Auslander-Bridger Transpose.

The equivalent definitions of purity

The Snake Lemma:

If $\Sigma : 0 \longrightarrow_R M \longrightarrow_R N \longrightarrow_R K \longrightarrow 0$ is a short exact sequence in R-Mod, then $(\text{Tr}X, \Sigma)$ is exact iff $\text{Im}(A \times \Sigma)$ is exact iff $X \otimes_R \Sigma$ is exact.

The important subcategories of fp(R-mod, Ab)

▲□▶▲□▶▲□▶▲□▶ □ のへで

The subcategories that test for purity

Freyd: Ab(R) is the free abelian category over $add(R \otimes -)$.

Crawley-Boevey & Sauter: The Projective Quotient Category

$$\mathrm{PQ}(R^{\mathrm{op}}) := \mathrm{cogen}(R \otimes_R -) \cap \mathrm{gen}(R \otimes_R -).$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The subcategories that test for purity

Freyd: Ab(R) is the free abelian category over $add(R \otimes -)$.

Crawley-Boevey & Sauter: The Projective Quotient Category

 $PQ(R^{op}) := cogen(R \otimes_R -) \cap gen(R \otimes_R -).$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The subcategories that test for purity

Freyd: Ab(R) is the free abelian category over $add(R \otimes -)$.

Crawley-Boevey & Sauter: The Projective Quotient Category

$$PQ(R^{op}) := cogen(R \otimes_R -) \cap gen(R \otimes_R -).$$

Outline

2 Coherent functors

3 Recollements of abelian categories

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

4 Tilting and cotilting functors

- recollements

Definition (Beilinson, Bernstein & Deligne)

A recollement of abelian categories is a diagram of functors between abelian categories of the form

satisfying the following properties:

- 1 (φ, ι, τ) and (ℓ, p, r) are adjoint triples;
- **2** the functors ι , ℓ and r are fully faithful;

3 $\operatorname{Im}\iota = \operatorname{Ker} p$.

The left adjoint $\ell : \mathcal{Z} \to \mathcal{X}$ is right exact; the right adjoint $r : \mathcal{Z} \to \mathcal{X}$ is left exact; and the middle adjoint $m : \mathcal{Z} \to \mathcal{X}$, given by the image of the norm, preserves images.

- recollements

The stable functor category

Let $\mathcal{B} \subseteq \mathcal{A}$ be an inclusion of small additive categories and $\pi : \mathcal{A} \to \mathcal{A}/\mathcal{B}$ the quotient category:

 $\operatorname{Hom}_{\mathcal{A}/\mathcal{B}}(\underline{A},\underline{B}) = \operatorname{Hom}_{\mathcal{A}}(A,B)/\mathcal{B}(A,B),$

the subgroup of morphisms modulo those that factor through an object in \mathcal{B} .

Theorem

Precomposition with π induces a recollement of abelian categories

$$(\mathcal{A}/\mathcal{B}, Ab) \xrightarrow{\pi^*} (\mathcal{A}, Ab) \xrightarrow{\operatorname{res}_{\mathcal{B}}} (\mathcal{B}, Ab),$$

where $\operatorname{res}_{\mathcal{B}} : (\mathcal{A}, Ab) \to (\mathcal{B}, Ab)$ is the restriction functor and $(\mathcal{A}/\mathcal{B}, Ab) \subseteq (\mathcal{A}, Ab)$ is the subcategory of functors that vanish on \mathcal{B} .

The Eilenberg-Watts Theorem

- 1 R-Mod \rightarrow (mod-R, Ab), $M \mapsto \text{Ev}(M)|_{\text{mod-R}} = \otimes_{R} M$ is a fully faithful embedding of R-Mod onto rex(mod-R, Ab);
- 2 R-Mod → (mod-R, Ab), M → Ev(M)|_{(R-mod)^{op}} = Hom_R(-, M) is a fully faithful embedding of R-Mod onto lex((R-mod)^{op}, Ab);
- 3 R-Mod → (PQ(R^{op}), Ab), M ↦ Ev(M)|_{PQ(R^{op})} is a fully faithful embedding of R-Mod onto im(PQ(R^{op}), Ab).

The Eilenberg-Watts Theorem

- 1 R-Mod \rightarrow (mod-R, Ab), $M \mapsto \text{Ev}(M)|_{\text{mod-R}} = \otimes_R M$ is a fully faithful embedding of R-Mod onto rex(mod-R, Ab);
- 2 R-Mod \rightarrow (mod-R, Ab), $M \mapsto \text{Ev}(M)|_{(R-\text{mod})^{\text{op}}} = \text{Hom}_{R}(-, M)$ is a fully faithful embedding of R-Mod onto lex((R-mod)^{\text{op}}, Ab);
- 3 R-Mod → (PQ(R^{op}), Ab), M ↦ Ev(M)|_{PQ(R^{op})} is a fully faithful embedding of R-Mod onto im(PQ(R^{op}), Ab).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- recollements

The Eilenberg-Watts Theorem

- 1 R-Mod \rightarrow (mod-R, Ab), $M \mapsto \text{Ev}(M)|_{\text{mod-R}} = \otimes_R M$ is a fully faithful embedding of R-Mod onto rex(mod-R, Ab);
- 2 R-Mod \rightarrow (mod-R, Ab), $M \mapsto \text{Ev}(M)|_{(R-\text{mod})^{\text{op}}} = \text{Hom}_{R}(-, M)$ is a fully faithful embedding of R-Mod onto lex((R-mod)^{\text{op}}, Ab);
- 3 R-Mod \rightarrow (PQ(R^{op}), Ab), $M \mapsto Ev(M)|_{PQ(R^{op})}$ is a fully faithful embedding of R-Mod onto im(PQ(R^{op}), Ab).

Outline

2 Coherent functors

3 Recollements of abelian categories

4 Tilting and cotilting functors

Tilting objects

Definition

Let G be a complete, cocomplete category with a progenerator P. Then $T \in G$ is an *n*-tilting object if

- 1 $pd(T) \leq n;$
- 2 Extⁱ(T^(I), T^(I)) = 0, for all i > 0, and index sets *I*;
- **3** there is a finite coresolution of *P* by objects in Add(T).

Theorem

If $M \in$ R-Mod is a pure projective pure generator, then

- **1** Ev(M) is 2-tilting in (mod-R, Ab);
- **2** Ev(M) is 1-tilting in $(PQ(\mathbb{R}^{op}), Ab)$;
- **3** Ev(M) is 0-tilting in ((R-mod)^{op}, Ab).

Cotilting objects

Definition

Let G be a complete, cocomplete category with an injective cogenerator E. Then $C \in G$ is an *n*-cotilting object if

- 1 id(C) $\leq n$;
- **2** Ext^{*i*}(C^I, C^I) = 0, for all i > 0, and index sets *I*;
- 3 there is a finite resolution of E by objects in Prod(C).

Theorem

- If $N \in \text{R-Mod}$ is a pure injective pure cogenerator, then
 - Ev(N) is 0-cotilting in (mod-R, Ab) (Jensen-Lenzing);
 - 2 Ev(N) is 1-cotilting in $(PQ(\mathbb{R}^{op}), Ab)$;
 - **3** Ev(N) is 2-cotilting in ((R-mod)^{op}, Ab).

- tilting and cotilting

The Positselski-Šťovíček correspondence

Theorem (Positselski-Šťovíček)

Let \mathcal{G} be a complete, cocomplete abelian category with an injective cogenerator E. If $T \in \mathcal{G}$ is an *n*-tilting object in \mathcal{G} , then there exists a (unique) complete, cocomplete abelian category \mathcal{G}' with a progenerator P' such that $\operatorname{Add}(P') \cong \operatorname{Add}(T)$ and there exists an *n*-cotilting object $C \in \mathcal{G}'$ such that $\operatorname{Prod}(C) \cong \operatorname{Prod}(E)$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

REFERENCES:

- Crawley-Boevey, W., and Sauter, J., On quiver Grassmanians and orbit closures for representation-finite algebras, Math. Zeit. 285 (2017), 367-395.
- 2 Franjou, V., and Pirashvili, T., Comparison of Abelian Categories Recollements, Doc. Math. 9 (2004), 41-56.
- 3 Herzog, I., The Ziegler spectrum of a locally coherent Grothendieck category, Proc. of the LMS 74(3) (1997), 503-557.
- 4 Herzog, I., Contravariant functors on the category of finitely presented modules, Israel J. of Math. **167** (2008), 347-410.
- 5 Nguyen, V., Reiten, I., Todorov, G., Zhu, Sh., Dominant dimension and tilting modules, Math. Zeit. 292 (Aug 2019), 947-973.
- 6 Positselski, L., and Štovíček, J., The tilting-cotilting correspondence, (July 2019) Int. Math. Research Notes, online.