The Universal Quantum Logic of a Ring with Involution

Ivo Herzog

The Ohio State University

Conference in Honor of Mike's 65th Birthday Erice, ITALY July 28 - August 1, 2017

・ 同 ト ・ ヨ ト ・ ヨ ト

Olivier's Construction

• Olivier: Let A be a commutative ring. The commutative regularization of A is a universal map

$$A
ightarrow A^{\mathsf{a}\mathsf{b}} := A[y_{\mathsf{a}}; \mathsf{a} \in A]/(y_{\mathsf{a}}\mathsf{a}y_{\mathsf{a}} - y_{\mathsf{a}}, \mathsf{a}y_{\mathsf{a}}\mathsf{a} - \mathsf{a}),$$

with A^{ab} a commutative (von Neumann) regular ring.

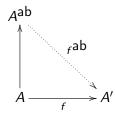
・ 同 ト ・ ヨ ト ・ ヨ ト ・

Olivier's Construction

• Olivier: Let A be a commutative ring. The commutative regularization of A is a universal map

$$A
ightarrow A^{\mathsf{a}\mathsf{b}} := A[y_{\mathsf{a}}; \mathsf{a} \in A]/(y_{\mathsf{a}}\mathsf{a}y_{\mathsf{a}} - y_{\mathsf{a}}, \mathsf{a}y_{\mathsf{a}}\mathsf{a} - \mathsf{a}),$$

with A^{ab} a commutative (von Neumann) regular ring. • If $f : A \rightarrow A'$, with A' commutative regular,



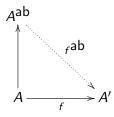
伺下 イヨト イヨト

Olivier's Construction

• Olivier: Let A be a commutative ring. The commutative **regularization** of A is a universal map

$$A
ightarrow A^{\mathsf{a}\mathsf{b}} := A[y_{\mathsf{a}}; \mathsf{a} \in A]/(y_{\mathsf{a}}\mathsf{a}y_{\mathsf{a}} - y_{\mathsf{a}}, \mathsf{a}y_{\mathsf{a}}\mathsf{a} - \mathsf{a}),$$

with A^{ab} a commutative (von Neumann) regular ring. • If $f : A \to A'$, with A' commutative regular,



• In general, y is a generalized inverse of a if aya = a and yay = y.

Abelian Regularization

• A noncommutative regular ring is **abelian** if idempotent elements are central.

(4回) (4回) (4回)

Abelian Regularization

- A noncommutative regular ring is **abelian** if idempotent elements are central.
- The **abelian regularization** of a noncommutative ring R is a universal map $R \to R^{ab}$, with R^{ab} abelian regular.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Abelian Regularization

- A noncommutative regular ring is abelian if idempotent elements are central.
- The **abelian regularization** of a noncommutative ring R is a universal map $R \rightarrow R^{ab}$, with R^{ab} abelian regular.
- IH: It is obtained by formally adjoining a commuting generalized inverse for every r ∈ R,

$$R
ightarrow R_1^{\mathsf{ab}} := R\langle y_r; r \in R
angle / (ry_rr - r, y_rry_r - y_r, ry_r - y_rr)$$

countably often: $R \to R_1^{ab} \to R_2^{ab} \to \cdots \to R^{ab} := \lim_{\rightarrow} R_n^{ab}$

Abelian Regularization

- A noncommutative regular ring is **abelian** if idempotent elements are central.
- The **abelian regularization** of a noncommutative ring R is a universal map $R \rightarrow R^{ab}$, with R^{ab} abelian regular.
- IH: It is obtained by formally adjoining a commuting generalized inverse for every r ∈ R,

$$R
ightarrow R_1^{\sf ab} := R\langle y_r; r \in R
angle / (ry_rr - r, y_rry_r - y_r, ry_r - y_rr)$$

countably often: $R \to R_1^{ab} \to R_2^{ab} \to \cdots \to R^{ab} := \lim_{\square} R_n^{ab}$

• **P.M. Cohn:** Inversion height of epic *R*-fields and the Mal'cev kernel. (**J. Sánchez,** Localization: On Division Rings and Tilting Modules)

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

*-Regularization

 Kaplansky: A regular ring (S, *) with involution is *-regular if for every s ∈ S, sS ⊕ r.ann(s*) = S.

・日・ ・ ヨ・ ・ ヨ・

*-Regularization

- Kaplansky: A regular ring (S, *) with involution is *-regular if for every s ∈ S, sS ⊕ r.ann(s*) = S.
- The *-regularization of a ring (R, *) with involution is a universal map $(R, *) \rightarrow (R^{MP}, *)$, with $(R^{MP}, *)$ a *-regular ring.

- 4 周 ト 4 日 ト 4 日 ト - 日

*-Regularization

- Kaplansky: A regular ring (S, *) with involution is *-regular if for every s ∈ S, sS ⊕ r.ann(s*) = S.
- The *-regularization of a ring (R, *) with involution is a universal map (R, *) → (R^{MP}, *), with (R^{MP}, *) a *-regular ring.
- IH: It is obtained by formally adjoining a Moore-Penrose inverse for every r ∈ R, R → R₁^{MP}, where

$$R_{1}^{\text{MP}} := R\langle y_{r}, y_{r}^{*}; r \in R \rangle / (ry_{r}^{*}r - r, y_{r}^{*}ry_{r}^{*} - y_{r}^{*}, ry_{r}^{*} - y_{r}r^{*}, r^{*}y_{r} - y_{r}^{*}r)^{*}$$

countably often: $R \to R_1^{\mathrm{MP}} \to R_2^{\mathrm{MP}} \to \cdots \to R^{\mathrm{MP}} := \lim_{\to} R_n^{\mathrm{MP}}$

*-Regularization

- Kaplansky: A regular ring (S, *) with involution is *-regular if for every s ∈ S, sS ⊕ r.ann(s*) = S.
- The *-regularization of a ring (R, *) with involution is a universal map (R, *) → (R^{MP}, *), with (R^{MP}, *) a *-regular ring.
- IH: It is obtained by formally adjoining a Moore-Penrose inverse for every r ∈ R, R → R₁^{MP}, where

$$R_1^{\rm MP} := R\langle y_r, y_r^*; r \in R \rangle / (ry_r^*r - r, y_r^*ry_r^* - y_r^*, ry_r^* - y_r r^*, r^*y_r - y_r^*r)^*$$

countably often: $R \to R_1^{\mathrm{MP}} \to R_2^{\mathrm{MP}} \to \cdots \to R^{\mathrm{MP}} := \lim_{\rightharpoonup} R_n^{\mathrm{MP}}$

 In general, y* is a Moore-Penrose inverse of r if ry*r = r, y*ry* = y*, ry* = yr*, and r*y = y*r. An idempotent e² = e is a projection if e* = e.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○○○○

The Lattice $\mathbb{L}(R, n)$

A positive primitive formula in L(R) := (+, -, 0, r)_{r∈R} is one of the form

$$\alpha(\mathbf{u}) := \exists \mathbf{v} (A, B) \begin{pmatrix} \mathbf{u}^t \\ \mathbf{v}^t \end{pmatrix} \doteq \mathbf{0}.$$

イロト イヨト イヨト イヨト

The Lattice $\mathbb{L}(R, n)$

A positive primitive formula in L(R) := (+, -, 0, r)_{r∈R} is one of the form

$$\alpha(\mathbf{u}) := \exists \mathbf{v} (A, B) \begin{pmatrix} \mathbf{u}^t \\ \mathbf{v}^t \end{pmatrix} \doteq 0.$$

If u = (u₁,..., u_n) and M is a left R-module then α(M) is a subgroup of Mⁿ pp-definable in M (cf. subgroup of finite definition (Gruson and Jensen), finite matrix sugroup (Huisgen-Zimmermann and Zimmermann)).

イロト イポト イラト イラト 一日

The Lattice $\mathbb{L}(R, n)$

A positive primitive formula in L(R) := (+, −, 0, r)_{r∈R} is one of the form

$$\alpha(\mathbf{u}) := \exists \mathbf{v} (A, B) \begin{pmatrix} \mathbf{u}^t \\ \mathbf{v}^t \end{pmatrix} \doteq 0.$$

- If u = (u₁,..., u_n) and M is a left R-module then α(M) is a subgroup of Mⁿ pp-definable in M (cf. subgroup of finite definition (Gruson and Jensen), finite matrix sugroup (Huisgen-Zimmermann and Zimmermann)).
- If $\varphi(\mathbf{u})$ and $\psi(\mathbf{u})$ are positive primitive, then so is

$$(\varphi + \psi)(\mathbf{u}) := \exists \mathbf{v} \ \varphi(\mathbf{u} - \mathbf{v}) \land \psi(\mathbf{v}).$$

イロト イポト イラト イラト 一日

The Lattice $\mathbb{L}(R, n)$

A positive primitive formula in L(R) := (+, -, 0, r)_{r∈R} is one of the form

$$\alpha(\mathbf{u}) := \exists \mathbf{v} (A, B) \begin{pmatrix} \mathbf{u}^t \\ \mathbf{v}^t \end{pmatrix} \doteq \mathbf{0}.$$

- If u = (u₁,..., u_n) and M is a left R-module then α(M) is a subgroup of Mⁿ pp-definable in M (cf. subgroup of finite definition (Gruson and Jensen), finite matrix sugroup (Huisgen-Zimmermann and Zimmermann)).
- If $\varphi(\mathbf{u})$ and $\psi(\mathbf{u})$ are positive primitive, then so is

$$(\varphi + \psi)(\mathbf{u}) := \exists \mathbf{v} \ \varphi(\mathbf{u} - \mathbf{v}) \land \psi(\mathbf{v}).$$

The lattice L(R, n) := (L(R, u), +, ∧, 0, 1) of positive primitive fomulae in n free variables is modular.

The Fundamental Theorem of Projective Geometry

 \bullet E. Artin: If Δ and Δ' are division rings that satisfy

 $\mathbb{L}(\Delta', n) \cong \mathbb{L}(\Delta, m)$

with $m \geq 3$, then $\Delta' \cong \Delta$ and n = m.

・ 同 ト ・ ヨ ト ・ ヨ ト

The Fundamental Theorem of Projective Geometry

• E. Artin: If Δ and Δ' are division rings that satisfy

 $\mathbb{L}(\Delta', n) \cong \mathbb{L}(\Delta, m)$

with $m \geq 3$, then $\Delta' \cong \Delta$ and n = m.

• Von Neumann: A regular ring *R* coordinatizes the lattice \mathbb{L} if $\mathbb{L} \cong \text{Sub}_{\text{mod}_{-R}}(R_R),$

the lattice of principal right ideals of R.

- 4 回 ト 4 ヨ ト - 4 ヨ ト

The Fundamental Theorem of Projective Geometry

• E. Artin: If Δ and Δ' are division rings that satisfy

 $\mathbb{L}(\Delta', n) \cong \mathbb{L}(\Delta, m)$

with $m \geq 3$, then $\Delta' \cong \Delta$ and n = m.

Von Neumann: A regular ring *R* coordinatizes the lattice ⊥ if
 ⊥ ≃ Sub_{mod-R}(*R_R*),

the lattice of principal right ideals of R.

• W. Hodges: A regular ring R coordinatizes $\mathbb{L}(R, 1)$.

イロト イポト イヨト イヨト

The Fundamental Theorem of Projective Geometry

• E. Artin: If Δ and Δ' are division rings that satisfy

$$\mathbb{L}(\Delta', n) \cong \mathbb{L}(\Delta, m)$$

with $m \geq 3$, then $\Delta' \cong \Delta$ and n = m.

• Von Neumann: A regular ring *R* coordinatizes the lattice \mathbb{L} if $\mathbb{L} \cong \text{Sub}_{\text{mod}_{-R}}(R_R),$

the lattice of principal right ideals of R.

- W. Hodges: A regular ring R coordinatizes $\mathbb{L}(R, 1)$.
- In general, $\mathbb{L}(R, n) \cong \mathbb{L}(M_n(R), 1)$, where

 $M_n(R) =$ the ring of $n \times n$ matrices over R.

So if R is regular, then $M_n(R)$ coordinatizes $\mathbb{L}(R, n)$.

The Cubical Lattice $\mathbb{L}(R, \cdot)$

Definition

The sequence $\mathbb{L}(R, n)$, $n \ge 1$, is a **cubical** modular lattice: there are two pairs of morphisms

(4回) (1日) (日)

æ

The Prest Dual

• The **Prest dual** of a
$$\varphi(\mathbf{u}) = \exists \mathbf{v} (A, B) \begin{pmatrix} \mathbf{u}^t \\ \mathbf{v}^t \end{pmatrix} \doteq 0$$
 in $\mathbb{L}(R, n)$ is

$$\varphi^{\otimes}(\mathbf{u}) := \exists \mathbf{w} (\mathbf{u}, \mathbf{w}) \begin{pmatrix} I_n & 0 \\ A & B \end{pmatrix} \doteq 0$$

in $\mathbb{L}(R^{\operatorname{op}}, n)$. Verify that R-Mod $\models \varphi(\mathbf{u}) \leftrightarrow (\varphi^{\otimes})^{\otimes}(\mathbf{u})$.

(日) (四) (王) (王) (王)

The Prest Dual

• The **Prest dual** of a $\varphi(\mathbf{u}) = \exists \mathbf{v} (A, B) \begin{pmatrix} \mathbf{u}^t \\ \mathbf{v}^t \end{pmatrix} \doteq 0$ in $\mathbb{L}(R, n)$ is

$$\varphi^{\otimes}(\mathbf{u}) := \exists \mathbf{w} (\mathbf{u}, \mathbf{w}) \begin{pmatrix} I_n & 0 \\ A & B \end{pmatrix} \doteq 0$$

in $\mathbb{L}(R^{\text{op}}, n)$. Verify that R-Mod $\models \varphi(\mathbf{u}) \leftrightarrow (\varphi^{\otimes})^{\otimes}(\mathbf{u})$. • Also Mod- $R \models [\exists_i(\varphi^{\otimes}) \leftrightarrow (N_i\varphi)^{\otimes}] \land [N_i(\varphi^{\otimes}) \leftrightarrow (\exists_i\varphi)^{\otimes}]$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

The Prest Dual

• The **Prest dual** of a $\varphi(\mathbf{u}) = \exists \mathbf{v} (A, B) \begin{pmatrix} \mathbf{u}^t \\ \mathbf{v}^t \end{pmatrix} \doteq 0$ in $\mathbb{L}(R, n)$ is

$$\varphi^{\otimes}(\mathbf{u}) := \exists \mathbf{w} (\mathbf{u}, \mathbf{w}) \begin{pmatrix} I_n & 0 \\ A & B \end{pmatrix} \doteq 0$$

in $\mathbb{L}(R^{\operatorname{op}}, n)$. Verify that R-Mod $\models \varphi(\mathbf{u}) \leftrightarrow (\varphi^{\otimes})^{\otimes}(\mathbf{u})$.

- Also Mod- $R \models [\exists_i(\varphi^{\otimes}) \leftrightarrow (N_i \varphi)^{\otimes}] \land [N_i(\varphi^{\otimes}) \leftrightarrow (\exists_i \varphi)^{\otimes}]$
- **IH:** If $_RN \models \varphi(\mathbf{b})$ and $M_R \models \varphi^{\otimes}(\mathbf{a})$, then

$$\mathbf{a}\otimes\mathbf{b}:=\sum_ia_i\otimes b_i=0$$

in $M \otimes N$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

The Involution

If (R,*) is a ring with involution, then every left R-module RM becomes a right R-module (M*)_R, by mr := r*m.

イロン イヨン イヨン イヨン

The Involution

- If (R, *) is a ring with involution, then every left *R*-module $_RM$ becomes a right *R*-module $(M^*)_R$, by $mr := r^*m$.
- For positive primitive $\varphi(\mathbf{u}), \varphi^*(\mathbf{u}) = \exists \mathbf{v} (\mathbf{u}, \mathbf{v}) \begin{pmatrix} A^* \\ B^* \end{pmatrix} \doteq 0.$

- 4 回 ト 4 ヨ ト - 4 ヨ ト

The Involution

- If (R, *) is a ring with involution, then every left *R*-module $_RM$ becomes a right *R*-module $(M^*)_R$, by $mr := r^*m$.
- For positive primitive $\varphi(\mathbf{u}), \varphi^*(\mathbf{u}) = \exists \mathbf{v} (\mathbf{u}, \mathbf{v}) \begin{pmatrix} A^* \\ B^* \end{pmatrix} \doteq 0.$
- *M* a left *R*-module, $\varphi(\mathbf{u})$ positive primitive and $\mathbf{a} \in M^n$ implies

$$M \models \varphi(\mathbf{a}) \text{ iff } M^* \models \varphi^*(\mathbf{a}).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

The Involution

- If (R, *) is a ring with involution, then every left *R*-module $_RM$ becomes a right *R*-module $(M^*)_R$, by $mr := r^*m$.
- For positive primitive $\varphi(\mathbf{u}), \varphi^*(\mathbf{u}) = \exists \mathbf{v} (\mathbf{u}, \mathbf{v}) \begin{pmatrix} A^* \\ B^* \end{pmatrix} \doteq 0.$
- *M* a left *R*-module, $\varphi(\mathbf{u})$ positive primitive and $\mathbf{a} \in M^n$ implies

$$M \models \varphi(\mathbf{a})$$
 iff $M^* \models \varphi^*(\mathbf{a})$.

The map

$$\varphi(\mathbf{u})\mapsto \varphi'(\mathbf{u}):=\exists \mathbf{w} \left(egin{array}{cc} I_n & \mathcal{A}^* \\ 0 & \mathcal{B}^* \end{array}
ight) \left(egin{array}{cc} \mathbf{u}^t \\ \mathbf{w}^t \end{array}
ight)\doteq 0$$

is an involution of $\mathbb{L}(R, n)$, i.e., an anti-automorphism of order 2.

(4月) (日) (日) 日

Quantum logic

- A quantum logic is an orthocomplemented modular lattice (L, +, ∧, ', 0, 1) with involution. It satisfies:
 - **1** The Law of Contradiction: if $x \in \mathbb{L}$, then $x \wedge x' = 0$; and
 - **2** The Law of the Excluded Middle: x + x' = 1.

イロト イヨト イヨト イヨト

Quantum logic

- A quantum logic is an orthocomplemented modular lattice (L, +, ∧, ′, 0, 1) with involution. It satisfies:
 - The Law of Contradiction: if $x \in \mathbb{L}$, then $x \wedge x' = 0$; and
 - **2** The Law of the Excluded Middle: x + x' = 1.
- Every modular lattice with involution admits a universal quantum logic (L, +, ∧, ', 0, 1) → (L/Θ, +, ∧, ', 0, 1). Applied to L(R, 1), this is the universal logic of (R, *). It is coordinatized by the *-regularization (R, *) → (R^{MP}, *).

(ロ) (同) (E) (E) (E)

Quantum logic

- A quantum logic is an orthocomplemented modular lattice $(\mathbb{L}, +, \wedge, ', 0, 1)$ with involution. It satisfies:
 - The Law of Contradiction: if $x \in \mathbb{L}$, then $x \wedge x' = 0$; and
 - **2** The Law of the Excluded Middle: x + x' = 1.
- Every modular lattice with involution admits a universal quantum logic (L, +, ∧, ', 0, 1) → (L/Θ, +, ∧, ', 0, 1). Applied to L(R, 1), this is the universal logic of (R, *). It is coordinatized by the *-regularization (R, *) → (R^{MP}, *).
- A left *R*-module *M* satisfies the Laws of Contradiction and Excluded Middle in L(*R*, 1) iff it is obtained by restriction of scalars along *R* → *R*^{MP}.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○○○○

Definition and Examples

W. Wong: Let (k, *) be a field with involution and (R, *) be a k-algebra with involution. A *-contravariant form on a representation _RM of R is a *-sesquilinear form B : M × M → k that satisfies

$$\forall x, y \ B(rx, y) = B(x, r^*y).$$

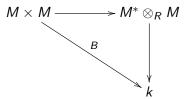
・日・ ・ ヨ・ ・ ヨ・

Definition and Examples

W. Wong: Let (k, *) be a field with involution and (R, *) be a k-algebra with involution. A *-contravariant form on a representation _RM of R is a *-sesquilinear form B : M × M → k that satisfies

$$\forall x, y \ B(rx, y) = B(x, r^*y).$$

• Every contravariant form factors through the tensor product,



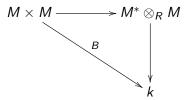
・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition and Examples

W. Wong: Let (k, *) be a field with involution and (R, *) be a k-algebra with involution. A *-contravariant form on a representation _RM of R is a *-sesquilinear form B : M × M → k that satisfies

$$\forall x, y \ B(rx, y) = B(x, r^*y).$$

• Every contravariant form factors through the tensor product,



• The Šapovalov Form.

白 と く ヨ と く ヨ と …

Definite contravariant forms

A contravariant form B : M × M → V is definite if B(a, a) = 0 implies a = 0.

・ 回 ト ・ ヨ ト ・ ヨ ト

Definite contravariant forms

- A contravariant form B : M × M → V is definite if B(a, a) = 0 implies a = 0.
- If a module M admits a definite contravariant form, then $M \times M \to M^* \otimes_R M$ is definite.

・回 ・ ・ ヨ ・ ・ ヨ ・ …

Definite contravariant forms

- A contravariant form B : M × M → V is definite if B(a, a) = 0 implies a = 0.
- If a module M admits a definite contravariant form, then $M \times M \to M^* \otimes_R M$ is definite.
- **IH:** If *M* admits a definite *-contravariant form, then *M* satisfies the Law of Contradiction in $\mathbb{L}(R, 1)$. Example: **Hilbert modules.**

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definite contravariant forms

- A contravariant form B : M × M → V is definite if B(a, a) = 0 implies a = 0.
- If a module M admits a definite contravariant form, then $M \times M \to M^* \otimes_R M$ is definite.
- **IH:** If *M* admits a definite *-contravariant form, then *M* satisfies the Law of Contradiction in $\mathbb{L}(R, 1)$. Example: **Hilbert modules.**
- J.C. Jantzen: Let (k, *) be a formally real field with involution:

$$\sum_{i} x_i x_i^* = 0 \text{ implies } x_i = 0;$$

L a split **semisimple Lie algebra** over *k*; and $(U(L), \omega_0)$ the **universal enveloping algebra**, equipped with the *-linear **compact involution**. Every finite dimensional representation of *L* admits a definite ω_0 -contravariant form.

*-Modules

- A module M over a ring (R, *) with involution is:
 - **1** a *-module if $\operatorname{ann}_R(M)$ is a *-ideal of R;
 - 2 a functorial *-module if $\varphi(M)/\psi(M) = 0$ iff $\psi'(M)/\varphi'(M) = 0$;
 - **3** an elementary *-module if $|\varphi(M)/\psi(M)| \equiv |\psi'(M)/\varphi'(M)| \mod \infty$.

・ 同 ト ・ ヨ ト ・ ヨ ト

*-Modules

- A module M over a ring (R, *) with involution is:
 - **1** a *-module if $\operatorname{ann}_R(M)$ is a *-ideal of R;
 - 2) a functorial *-module if $\varphi(M)/\psi(M) = 0$ iff $\psi'(M)/\varphi'(M) = 0$;
 - **3** an elementary *-module if $|\varphi(M)/\psi(M)| \equiv |\psi'(M)/\varphi'(M)| \mod \infty$.
- A functorial *-module *M* satisfies the Law of Contradiction iff it satisfies the Law of Excluded Middle.

・ 同 ト ・ ヨ ト ・ ヨ ト …

*-Modules

- A module M over a ring (R, *) with involution is:
 - **1** a *-module if $\operatorname{ann}_R(M)$ is a *-ideal of R;
 - 2) a functorial *-module if $\varphi(M)/\psi(M) = 0$ iff $\psi'(M)/\varphi'(M) = 0$;
 - 3 an elementary *-module if $|\varphi(M)/\psi(M)| \equiv |\psi'(M)/\varphi'(M)| \mod \infty$.
- A functorial *-module *M* satisfies the Law of Contradiction iff it satisfies the Law of Excluded Middle.
- IH: Let (k, *) be a field with involution and (R, *) a (k, *)-algebra. If M is a finite dimensional simple representation of R for which M* ⊗_R M ≠ 0, then M is a functorial *-module.