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regathering of knowledge



regathering our knowledge of the askaryan effect

The basic effect is coherent radiation from a negative charge
excess:

η = (a/∆zcoh)2 (1)

Fraunhofer regime:
E(ω) has spherical
symmetry (∝ 1/R)

Fresnel regime: E(ω)
cylindrical symmetry
(∝ 1/√ρ)

Feynman’s formula:
Erad ∝ sgn(1− nû · β⃗)θ̈
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feynman’s formula - imagine charge passing right to left.
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regathering our knowledge of the askaryan effect

Some definitions and remarks.

Longitudinal: refers to the z’
coordinate, or shower axis.

Lateral: refers to the ρ′
coordinate (z2 + ρ2 = R2,
ρ/R = sin θ).

θ, the viewing angle

k, wavevector in the medium

Shower width: a (m)
∝
√
3/2ln(E)

Excess charged particles:
nmax: ∝ E/

√
ln(E)

Energy-scaling: Product of
nmaxa ∝ E (area under
Gaussian to first order)
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regathering our knowledge of the askaryan effect

Papers and other references.

ZHS - Zas, Halzen, Stanev (1991). Calculates radiation from
tracks of all particles and sums them. Produces coherence
argument naturally. Expensive, but proves the concept.

RB - Ralston and Buniy (2001). Completely analytic, in Fresnel
and Fraunhofer regime. Factors the E-field into form factor and
charge evolution.

ARZ - Alvarez-Muniz, Romero-Wolf, Zas (2010-11). Semi-analytic
approach that requires simulation of charge evolution, but
provides analytic formula for E-field.

Greisen parameterization (Prog. in Cosmic Ray Physics, 1956, ch.
1) E&M shower model. Leads to Rossi B appoximation etc.
Solution for lateral charge evolution (see below).
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regathering our knowledge of the askaryan effect

J⃗ = v⃗n(z′)f(z′ − ct′, ρ⃗′) (2)

The main result from RB:

RE⃗(ω) = 2.52× 10−7 a
m

nmax
1000

ν

GHzF(q⃗)ψE⃗(θ, η) (3)

ψ = −i exp(ikR) sin θ (4)

E⃗(θ = θC, η) = e⃗θ(1− iη)−1/2 (5)
q⃗ = (ω/c, kρ⃗/R) (6)

Rossi showed that the Greissen solution for n(z′) with depth a
can be approximated as a gaussian with width a

The linear ω dependence comes from acceleration factor in
Lienard-Wiechert fields.
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coherence zones

Coherence zones, and other useful approximations. The Fraunhofer
approximation leads to an insight:

R = |x− x′| ≫ ρ (7)
R = |x− x′| ≫ λ (8)
i|k||x− x′| ≈ ikR− ik · ρ(τ) (9)

Beginning with the Lienard-Wiechert retarded potentials for
decelerating charge, and focusing only on the radiation term, one
can show (y = πνδt(1− nβ cos θ)):

E(ω, x) ∝ iω e
ikR

R
sin y
y (10)

Similar to single-slit diffraction with length ≈ a.
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coherence zones

A more subtle approximation, keeping another order...

|x− x′| =
√
(z− z′)2 + (ρ− ρ′)2 (11)

|x− x′| ≈ R(z′)− ρ · ρ′

R +

(
ρ′2

R

)
(12)

R(z′) =
√
(z− z′)2 + ρ2 (13)

Scale of the instantaneous charge excess is small compared to the
longitudinal shower development. Keep the first two terms, drop the
third. Integrals decouple into the form factor, and the
Fresnel-Fraunhofer integrals.
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definition of the form factor

The 3D Fourier transform of the charge distribution, f, the normalized
charge excess distribution. (Dropping bold font for vectors).∫

d3x′f(x′) = 1 (14)

F(q) =
∫

d3x′ exp (−iq · x′)f(x′) (15)

q =

(
ω

c ,
k
Rρ

′
)

(16)

The structure of the Askaryan electric field is derived in RB,
parameterized in ZHS, and fit in the time domain by ARVZ. In addition
to the LPM effect, the main thrust of this work is to analytically
derive F(q), and match to Monte Carlo simulations from Geant4.
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landau-pomeranchuk-migdal effect

Simple incorporation: draw the a-parameter from the EM curve
below, rather than Greisen.
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askaryan fields



analytic forms of askaryan fields
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analytic forms of askaryan fields
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analytic forms of askaryan fields
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analytic forms of askaryan fields
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accounting for the lpm effect - scaling
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accounting for the lpm effect - scaling
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accounting for the lpm effect - scaling
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accounting for the lpm effect - scaling
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accounting for the lpm effect - scaling
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accounting for the lpm effect - viewing angle
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accounting for the lpm effect - viewing angle
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accounting for the lpm effect - viewing angle
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numerical work



geant4 simulations

Limitations:

Few hundred jobs at once.

Charged RUs from finite account, 1 RU = 10 CPU-hours

Memory use < 8 GB, (MC thresholds)

Strategy: Implement pre-shower sub-shower strategy, with Geant4.

Utilizes back-fill (each sub-shower is 10 cpu-minutes).

Obeys memory constraints

Cost: few hundred RUs, courtesy of Dr. Amy Connolly, @ OSU

Goal: F(ω, θ) using Geant4 pre-showers and sub-showers.
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geant4 simulations
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geant4 simulations

Fractional negative charge excess, ∆q. (MC threshold-dependent)
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geant4 simulations - z’-form factor dependence?

All tracks in 10 ps window @ 5 ns after primary interaction:

Shower Axis, z (mm)
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geant4 simulations - z’-form factor dependence?

All tracks in 10 ps window @ 10 ns after primary interaction:

Shower Axis, z (mm)
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geant4 simulations - z’-form factor dependence?

All tracks in 10 ps window @ 15 ns after primary interaction:

Shower Axis, z (mm)
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geant4 simulations - z’-form factor dependence?

All tracks in 10 ps window @ 20 ns after primary interaction:

Shower Axis, z (mm)
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geant4 simulations - z’-form factor dependence?

All tracks in 10 ps window @ 25 ns after primary interaction:

Shower Axis, z (mm)
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geant4 simulations - z’-form factor dependence?

All tracks in 10 ps window @ 30 ns after primary interaction:

Shower Axis, z (mm)
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geant4 simulations - conclusions

The ”instantaneous” form factor in z’ is so small, it doesn’t limit
the Askaryan radiation...

Unless the time-scale that matters is actually the Nyquist
frequency of the RF detectors (1 GHz or 1 ns).

If that were true, then the z-shape could matter (long tail, flat
top is limited by time-window).

One can show that the phase shift due to any z-dependence in form
factors goes like

ϕ/∆θ ≈ 2πn
{
ν∆t
∆θ

− R
λ
sin θC

}
(17)
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geant4 simulations - ρ′-form factor dependence
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zhs form factor

Necessary to explain why deccelerating charge doesn’t radiate up to
optical frequencies: E(k) ≈ k.

FZHS(k) =
1

1+
(

k
k0

)2 =
k20

k20 + k2
(18)

What does the corresponding charge distribution (inverse Fourier
transform) resemble? Must treat the poles carefully.

f(ρ′) = k20
2π

∫ ∞

−∞

eikρ′

(k+ ik0)(k− ik0)
dk, k ∈ C (19)

f(ρ′)/k20 =
1
2πi

∮ ieikρ′
(k+ ik0)−1

(k− ik0)
(20)
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zhs form factor

f(ρ′)/k20 =
1
2πi

∮ ieikρ′
(k+ ik0)−1

(k− ik0)
(21)

f(ρ′) = k20
(
ieikρ

′
(k+ ik0)−1

)
k=ik0

(22)

f(ρ′) = k0
2 e−k0ρ′

(23)

Exponential (interesting), normalized to 1
2 . Using the oppositely

oriented contour, we get a different distribution:

f(ρ′) = −k20
(
ieikρ

′
(k− ik0)−1

)
k=−ik0

=
k0
2 ek0ρ

′
(24)

We must choose the contour that follows Jordan’s lemma - (see
below).
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cauchy integral theorem

What about a form factor like:

f(ρ′) = k0 exp(−k0z′), ρ′ > 0 (25)

Fourier transform gives the form factor:

FJCH(k) =
∫ ∞

−∞
dz′e−ikρ′

k0e−k0ρ′
=

k0
k0 − ik (26)

Only one pole, at k = −ik0, and still cuts off the high-frequency
spectrum. So in the 1D case, just remove a pole, or, take the contour
that converges.
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cauchy integral theorem

Taking the inverse Fourier transform of FJCH requires closing the
contour around the one pole, and using Cauchy’s formula.

f(ρ′)/k0 =
1
2π

∫ ∞

−∞

eikρ′

k0 − ikdk (27)

f(ρ′)/k0 =
1
2πi

∮ ieikρ′

k0 − ikdk =
1
2πi

∮ eikρ′

k− ik0
dk (28)

f(ρ′) = k0e−k0ρ′
, ρ′ > 0 (29)

Notice that ℜ(FJCH) = FZHS, and |FJCH| =
√
FZHS (for same k0). This

means that my form factor also cuts off the spectrum at high
frequencies, and reduces to ZHS if we ignore imaginary E before
taking the magnitude. Interesting that arg(FJCH) ≈ k/k0, so k0 should
be large, to avoid adding extraneous phases.
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result
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3d case - ρ′-form factor dependence

For the general, 3D case, I propose a ρ′-dependence as follows:

f(x′) = f0δ(z′) exp(−
√
2πρ0ρ′),

∫
dz′d2ρ′f(x′) = 1, f0 = ρ20 (30)

F(q) =
∫ π

−π

∫ ∞

0

∫ ∞

∞
dz′ρ′dρ′dϕ′e−iq·x′ f(x′) (31)

γ = k sin θ (m−1) (32)

σ =
γ√
2πρ0

(33)

So σ is the ratio of the lateral projection of the wave-vector and the
lateral charge extent. Perform z’-integration and substitute:

F(q) = ρ20

∫ ∞

0
ρ′dρ′

∫ π

−π

dϕ′ exp{−(iγ cosϕ+ γ/σ)ρ′} (34)
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ρ′-form factor dependence

Shift ϕ→ ϕ− π/2 (cylindrical symmetry), and perform ϕ-integration:

F(q) = ρ20

∫ ∞

0
ρ′dρ′

∫ π

−π

dϕ′ exp{−(iγ cosϕ+ γ/σ)ρ′} (35)

F(q) = ρ20

∫ ∞

0
ρ′dρ′ exp

{
−γ
σ
ρ′
}∫ π

−π

dϕ′ exp{−iγρ′ sinϕ} (36)

F(q) = 2πρ20
∫ ∞

0
dρ′ρ′ exp

{
−γ
σ
ρ′
}
J0(γρ′) (37)

F(q) = σ−2
∫ ∞

0
du′u′ exp{−u′/σ}J0(u′) (38)

Table of integrals...and finally:

F(k, θ) = 1
(1+ σ2)3/2

=

(
1+

(
k
ρ0

)2(sin θ
2π

)2
)−3/2

(39)
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combined results



ρ′-form factor dependence - monte carlo fit parameters

Shower energy: 1017 eV.
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complete field - θ polarization
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complete field - θ polarization
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complete field - θ polarization
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complete field - θ polarization
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complete field - θ polarization
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complete field - θ polarization
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complete field - θ polarization
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complete field - θ polarization
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complete field - θ polarization
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spectra - θ polarization
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new results - purely analytic
time-domain fields



analytic time-domain fields

At the Cerenkov cone, with ideal form factor (F(ω, θ) = 1), the E-field
takes a convenient form:

RE(ω, θC) = − iωE0 sin θCeiωR/c

(1− iη)1/2
êθ [V/Hz] (40)

E0: Energy scaling-normalization (goes as nmaxa, or the area
under the Gaussian n(z′), i.e. total charged particles).

η = k(a2 sin2
θ)/R, same parameter from RB, η = ω/ωC.

êθ is the spherical unit vector (field is linearly polarized
orthogonal to viewing direction).

RE(tr, θC) ≈
iωCE0 sin θC

π
êθ

d
dtr

∮
C
dω e−itrω

ω + 2iωC
(41)
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jordan’s lemma, inverse fourier transform
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analytic time-domain fields

RE(tr, θC) ≈ 4E0 sin(θC)ω2
Cêθ

{
exp(2ωCtr) [V] tr ≤ 0
− exp(−2ωCtr) [V] tr > 0

(42)

Under the Lorentz gauge condition for Maxwell’s equations, in the
absence of any static potentials, the negative derivative of the vector
potential yields the electric field: −∂A/∂t = E.

RA(tr, θC) ≈ −2E0ωC sin θCêθ

{
exp(ωCtr) [V · s] tr ≤ 0
exp(−ωCtr) [V · s] tr > 0

(43)
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the coherence limiting frequency
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including form factor

Let σ = ω/ωCF.

RE(ω, θC) = − iωE0 sin θCeiωR/c

(1− iω/ωC)1/2(1+ (ω/ωCF)2)3/2
êθ [V/Hz] (45)

In the limit σ < 1, and η < 1, ω0 = 2/3 ωCF.

RE(tr, θC) ≈
2i
3π êθ

d
dtr

∮
dω E0 sin θCω2

CFωCe−itrω

(ω + 2iωC)(ω + iω0)(ω − iω0)
[V] (46)

Key figure of merit: ratio of form factor limiting frequency, and the
coherence limiting frequency:

ϵ′ = (
√
2πρ0ρ)

(a
R

)2
(47)

62



analytic time-domain fields
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final results (vector potential)
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for comparison to arvz (2011)

Our model reproduces the shape, width, and asymmetry, of the
semi-analytical approach. (Taylor expansion of ωC exponential gets
the form of ARVZ A(t, θC)).
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conclusions

I. Developed a fully analytic RB-model of Askaryan radiation

A. Accounts for LPM effect, and F(ω, θ).
B. F(ω, θ) was derived with the help of the Greisen

parameterization, Geant4, and the OSC

II. Results in the Fourier domain, LPM and form factor together

III. Newest work: analytic equations in the time-domain

IV. This work will be published in a forthcoming paper, and posted
on arXiv by April 23

The code is on github:
git clone https : //github.com/918particle/AraSim2 AraSim2
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conclusions - developers needed for arasim2
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