PROGRESS IN RADIO NEUTRINO DETECTION WITH ARIANNA

Conference on the Intersection of Nuclear and Particle Physics, 2015, Vail, CO. May 19-24

Jordan C. Hanson (j529h838@ku.edu, 918particle@gmail.com) May 20, 2015

University of Kansas, Department of Physics and Astronomy

INTRODUCTION

Introduction

- UHE Neutrinos, Askaryan Effect
 - A. Cosmic rays and the GZK effect
 - B. Askaryan effect, LPM corrections
- II. Deployed Hardware
 - A. Hardware used in this analysis
 - B Future hardware
 - C. Timeline for future deployment

III Ice

- A. Completed Research
- B Future Research
- IV. System Response
 - A. Antenna Response
 - B. Additional components

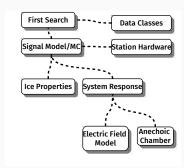
 - C. Reflections, Modifications, Filtering
- V. Data Analysis
 - A. Expected signal, cuts
 - B. Acquired Data
- VI. Neutrino Sensitivity
 - A. Flux-limit methodology
 - B. Comparison to IceCube, pushing bounds further

Papers Covered

Time-Domain Response of the ARIANNA Detector

http://arxiv.org/abs/1406.0820.

Radar Absorption, Basal Reflection, Thickness, and Polarization Measurements from the Ross Ice Shelf

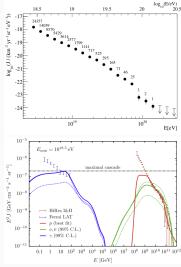

http://arxiv.org/abs/1410.7134.

A First Search for Cosmogenic Neutrinos with the ARIANNA Hexagonal Radio Array

http://arxiv.org/abs/1410.7352.

Design and Performance of the ARIANNA Hexagonal Radio Array Systems

http://arxiv.org/abs/1410.7369.

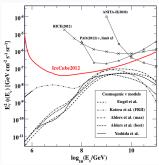

These papers have all been approved for publication, with the exception of http://arxiv.org/abs/1410.7369 (waiting to hear from reviewers). All have passed collaboration review

Cosmic rays produce large EAS, difficult to discern point sources and learn about HEP

- I. Termination of the spectrum of cosmic rays has been observed (Salamida, 2011)
- II. Difficult to distinguish point sources, even at high rigidity
- III. Sources limited to \approx 50 Mpc, via several energy loss mechanisms

Corresponding ν 's make it easy to discern point sources and learn about HEP, but rarely interact.

- I. Predictions for $dN_{\nu}/dE \approx E^{-2}$, low overall flux
- II. Cosmological distribution of UHECR sources (IceCube first constraints)


(Ahlers et al., 2010).

Variety of Constraints

- I. Cosmological permutations, including source evolution
- II. Other particle messengers (e^{\pm}, γ)
- III. Atomic number of cosmic rays (composition)...TA/Auger

$$\Phi_{\nu} = NG(z)E^{-\alpha}e^{-E/E_{max}} \quad (1)$$

$$G(z) = H(z)\frac{dt}{dz}\Phi_0 \tag{2}$$

Eliminates upper line of pure protonic model, e.g. Kalashev *et al.*, with m=5, $z_{max}=3$. (Aartsen, 2013).

Constraints:

$$\{H(0) = 1\}$$

$$\{rho(z) = H(z)rho(0)\}$$

$$\{H(z) = (1+z)^m, z < z \leq \max\}$$

$$\{H(z) = (1+z) \text{ m, } z < z \leq \{\max\}\}$$

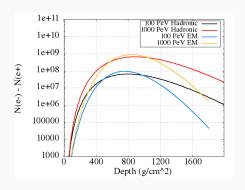
$$\{H(Z) = \emptyset, Z > Z \setminus \{max\}\}$$

$$p^+ + \gamma_{CMB} \to \Delta^+ \to \pi^+ + n \tag{3}$$

$$\rightarrow \pi^0 + p^+ \tag{4}$$

$$\pi^+ \to e^+ + \nu_\mu + \nu_e + \bar{\nu}_\mu$$
 (5)

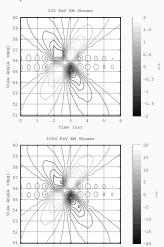
$$\pi^0 \to \gamma \gamma$$
 (6)

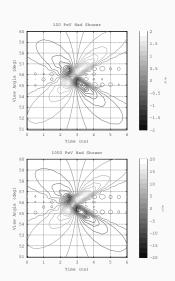

Askaryan Effect, Hadronic and Electromagnetic

Shower created by the UHE- ν interaction radiates coherently in the GHz RF regime

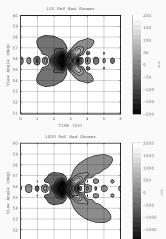
Had. and EM. showers have different depth-dependencies.

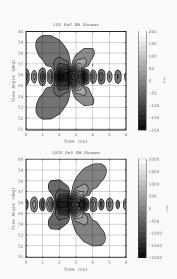
Cerenkov angle, retarded time


Electric field should be derivable from first principles (Ralston and Buniy, 2001).


$$c\vec{A}_{\omega}(\vec{x}) = \int d^{3}\vec{x'} \frac{\exp\left(ik|\vec{x} - \vec{x'}|\right)}{|\vec{x} - \vec{x'}|} \int dt' \exp\left(i\omega t'\right) \vec{J}(t', \vec{x'})$$
 (7)

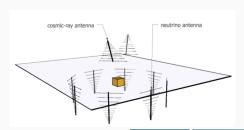
$$\vec{J}(t', \vec{x'}) = \vec{v}n(z')f(z' - vt', \vec{\rho'})$$
(8)

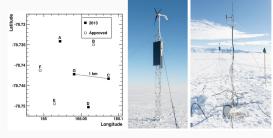

\hat{r} -component of \vec{E} .


Time (ns)

$\hat{\theta}$ -component of \vec{E} .

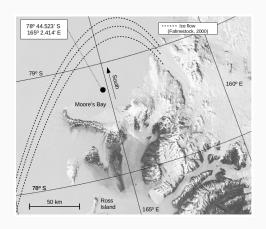
Time (ns)




Stations are Radio Receivers

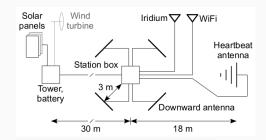
- Current stations 4 antennas+amplifiers
- Future stations 8 antennas+amplifiers
- Operate exclusively on solar power+batteries
- Micro-controller+comms: < 10 Watts

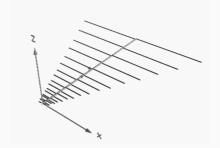
Analysis: 3/4 deployed stations in 2013


- Trigger: 2 of 4 antennas within 64 ns
- Combined live-time (stations A,C,G) of 170 days.
- Seven stations have now been deployed.
- Constitutes the full HRA (Hexagonal Radio Array)

Array will be located in stable area

- 120 km to McMurdo station
- Far from man-made background sources
- Direct wifi-access infrastructure
- Satellite modem access
- Local ice flow does not affect ice purity
- Ice thickness over ocean forms fiducial volume

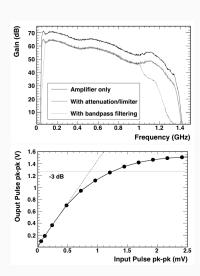



Objects in detection chain

Log-periodic dipole array (LPDA)

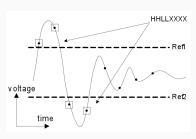
Low-noise amplifier (LNA)

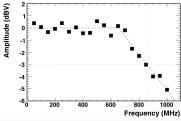
Filters, attenuators SST board (DAQ+trigger)



Objects in detection chain

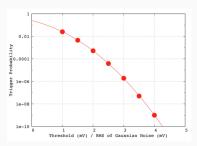
Log-periodic dipole array (LPDA)
Low-noise amplifier (LNA)
Filters, attenuators
SST board (DAQ+trigger)

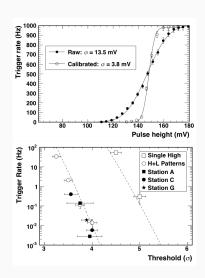



Objects in detection chain

Log-periodic dipole array (LPDA) Low-noise amplifier (LNA) Filters, attenuators

SST board (DAQ+trigger)

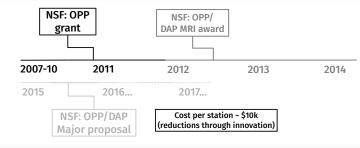




Objects in detection chain

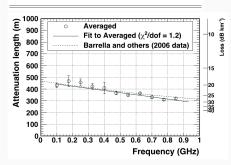
Log-periodic dipole array (LPDA) Low-noise amplifier (LNA) Filters, attenuators

SST board (DAQ+trigger)

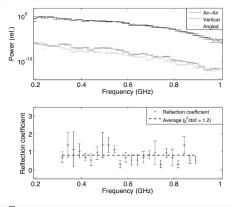


Improvements made to the DAQ, Future plans.

Prototype	2012-2014	Future	
Bandwidth trigger	8-sample pattern	Common double threshold	
2 freq. bands	72 patterns (HHLLXXXX)	3 (H,L,HL)	
4 channels	4 channels	8 channels	
0 CR channels	0 CR channels	2 CR channels	
30 Watts	10-20 Watts	7 Watts	
Solar+Wind	Solar+Wind	Solar only	
2.6 GHz sampling	1.92/2.0 GHz sampling	2.0 GHz sampling	
Pb-acide AGM batt.	2×Li-ion batt.	Li-ion batt.	


Timeline for full deployment:

ICE


- I. Ice
 - A. Completed Research
 - i. Ice thickness
 - ii. RF Absoprtion of ice
 - iii. Reflection coefficient
 - B. Future Research
 - i. Birefringence
 - ii. Large scale (10 km) uniformity
 - iii. Bore holes

Year	Δt_{meas}	Δt_{phys}	σ_{stat}	σ_{sys}	σ_{pulse}	σ_{tot}	d _{ice} (m)
2006	-	6783	-	-	-	10	577.5 ± 10
2009	-	6745	-	-	-	15	572 ± 6
2010	7060	6772	5.0	8.0	10	14	576 ± 6
2011	6964	6816	4.0	5.0	10	12	580 ± 6

I. Ice

- A. Completed Research
 - i. Ice thickness
 - ii. RF Absoprtion of ice
 - iii. Reflection coefficient
- B. Future Research
 - i. Birefringence
 - ii. Large scale (10 km) uniformity
 - iii. Bore holes

 $\sqrt{R}=0.82\pm0.07$. We will investigate different error assessments (doesn't affect strongly the fiducial volume).

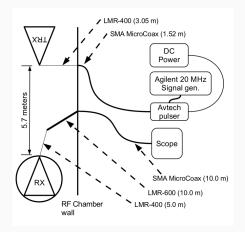
SYSTEM RESPONSE

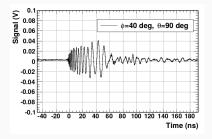
SYSTEM RESPONSE

Askaryan pulse → data LPDA converts electric field into voltage waveform Voltage at LPDA terminal from E-field:

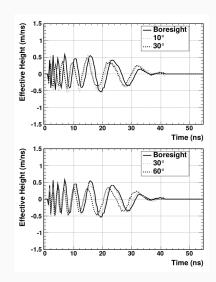
$$V_L(t) = 2\left(\frac{Z_L}{Z_L + Z_{in}}\right) h_{rx}(t) \circ E(t)$$
 (9)

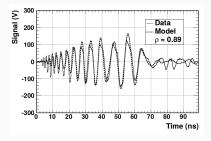
E-field from radiating LPDA:

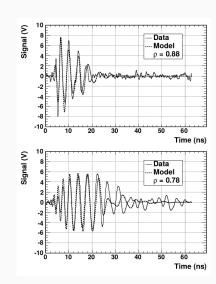

$$E(r,t) = \frac{1}{2\pi rc} \left(\frac{Z_{in}}{Z_{in} + Z_L} \right) \left(\frac{Z_0}{Z_{in}} \right) h_{tx}(t) \circ V_{src}(t) \quad (10)$$

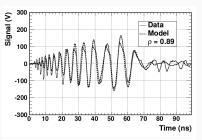

Combine, assuming impedance match (subtle, will return to this):

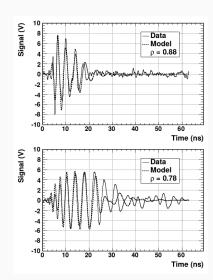
$$V_L(t) = \frac{1}{2\pi rc} \frac{Z_0}{Z_L} h_{rx} \circ h_{rx} \circ \dot{V}_{src}(t)$$
 (11)

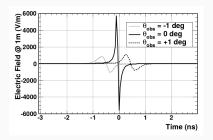

$$(h_{tx}(t) \equiv 2\dot{h}_{rx}(t)) \tag{12}$$


- I. Derive the effective height
 - A. Varying angle in E, H-planes
- II. Incorporate transfer function of LNA
- III. Test in anechoic chamber
- IV. Test in the field
 - A. Includes ice effects

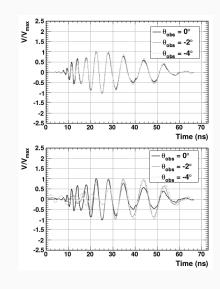



Data → solution Using eq. 11, we find the solution for the effective height versus time. Repeat for all available E and H plane (fully covers main lobe).




Predicting waveforms Combining with measured transfer function of LNA, we can predict/model waveforms in the time-domain.

Exp. Setting	Fig.	ρ
Chamber+amplifier	11	0.89
Ice sounding (Moore's Bay 2006)	12	0.88
Ice sounding (Moore's Bay 2013)	12	0.78
In-air over ice (Moore's Bay 2012)	13	0.82
In-air (Aldrich Park (2010)	14	0.83



Predicting neutrino events Combining all this information, we can create neutrino templates. We vary over E, H-planes, and observation angle. Energy,

distance and ice absorption set

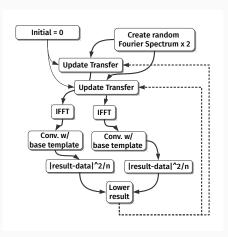
the y-scale.

SYSTEM RESPONSE

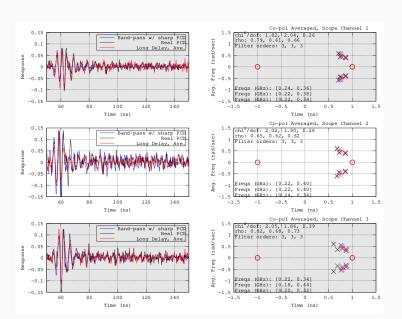
How can we improve this?

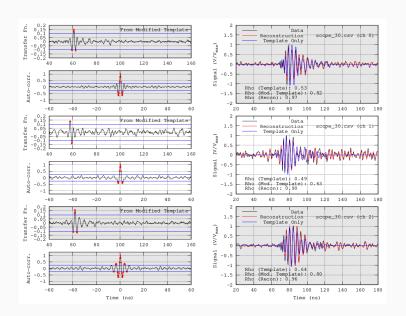
We determine the transfer function of remaining effects in multiple data sets, from data taken in 2013. This technique raises ρ to typically 0.7-0.8 (co-polarized cases).

Algorithm to determine additional effects


Use vector of small pseudo-random numbers in the Fourier domain to generate template iteration, and mimize the mean-square difference between data and model.

$$\vec{R_1}(\nu)' = \vec{R}(\nu) + \Re \vec{\epsilon}(\nu) \tag{13}$$


$$\vec{R_2}(\nu)' = \vec{R}(\nu) + \Im \vec{\epsilon}(\nu) \tag{14}$$


$$y_{1,2}(t) = \int r_{1,2}(\tau) s(t-\tau) d\tau$$
 (15)

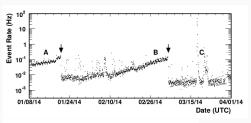
$$\mu^2 = |y_{1,2}(t) - d(t)|^2/n$$
 (16)

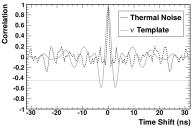
SYSTEM RESPONSE

Detector operations

Temperature effects required threshold adjustments. The event rate may be kept in the mHz regime, with thresholds of 4σ (with $\sigma=V_{rms}$ of unbiased events).

Classifying data

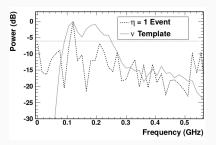

Three data classes: Thermal (biased) triggers, un-biased triggers, and heartbeats.

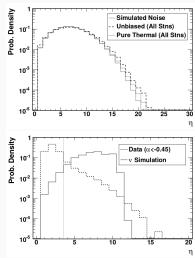

Three basic cuts

lpha: Minimum auto-correlation value (<-0.45)

 η : Number of bins with at least half the power of the maximum bin in Fourier space (>3)

 χ : Maximum correlation value with neutrino template (among all channels, >0.81)




Three basic cuts

 α : Minimum auto-correlation value (<-0.45)

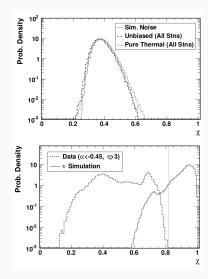
 η : Number of bins with at least half the power of the maximum bin in Fourier space (>3)

 χ : Maximum correlation value with neutrino template (among all channels, >0.81)

Three basic cuts

 α : Minimum auto-correlation value (<-0.45) η : Number of bins with at least half the power of the maximum bin in Fourier space

 χ : Maximum correlation value with neutrino template (among all channels, >0.81)


Features

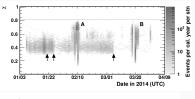
(>3)

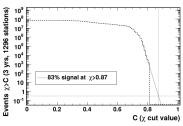
By selecting the best possible correlation of all lags, the simulated and un-biased distributions peak around ≈ 0.4 , over 4 channels.

Feature near \approx 0.68 in data is caused by high wind events (several potential causes)

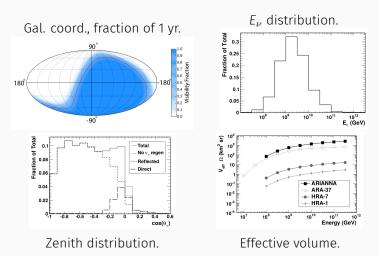
Feature in signal MC near \approx 0.7 caused by off-lobe events with respect to LPDA

Г		Station A	Station G	Station C	All Data	Cosmogenic ν's
Г	Triggers	203562	248772	512931	965265	100%
Г	$\alpha < -0.45$	51327 (25%)	102599 (41%)	142243 (28%)	296169 (31%)	99.5%
Г	$\eta > 3$	3159 (2%)	26868 (11%)	13461 (3%)	43488 (4.5%)	97%
	$\chi > 0.81$	0 (0%)	0 (0%)	0 (0%)	0 (0%)	90%


Final cut table


Final signal efficiency: 90%

965265 total events, 170 days combined live-time


Threshold adjustments cause changes in number of α, η -passing events

 $\begin{array}{l} {\rm High\text{-}wind\ periods\ produce\ higher} \\ \chi\ {\rm events.} \end{array}$

ARIANNA MC inherits from ANITA and RICE - still need LPM

Predicting neutrino events

Combining knowledge of ice, neutrino cross-section, geometry, and station design, we calculate the number of expected neutrino events in 3 years of observation.

Comparison to IceCube

The goal of the final design is to improve on the sensitivity of IceCube UHE analysis.

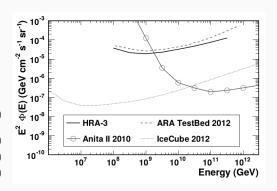
			/ TO TO TO
Neutrino Model	Model Type	N_{ν} Triggers $(E_{\nu} > 10^8 \text{ GeV})$	
		ARIANNA	IceCube 13
ESS (2001) 38	$m = 4$, $\Omega_M = 1$	55	
WB (1999) 66	E_{ν}^{-2} QSO source evolution	65	
Yuksel et al. (2007) 67	E_{ν}^{-2} GRB source evolution	100	
Kotera et al. (2010) 68	Protons, SFR1 evolution	7.3	0.46 (0.64)
Kotera et al. (2010) 68	Protons, GRB2 evolution	9.0	0.48 (0.67)
Kotera et al. (2010) 68	Protons, FRII evolution	48	2.9 (4.0)
Yoshida et al. (1993) 69	$m = 4$, $z_{max} = 4$	34	2.0 (2.8)
Ahlers et al. (2010) 70	$E_{min} = 10^{10} \text{ GeV (best fit)}$	26	1.5 (2.1)
Ahlers et al. (2010) [70]	$E_{min} = 10^{10} \text{ GeV (maximal)}$	58	3.1 (4.3)
Kotera et al. (2010) 68	Mixed composition	7.4	
Kotera et al. (2010) 68	Pure Iron	2.5	
Ave et al. (2005) 71	Pure Iron, $m=4$, $z_{max}=1.9$	18	
Olinto et al. (2011) 42	Pure Iron, $E_{max}/Z = 10^{11} \text{ GeV}$	0.097	
Aartsen et al. (2014) 24	$E_{\nu}^{-2.3}$ IceCube best fit	2.8	
Fang et al. (2013) 72	Young pulsar sources	43	

$$dN(E) = \frac{\phi(E)\epsilon V_{eff}\Omega t_{live}}{L_{int}}dE$$
 (17)

$$E^{2}\phi(E) \leq \frac{2.3 \cdot E \cdot L(E)}{\ln 10\epsilon V_{eff}\Omega t_{live}}$$
 (18)

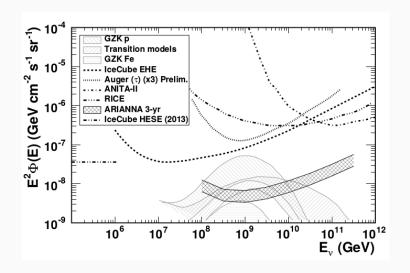
Neyman UL, 1937

Feldman-Cousins (1998) ordering principle that restricts confidence intervals to frequentist coverage, given the number of observations and expected background events.


$$P(n \le N) = \sum_{i=0}^{N} P(i|(\lambda + b)) \quad (19)$$

$$P(n \le 0; b = 0) = \exp(-\lambda) \to \tag{20}$$

$$\lambda = -\ln P \tag{21}$$


$$\lambda = 2.3 90\%c.l.$$
 (22)

To set a limit, we determine the energy (decade bins) that minimizes eq. 14.

Quote of the limit

A model-independent 90% confidence-level Neyman upper limit is placed on the all-flavor, $\nu + \bar{\nu}$ flux in a sliding decade-wide energy bin. The limit reaches a minimum of 1.9 \times 10⁻²³ GeV⁻¹cm²s¹sr¹ in the 10^{8.5} – 10^{9.5} GeV energy bin.

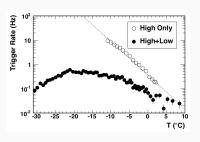
CONCLUSION

CONCLUSION

- I. UHE Neutrinos, Askaryan Effect
 - A. Guaranteed neutrino signal from deep space
- II. Deployed Hardware
 - A. ARIANNA is online, taking data
- III. Ice
 - A. Improved understanding of ice effects
- IV. System Response
 - A. Fully modeled
- V. Data Analysis
 - A. Relatively simple waveform analysis, few man-made backgounds
- VI. Neutrino Sensitivity
 - A. Significant signal compared to projected thermal backgrounds

BIBLIOGRAPHY I

- Salamida, Francesco. Update on the measurement of the CR energy spectrum above 10¹⁸ eV made using the Pierre Auger Observatory. Proceedings of the 32nd Intl. Cosmic Ray Conf., Beijing, China (2011).
- II. Barwick, S.W. et al. (ARIANNA). A First Search for Cosmogenic Neutrinos with the ARIANNA Hexagonal Radio Array. Accepted for publication in J. Astrop. Phys.
- III. Ahlers, M., et al. GZK neutrinos after the Fermi-LAT diffuse photon flux measurement. J. Astrop. Phys., **34**, p. 106-115 (2010)
- IV. Aartsen, M.G., et al.. Probing the origin of cosmic rays with extremely high energy neutrinos using the IceCube Observatory. Phys. Rev. D, 88, p. 112008 (2013).
- V. Hanson, J.C. et al. (ARIANNA). Radar Absorption, Basal Reflection, Thickness, and Polarization Measurements from the Ross Ice Shelf. Accepted for publication in J. of Glaciol.
- VI. Reed, C. et al. (ARIANNA). Performance of the ARIANNA Neutrino Telescope Stations. Proceedings of the 33rd Intl. Cosmic Rays Conf., Rio de Janeiro, Brazil (2013).
- VII. Hanson, J.C. et al. (ARIANNA). Time-domain response of the ARIANNA detector. J. of Astrop. Phys. 62 p. 139-151 (2015).
- VIII. Kleinfelder, S. et al. (ARIANNA). Design and Performance of the ARIANNA Hexagonal Radio Array Systems. (submitted to Nucl. Inst. Meth., A).
 - IX. Dookayka, K. Characterizing the Search for Ultra-High Energy Neutrinos with the ARIANNA Detector, Ph.D. dissertation, University of Californa, Irvine (2011).

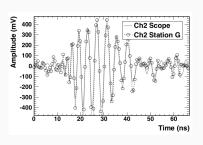

BACKUP SLIDES

DEPLOYED HARDWARE

Effect of Temperature on SST

The SST requires bias voltage and trigger threshold voltages to remain stable. Temperature instabilities cause observable trigger rate shifts, for a few mV drift.

Double-sided threshold The double threshold mitigates the effect, as long as the noise distribution is symmetric.

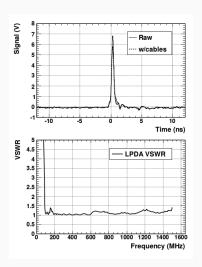

DEPLOYED HARDWARE

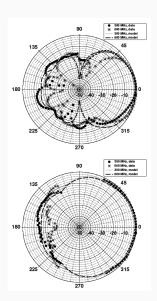
Verification of SST performance

By reflecting an RF pulse (100-1000 MHz) through the ice shelf, from the ocean, and back to the SST detector, we can match the SST recording to an oscilloscope.

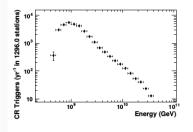
Realistic signal

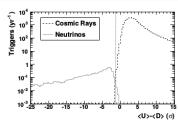
The broadband nature of this pulse is similar to the expected neutrino signal, meaning the SST is capable of recording it.




- I. Ice
 - A. Completed Research
 - i. Ice thickness
 - ii. RF Absoprtion of ice
 - iii. Reflection coefficient
 - iv. Polarization preservation

$$\frac{\langle L \rangle}{\langle L_0 \rangle} = \left(1 + \frac{\langle L_0 \rangle}{2d_{ice}} \ln R \right)^{-1} \tag{23}$$


ν (GHz)	$\langle L_0 \rangle$ (m)	$\langle L \rangle$ (m)	$(\mathrm{dB/km})$	$\epsilon^{\prime\prime}\times10^3$	$\nu\tan\delta\times10^4$
0.100	432	449	19.3	3.8	1.2
0.175	467	487	17.8	2.0	1.1
0.250	457	476	18.2	1.4	1.1
0.325	422	438	19.8	1.2	1.2
0.400	408	423	20.5	1.0	1.3
0.475	366	378	23.0	0.95	1.4
0.550	349	360	24.1	0.86	1.5
0.625	363	375	23.2	0.72	1.4
0.700	331	341	25.5	0.71	1.6
0.775	310	319	27.2	0.69	1.7
0.850	320	329	26.4	0.61	1.6
Ave.	380 ± 16	400 ± 18	22 ± 1	1.3 ± 0.3	1.37 ± 0.06

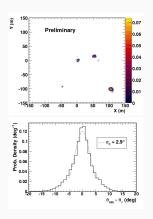

SYSTEM RESPONSE

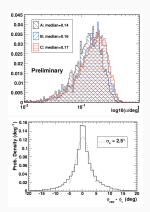
COSMIC RAY SENSITIVITY

Cosmic ray EAS generate RF as well

We use CoREAS to generate generic UHECR pulses, and convolve with front (down) and back (up) lobes of LPDA response.

CoREAS configuration - details matter


CR p^+ : $10^{8.4}$ - $10^{10.5}$ GeV are simulated by Corsika, QGSJetII-04 hadronic model, track up-going particles


Event weighted by measured CR flux

(Left): 3 of 8 downward facing antennas, 4σ trigger

(Right): Use 2 of 8 antennas facing up, 45°, as veto-channels

Angular reconstruction. (Dookayka, 2011), (Reed, 2013)

Upper left: pulser location reconstruction. Upper right: pulser angle reconstruction. Lower left: ν zenith reconstruction. Lower right: ν azimuth reconstruction.