CCS2, an Octatricopeptide-Repeat Protein, Is Required for Plastid Cytochrome c Assembly in the Green Alga Chlamydomonas reinhardtii

Sara G. Cline ${ }^{1,2 t}$, Isaac A. Laughbaum ${ }^{1}$ and Patrice P. Hamel ${ }^{1,2 *}$
${ }^{1}$ Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, United States, ${ }^{2}$ Plant Cellular and Molecular Biology Graduate Program, The Ohio State University, Columbus, OH, United States

OPEN ACCESS

Edited by:

Dario Leister, Ludwig-Maximilians-Universität München, Germany

Reviewed by:

Lixin Zhang, Institute of Botany (CAS), China Michael Schroda, Kaiserslautern University of Technology, Germany

*Correspondence:

Patrice P. Hamel hamel.16@osu.edu

${ }^{\dagger}$ Present address:

Sara G. Cline, Department of Mathematics, Computer and Natural Sciences, Athens State University, Athens,

AL, United States

Specialty section:

This article was submitted to Plant Cell Biology, a section of the journal Frontiers in Plant Science

Received: 16 April 2017

Accepted: 12 July 2017
Published: 03 August 2017

Citation:

Cline SG, Laughbaum IA and Hamel PP (2017) CCS2, an Octatricopeptide-Repeat Protein, Is Required for Plastid Cytochrome c Assembly in the Green Alga Chlamydomonas reinhardtii.

Front. Plant Sci. 8:1306.
doi: 10.3389/fpls.2017.01306

Abstract

In bacteria and energy generating organelles, c-type cytochromes are a class of universal electron carriers with a heme cofactor covalently linked via one or two thioether bonds to a heme binding site. The covalent attachment of heme to apocytochromes is a catalyzed process, taking place via three evolutionarily distinct assembly pathways (Systems I, II, III). System II was discovered in the green alga Chlamydomonas reinhardtii through the genetic analysis of the ccs mutants (cytochrome $\underline{\mathbf{c}}$ synthesis), which display a block in the apo- to holo- form conversion of cytochrome f and c_{6}, the thylakoid lumen resident c-type cytochromes functioning in photosynthesis. Here we show that the gene corresponding to the CCS2 locus encodes a 1,719 amino acid polypeptide and identify the molecular lesions in the ccs2-1 to ccs2-5 alleles. The CCS2 protein displays seven degenerate amino acid repeats, which are variations of the octatricopeptiderepeat motif (OPR) recently recognized in several nuclear-encoded proteins controlling the maturation, stability, or translation of chloroplast transcripts. A plastid site of action for CCS2 is inferred from the finding that GFP fused to the first 100 amino acids of the algal protein localizes to chloroplasts in Nicotiana benthamiana. We discuss the possible functions of CCS2 in the heme attachment reaction.

Keywords: plastid, photosynthesis, cytochrome c, heme, assembly factor, OPR

INTRODUCTION

Energy-transducing membranes are specialized membranes in archaea, bacteria, mitochondria, and chloroplasts, which rely on electron carriers to generate the proton gradient necessary for ATP synthesis. In energy-transducing membranes, the c-type cytochromes, also generically referred to as cytochromes c, are a class of structurally diverse metalloproteins with one or more covalently linked heme(s) (ferro-protoporphyrin IX) that participate in electron transfer reactions (ThonyMeyer, 1997; Bonnard et al., 2010; Verissimo and Daldal, 2014). On the positive side (p-side) of the energy-transducing membrane (i.e., bacterial or archaeal periplasm, mitochondrial intermembrane space, thylakoid lumen), a group of cytochromes c occur as both soluble and membrane proteins with the heme moiety typically attached via a thioether linkage to two cysteine sulfhydryl(s) in a characteristic motif in the apocytochrome c. The consensus motif, also referred to as the heme-binding site, is $\mathrm{CX}_{\mathrm{n}} \mathrm{CH}$ where n is usually equal to two and X can be any residue except
cysteine in naturally occurring cytochromes c. The histidine in this motif acts as a ligand of ferroheme (Bowman and Bren, 2008; Allen et al., 2009). Heme attachment to the heme-binding site is a catalyzed reaction in vivo and requires heme transport across at least one biological membrane and covalent linkage of ferroheme to free sulfhydryls of the heme binding cysteines in the $\mathrm{CX}_{\mathrm{n}} \mathrm{CH}$ motif (Bonnard et al., 2010; Mavridou et al., 2013).

To date, three Systems (I, II, and III) have been identified as being necessary for the post-translational assembly of cytochromes c located on the p-side of the membrane, where these molecules function. These systems have been identified through extensive investigation of both bacterial and eukaryotic models (Kranz et al., 2009; Allen, 2011; de Vitry, 2011; Mavridou et al., 2013; Verissimo and Daldal, 2014). In plastids, the heme attachment reaction occurs on the luminal side of the thylakoid membrane and is under the control of System II. This system is composed of multiple pathways and occurs in plastids of all photosynthetic eukaryotes, cyanobacteria, and most proteobacteria of the β-, δ-, and ε-group (Hamel et al., 2009; Bonnard et al., 2010; Simon and Hederstedt, 2011).

System II first emerged through genetic screens for photosynthesis-impaired ccs mutants (ccs for cytochrome $\underline{\text { c }}$ synthesis) in the green alga Chlamydomonas reinhardtii (Hamel et al., 2009; Simon and Hederstedt, 2011; Gabilly and Hamel, 2017). The ccs mutants were isolated on the basis of photosynthetic deficiency due to loss of plastid c-type cytochromes, namely membrane-bound cytochrome f and soluble cytochrome c_{6} (Howe and Merchant, 1992). These two plastid cytochromes c reside in the thylakoid lumen and function in photosynthesis. The defect is specific to plastid cytochromes c, as abundance of mitochondrial cytochromes c was unaffected in the ccs mutants (Howe and Merchant, 1992). Pulse-chase analyses revealed that precursor forms of apocytochrome f and c_{6} are synthesized, translocated to the lumen, and therein cleaved by the thylakoid peptidase. However, they are not converted to their respective holoforms. This indicates that the CCS loci control the heme attachment reaction in the lumen (Howe and Merchant, 1992, 1993, 1994; Xie et al., 1998; Gabilly et al., 2010). At least seven loci, plastid ccsA and nuclear CCS1 to CCS6, were uncovered through genetic analysis of the ccs mutants isolated via several UV and insertional mutageneses (Xie et al., 1998; Page et al., 2004; Gabilly et al., 2010).

Functional analysis of plastid CcsA and Ccs1 led to the proposal that these two proteins act together to relay heme from its site of synthesis, the stroma, to its site of function, the lumen, possibly in an assembly complex alongside other CCS factors (Xie and Merchant, 1996; Inoue et al., 1997; Dreyfuss et al., 2003; Hamel et al., 2003). Biochemical studies supported this model with evidence that bacterial CcsA and Ccs1 operate as a functional unit with a dual activity in heme transport across the membrane and heme ligation to apocytochromes c in the periplasmic space (Frawley and Kranz, 2009).

In addition to heme delivery and attachment, the maintenance of the cysteine sulfhydryls (reduced vs. oxidized) within the heme binding site is a prerequisite for covalent linkage of heme (Bonnard et al., 2010; Sanders et al., 2010; Verissimo and Daldal, 2014). The proposed model is that the cysteines
are first oxidized by disulfide bond forming enzymes on the p-side of the membrane and must subsequently be reduced to provide free sulfhydryls for the heme ligation reaction. In plastids and bacteria, this requirement is fulfilled by the operation of a disulfide reducing pathway, which conveys electrons across the energy-transducing membrane via thiol-disulfide exchanges in order to reduce the disulfide bond formed between the hemelinking cysteines in the heme binding motif of apocytochromes c (Karamoko et al., 2013; Verissimo and Daldal, 2014; Gabilly and Hamel, 2017).

In bacteria, the CcsA/Ccs1-dependent heme delivery/attachment pathway and the disulfide-reducing pathway are all that is required for cytochrome c assembly (Beckett et al., 2000; Le Brun et al., 2000; Feissner et al., 2005). However, screening of ccs mutants in Chlamydomonas reinhardtii has revealed four additional CCS loci (CCS2, CCS3, CCS4, and CCS6), an indication that the assembly of cytochromes c in the plastid is a more complicated process (Xie et al., 1998; Page et al., 2004). While we have proposed that CCS4 regulates the disulfide reducing pathway in the plastid (Gabilly et al., 2011), the gene products for CCS2, CCS3, and CCS6 remain unknown.

In this article, we report the molecular identification of the CCS2 locus by functional complementation of the ccs 2 mutant. The CCS2 gene encodes a plastid-localized, 170 kDa protein that was previously identified by bioinformatics to be a member of the octatricopeptide repeat (OPR) family (Eberhard et al., 2011).

MATERIALS AND METHODS

Strains and Culture Condition

The ccs2-1 through ccs2-5 strains were used in complementation experiments (Xie et al., 1998). Mutants ccs2-1 and ccs2-2 were crossed to wild-type strain $3 \mathrm{~A}^{+}\left(m t^{+} \arg 7-8\right)$ and $4 \mathrm{C}^{-}$ ($m t^{-} \arg 7-8$), respectively, to generate the ccs2-1 $\arg 7-8$ and ccs2-2 arg7-8 recipient strains. The ccs2-1 arg7-8 mutant was then crossed to wild-type strain CC425 (arg7-8 cw15) to generate the ccs2-1 arg7-8 cw15 mutant used for detection of the HA-tagged CCS2 protein. The MCA1-HA expressing strain is described in Raynaud et al. (2007). Strains were maintained at $25^{\circ} \mathrm{C}$ on Tris-acetate phosphate (TAP) liquid or solid medium supplemented with $400 \mathrm{mg} / \mathrm{mL}$ arginine (Harris, 1989) at $0.6 \mu \mathrm{E} / \mathrm{m}^{2} / \mathrm{s}$. Complemented ccs 2 strains were assessed for restoration of photoautotrophic growth on minimal medium (Min) (Harris, 1989) or acetate containing (1.7 mM) minimal medium. For protein extraction, wild-type and complemented strains were grown in liquid TAP supplemented with arginine under $50 \mu \mathrm{E} / \mathrm{m}^{2} / \mathrm{s}$ illumination while ccs mutants were grown under $0.6 \mu \mathrm{E} / \mathrm{m}^{2} / \mathrm{s}$ illumination. Cell wall-less mutants (cw15) were cultured in liquid and on solid media supplemented with 50 mM sorbitol. Copper-free media for induction of cytochrome c_{6} was prepared as described previously (Howe and Merchant, 1992; Quinn and Merchant, 1998).

Molecular Cloning of the CCS2 Gene

An indexed cosmid library of Chlamydomonas genomic DNA was used for transformation by electroporation as described
by Shimogawara et al. (1998) with the following exceptions: the vector backbone was the cosmid pCB412 containing the ARG7 marker and the transformation required a 30 min incubation in autolysin (to digest the cell wall) followed by electroporation of $5 \mu \mathrm{~g}$ of DNA per cosmid pool on a Biorad Micropulser at 1300 V. Transformants were selected under $50 \mu \mathrm{E} / \mathrm{m}^{2} / \mathrm{s}$ light on minimal media supplemented with 1.7 mM acetate. Plasmid pMOL +8.2 kb was generated by cloning the 8.2 kb BamHI/HindIII CCS2 genomic fragment isolated from complementing cosmid (c8G6), into BamHI/HindIII digested pMOLUC (Cha et al., 2002).

Assembly of the CCS2 cDNA

Chlamydomonas RNAs were extracted and retro-transcribed using a bacterial reverse transcriptase from the Roche Transcriptor High Fidelity cDNA Synthesis Kit and the CCS2 specific primers CCS2.30 and CCS2.66STP. Overlapping fragments were amplified with the following primer pairs: CCS2.69 and CCS2.66STP, CCS2.19 and CCS2.54, CCS2.21 and CCS2.18, CCS2.79 and CCS2.02, CCS2.27 and CCS2.28, CCS2.51 and CCS2.26, and, finally, CCS2.81ATG and CCS2.70 using DV Ready Mix (Sigma) and the total retro-transcribed RNAs as a template. Amplified fragments were isolated after electrophoresis in agarose gel, purified, re-amplified and AT-cloned into pGEM-T Easy for sequencing. All primer sequences are listed in Supplementary Table S1.

Construction of HA-Tagged CCS2 and CCS2-GFP Expressing Constructs

Versions of the CCS2 gene carrying an internal HA tag were created by cutting pMOL +8.2 kb by $B s i \mathrm{WI}$ or BspEI and inserting the HA-tag sequence via In-Fusion ${ }^{\circledR}$ (CloneTech). The HA-tag sequence was generated using PCR based fill-in of primers CCS2-HA_BsiW1-F and CCS2-HA_BsiW1-R or CCS2-HA_BspEI-F and CCS2-HA_BspEI-R. Introduction of an internal HA tag sequence at the BspEI site (residue 298) abolished CCS2 function while the tag at BsiWI (residue 1672) had no impact (not shown).

To generate the series of "p8" plasmids used in Figure 5, a 606 bp sequence was synthesized (Genscript) and cloned into pUC57 (pUC57+ccs2bit). This sequence contained two distinct fragments that were modified from the Chlamydomonas genomic DNA. The first was a 207 bp fragment corresponding to the 3^{\prime} end of CCS2 genomic DNA that both changed the stop codon in the CCS2 ORF into an alanine and added the restriction sites XbaI, SwaI, and SpeI downstream of the stop codon. The second was a 394 bp fragment encompassing the 5^{\prime} end of CCS2 genomic DNA designed to remove the native CCS2 promoter and introduce restriction sites BglII and XhoI upstream of the ATG.

Carboxy-terminus $3 x H A$ tags were generated by cutting $\mathrm{pMOL}+8.2 \mathrm{~kb}$ by BsiWI (146 bp upstream the stop codon) and PshA1 (570 bp downstream of the stop codon in the 3^{\prime} UTR) and cloning the 207 bp fragment, which was amplified by primers CCS2-BsiWI-F and CCS2-PshAI-R using pUC57+ccs2bits as a template. The 207 bp fragment was cloned using In-Fusion ${ }^{\oplus}$ and the resulting plasmid is $\mathrm{p} 8-\mathrm{noS}$. The p 8 -noS plasmid was then
digested by XbaI and SpeI and a sequence corresponding to a 3 xHA tag (and including a stop), created through PCR fill-in of primers $8.3 x H A-f$ and $8.3 x H A-r$, was inserted via In-Fusion ${ }^{\circledR}$. This created vector p8-3xHA expressing CCS2-HA from its native promotor. The plasmids expressing CCS2 or CCS2-HA under the PSAD promoter were generated in a similar manner. The 394 bp fragment was amplified from pUC57+ccs2bits using primers CCS2-XcmI.R and CCS2-XcmI.F and inserted via In-Fusion ${ }^{\circledR}$ after digestion of $\mathrm{pMOL}+8.2 \mathrm{~kb}$ and $\mathrm{p} 8-3 \mathrm{xHA}$ by XcmI (322 bp from the initiation codon). This created plasmids p 8 -noP and $\mathrm{p} 8-3 \mathrm{xHAnoP}$. These constructs were then used to generate plasmids $\mathrm{p} 8-\mathrm{PROM}$ and $\mathrm{p} 8-3 \mathrm{xHA}+\mathrm{P}$. To create these vectors, the PSAD promoter and 5^{\prime} UTR were amplified from plasmid pSL18 (Pollock et al., 2004), using primers 8.PROM-f and 8.PROM-r, and inserted via In-Fusion ${ }^{\circledR}$ at the introduced restriction sites BglII and XhoI.

The plasmid pGWB5/ccs2target, expressing the CCS2-GFP fusion protein, was constructed from pUC57+ccs2targeting, which contains the first 300 bp from CCS2 ORF, corresponding to the first 100 amino acids of CCS2, cloned into pUC57. This 300 bp sequence was codon optimized for expression in tobacco and synthesized by GenScript. Using primers CCS2.t1 and CCS2.t2, the sequence was amplified from the pUC57+ccs2targeting template and then inserted in frame with the GFP reporter in the expression vector pGWB5 (Nakagawa et al., 2007) using entry vector $\mathrm{pENTR} / \mathrm{SD} / \mathrm{TOPO}$ (Invitrogen) via TOPO cloning. The GFP-NLS/GFP-NES expressing construct in pK7WGF2 (Karimi et al., 2002) is a gift from Dr. I. Meier (Ohio State University). The NLS (nuclear localization sequence) is from the SV40 large T-antigen. The NES (nuclear export signal) is from the HIV-1 Rev response element. Plasmids were transferred to Agrobacterium tumefaciens GV3101 by electroporation.

Protein Preparation and Analysis

Cytochrome f and c_{6} detection was performed as in Howe and Merchant (1992). Soluble fractions for cytochrome c_{6} detection were obtained by freeze-thaw fractionation of cells grown in copper deficient conditions. Fractions were electrophoretically separated and cytochromes c revealed by immunodetection or a heme-staining procedure (Howe and Merchant, 1992). Anti-HA immunoblotting analysis was performed on whole cells extracts, prepared as follows: cells were grown to early logarithmic phase under $0.6 \mu \mathrm{E} / \mathrm{m}^{2} / \mathrm{s}$ illumination and moved into $30 \mu \mathrm{E} / \mathrm{m}^{2} / \mathrm{s}$ light for 5 h . Cells were then pelleted and re-suspended in $10 \mathrm{mM} \mathrm{NaPO}_{4}$ buffer with protease inhibitors (4 mM benzamine, 0.4 mM 6 -amino- n-hexanoic acid, 2 mM PMSF, $10 \mu \mathrm{M}$ leupeptin, $1 \mu \mathrm{M}$ pepstatin, 1 mM ortho-phenanthroline, $40 \mu \mathrm{~g} / \mathrm{mL}$ chymostatin, $10 \mu \mathrm{M} \mathrm{E-64)} \mathrm{(Kurvari} \mathrm{et} \mathrm{al.}, \mathrm{1998)}$ to a final concentration of 3×10^{8} cells. Laemmli Buffer was then added to a final concentration of 1.2×10^{8} cells and 0.1 M DTT. Cells were placed in a sonication bath for 120 s and the solubilized protein sample was denatured for 20 min at $70^{\circ} \mathrm{C}$ before electrophoresis. Polyclonal antisera raised against Chlamydomonas cytochrome c_{6}, cytochrome f GST-fusion protein, and CF_{1} were used for immunodetection by alkaline phosphatase-conjugated secondary antibodies. The rat
monoclonal anti-HA antibody (clone 3F10) (Roche) was used for immunodetection by peroxidase-conjugated secondary antibody.

Fluorescence Rise and Decay Kinetics

Fluorescence rise and decay kinetics were taken as described in Gabilly et al. (2010) except that strains were grown in liquid medium overnight and measurements were recorded on $20 \mu \mathrm{~L}$ culture aliquots against a white background. Fluorescence transients were measured using Handy Fluorcam from Photon System Instruments. The fluorescence is in arbitrary units (A.U.) and recorded over a 3-s illumination period.

GFP Fluorescence and Imaging

Nicotiana benthamiana was transformed with Agrobacterium carrying the GFP-CCS2 or NLS-GFP/NES-GFP expressing construct via infiltration after a 1 h incubation in Induction Medium ($10 \mathrm{mM} \quad \mathrm{MgCl}_{2}, 10 \mathrm{mM}$ 2-[N-Morpholino]ethanesulfonic acid, $100 \mu \mathrm{M}$ Acetosyringone). After 3 days, protoplasts were extracted from infiltrated leaves by a $30-\mathrm{min}$ incubation in a Digestion Buffer (1.5% cellulose, 0.4% macerozyme, 0.4 M mannitol, $20 \mathrm{mM} \mathrm{KCl}, 20 \mathrm{mM}$ 2-[N-Morpholino]ethanesulfonic acid $-\mathrm{KOH} \mathrm{pH} 5.5,10 \mathrm{mM}$ $\mathrm{CaCl}_{2}, 0.1 \%$ Bovine serum albumin) and concentrated with a 1 s spin at 100 rpm . Supernatant was removed and protoplasts were re-suspended in $100 \mu \mathrm{~L}$ Digestion Buffer before imaging. GFP-dependent fluorescence was taken at 515 nm and chlorophyll auto-fluorescence at 650 nm on a Nikon Cl confocal microscope (Eclipse C90i) using a medium aperture. Images were processed using the NIS-Elements software.

Analysis of OPR Motifs in Proteins

Information presented in Figure 4 was generated by the MEME algorithm (Bailey and Elkan, 1994). Individual protein sequences (Supplementary Figure S1) were entered into the program and base settings were altered to search for any number of repetitions, one motif, between 70 and 600 sites, and between 28 and 50 amino acids wide. The OPR motifs identified by the MEME program (Supplementary Figure S2) were fed into Weblogo 3.3 (Crooks et al., 2004).

RESULTS

Cloning of the CCS2 Gene by Functional Complementation of the ccs2-2 Mutant

To gain further insights into plastid cytochrome cassembly, we sought to clone the gene corresponding to the CCS2 locus, defined by the ccs2-1 to -5 alleles (Xie et al., 1998). All ccs mutants display a $b_{6} f$-deficient phenotype due to loss of cytochrome f assembly and hence are unable to grow photoautotrophically (Howe and Merchant, 1992; Xie et al., 1998). Using the photosynthetic deficient phenotype of the ccs mutants, we cloned the CCS2 gene via transformation of the ccs2-2 arg7-8 double mutant with an indexed cosmid library (Purton and Rochaix, 1994; Zhang et al., 1994). Transformants were selected for restored growth on acetate-containing minimal medium

FIGURE 1 | The CCS2 gene restores photoautotropic growth to the ccs2 mutants. For (A,B), wild-type CC124 (WT), ccs2-1 and ccs2-2 strains, and CCS2 complemented mutants were used. (A) Ten-fold dilution series of algal cultures were plated on solid medium, with or without acetate, and incubated under low light ($0.6 \mu \mathrm{E} / \mathrm{m}^{2} / \mathrm{s}$) or high light ($50 \mu \mathrm{E} / \mathrm{m}^{2} / \mathrm{s}$), respectively, for 1 week at $25^{\circ} \mathrm{C}$. The ccs2-3, ccs2-4, and ccs2-5 mutants are also restored for photoautotrophic growth upon transformation with the CCS2 gene (not shown). (B) Representative fluorescence rise and decay kinetics indicate restoration of the cytochrome $b_{6} f$ complex in the complemented ccs2 mutant. While all complemented mutants were restored, only the ccs2-2 strain is shown. The fluorescence is in arbitrary units (A.U.) and recorded over a 3-s illumination period after a dark adaption period
under standard illumination ($50 \mu \mathrm{E} / \mathrm{m}^{2} / \mathrm{s}$). Two cosmids (c8G6 and c5D9) were isolated based on their ability to restore photosynthetic growth to the ccs2-2 mutant. Sequence analysis revealed that c8G6 contains a 30.2 kb region from chromosome 19 while c5D9 appears to have rearranged. The complementing activity in c8G6 could be narrowed down to an 8.2 kb BamHI-HindIII fragment. Both c8G6 and the cloned 8.2 kb BamHI-HindIII fragment complemented strains ccs2-1 through ccs2-5, restoring photosynthetic growth (Figure 1A).

To test if the cytochrome f assembly was restored in the complemented transformants, we performed analyses of fluorescence rise and decay kinetics (Figure 1B). In such experiments, the emitted fluorescence of excited chlorophyll in photosystem II is taken as an indication of the functionality of the $b_{6} f$ complex, which receives electrons from photosystem II. As seen in Figure 1B, the rise and plateau curve for ccs2 is characteristic of a specific block in electron transfer at the level of the cytochrome $b_{6} f$ complex because of its impaired assembly in the absence of membrane-bound holocytochrome

FIGURE $2 \mid$ Restoration of plastid cytochrome c assembly in the CCS2 complemented strains. For (\mathbf{A}, \mathbf{B}), the ccs2-1 to ccs2-5 mutants were complemented with the 8.2 kb genomic fragment containing the CCS2 gene. Dilutions of the wild-type sample serve to estimate the cytochrome $f(\mathbf{A})$ and cytochrome $c_{6}(\mathbf{B})$ abundance. (A) The wild-type CC124 strain (WT), ccs2 mutants, and two independently complemented ccs2 transformants for each ccs2 allele (CCS2) were analyzed for cytochrome f accumulation via heme stain and immunoblotting. Detection of the CF_{1} of the ATPase is shown as a loading control. Note that heme staining also reveals the presence of covalently attached heme c_{i} in holocytochrome b_{6}. As evidenced from the heme stain, holocytochrome b_{6} accumulates to a lower level due to loss of cytochrome f assembly in the ccs2 mutants. Different levels of holocytochrome f accumulation in the transformants might reflect differential expression of the introduced CCS2 gene due to position effect of non-homologous integration of the construct in the chromosome. (B) Same as in (A), except only one transformant was analyzed for cytochrome c_{6} accumulation by heme staining and immunoblotting. Ponceau staining is shown as a loading control. The white lines in (\mathbf{A}, \mathbf{B}) indicate assembly from independent immunoblots.
f. When the energy absorbed by the chlorophyll cannot be utilized, in this case as a result of a block in photosynthetic transfer through cytochrome $b_{6} f$, an increase in the chlorophyll fluorescence is observed. In wild-type and complemented strains, the decay phase corresponds to the re-oxidation of the quinone pool, the primary electron acceptor of the photosystem II, by the cytochrome $b_{6} f$ complex. This indicates holocytochrome f assembly and cytochrome $b_{6} f$ functionality is restored in the complemented strains. In accord with this result, we also showed that both holocytochrome f and cytochrome c_{6} accumulation is restored to wild-type levels in the complemented strains (Figures 2A,B).

The CCS2 Gene Encodes a Protein of the OPR Family

Because of the large size, low abundance, and high GC content (74\%) of the CCS2 mRNA, the corresponding full-length
cDNA proved difficult to amplify. Instead, overlapping cDNA fragments, approximately 2 kb in length, were amplified and the full-length transcript was extrapolated by aligning the sequenced fragments with the CCS2 genomic DNA. Sequence comparison of the assembled cDNA with the current gene model Cre03.g213201 extended the 5^{\prime} end of exon 1 and identified four introns within the CCS2 gene (Figure 3A). The Chlamydomonas transcriptome from the Joint Genome Institute, University of California (JGI-UCLA) and Genoscope ${ }^{1}$ corroborates this transcript sequence under the previous unique gene ID Cre19.g757200. We assigned the start codon in exon 1 based on the fact that this is the 5^{\prime} most ATG preceded by stop codons in all three reading frames.

Sequencing of the genomic DNA in the ccs2-1 to ccs2-5 mutants revealed molecular lesions in the CCS2 coding sequence (Figure 3A). All lesions introduced nonsense (ccs2-1 and ccs2-3)

[^0]

$\left.\begin{array}{lllllllll}\text { B } & \text { WT } & & & & & & \\ & 1027 & \text { CAGCCGCAACCGCAGCAGCTT } & 1048 \\ & 342 & Q & P & Q & P & Q & Q & L\end{array}\right) 349$ $\begin{array}{lllllllll}\text { ccs2-1 } & & & & & & & \\ 1027 & \text { CAGCCGCAALAGCAGCAGCTF } & & 1048 \\ 342 & Q & p & Q & * & Q & Q & L & 349\end{array}$

WT 1504 CCGCGAGGCTGGCGTCTTCGG 1525 501 P R G W R L R 508

WT
259 GCTCCTTTCCCGCCGGCGTCA 280
86 A P F P P A S 93
$\operatorname{ccs} 2-4$
259 GCTCCTTTCCgC...acgtga 954
86 A P F R . . T * 318

WT
817 CAGCAGCAGGAGCTGCATCCG 838
272 Q Q Q E L H P 279
$\cos 2-5$
817 CAGCAGCAtgac...acgtga 954

FIGURE 3 | Molecular identification of the ccs2-1 to ccs2-5 mutations. (A) Schematic representation of the CCS2 immature transcript. Introns are shown in black and exons in gray. The position of the molecular lesions in the ccs2 alleles is indicated. (B) Identified mutations in the ccs2 alleles. The top line corresponds to the nucleotide sequence of the CCS2 ORF and numbers displayed to either side refer to position of the nucleotides within the ORF. The lower-case letters indicate the nucleotide sequence due to change(s) induced by the UV mutagenesis. The lower line shows the corresponding amino acid sequence and the change within the protein sequence resulting from the molecular lesion(s). The asterisk indicates a stop in the protein sequence. The ccs2-1 allele is a CC to TA mutation at position 1036-1037 and the ccs2-3 allele is a G to A change at position 1514. In the ccs2-4, deletion of a single C occurred at position 269. The ccs2-5 mutation combines a G to T mutation at position 826 and deletion of a single G at position 829. The GenBank accession number for the CCS2 nucleotide sequence is KC292647.
or frameshift (ccs2-4 and ccs2-5) mutations, which result in truncations within the first 500 amino acids of the protein except for the ccs2-2 allele (Figure 3B). In the ccs2-2 mutant, a single guanine has been deleted from a stretch of 11 guanines in intron $4,10 \mathrm{bp}$ downstream of the 3^{\prime} end of exon 4 . It is possible that this change impairs the splicing of intron 4 in the CCS2 transcript. The identification of the molecular lesions confirms that the complementing sequence we isolated corresponds to the wild-type CCS2 gene rather than an extragenic suppressor of the ccs2 mutation.

The CCS2 gene encodes a 1,719 amino acid protein with a predicted molecular weight of $171,753 \mathrm{Da}$. The most striking feature of the CCS2 protein is the presence of several 38-40 amino acid repeats occurring between residues 720 and 1610 (Figure 4AB). Such motifs, named OPR for octatricopeptide repeats were first defined in TBC2 (translation factor for chloroplast $p s \underline{b C} m R N A$), a nuclear encoded protein required for the translation of $p s b C$ RNA in the chloroplast (Auchincloss et al., 2002). OPRs are also recognized in other factors controlling translation (TDA1, TAB1), maturation (RAT2, RAA1, RAA8, RAP), or stability (MCG1,MBI1) of chloroplast transcripts
(Balczun et al., 2005; Merendino et al., 2006; Eberhard et al., 2011; Rahire et al., 2012; Kleinknecht et al., 2014; Marx et al., 2015; Wang et al., 2015).

The OPR family is further characterized by the presence of low complexity regions, which are regions containing little diversity in their amino acid composition (Balczun et al., 2005; Merendino et al., 2006; Eberhard et al., 2011; Rahire et al., 2012; Marx et al., 2015; Wang et al., 2015). Indeed, we noted the occurrence of several stretches of three or more alanine, glycine, serine, or glutamine repeats in CCS2 (Figure 4A). CCS2 has a high content of alanine (24.2%), glycine (10.7%), proline (8.7%), and leucine (8.7\%), a feature shared by other OPR proteins (Auchincloss et al., 2002; Balczun et al., 2005; Merendino et al., 2006; Eberhard et al., 2011; Rahire et al., 2012; Marx et al., 2015; Wang et al., 2015). OPR motifs found in CCS2 are highlighted in Figure 4B and a consensus OPR motif from all OPR containing proteins that have been functionally identified to date, with the exception of NCC1 and NCC2 (Boulouis et al., 2015), can be seen in Figure 4C. The relative locations of the motifs in the proteins used to generate the consensus motif in Figure 4C can be seen in Figure 4B.

A

MLAPHSATLP PRCTCHSHGL AQLQTSVLRP STGYGAQQAV ARPRPDASMQ ASAEPGDSAN ATDPQLDHTQ HLRRRSTAAV PPPRAWAPFP PASQQGSDKS PAPAPAPAPA SAPAPAPTAT LPPADSSCTA PGRRRHSGYG 140 ASVPVSVSVF ATPVAVGPAP AAPEPGTVQD QSSGALLLPL PATHPAAATA TAASRRRSRR GGGRRAAAAH 210 QGQQLGRCSG DGEGESAAEG DAGEPEAGEE PGVVLVPVWE GQPWQQPRRH GAAQYSEQQR HRQQQELHPV 280 AAFAPAAADA TVAVGTARPE QLGPTWGAAA AAAAEADVIR VAVPADASRL ASAVPRPRLQ QPQPQPQQLE 350 LDLVYSRRRA GDLSEAGVAE QGLCGVAPAR EAAAAAAAVA AVAAGRVVCS AAGGGPTATG HAERPPLGPR 420 RSMPAGTPAG AAAGVGRGGR PGAHTATAAA TATAVAPMVE TAGNCTQEVE RAESREPGGT GYATAGDTGG 490 RAWGGSGSSD GPRGWRLRDE PGGAAPAALS FRSVGKGRAA AGAAEAAAAR QLMRQLMACR DWRELYEVIS 560 PCLGGTTARA AAAAATEGAV AEAGATATAM PTTANALHIT AALNQLASMQ LPPPQGTAAA TAAAGQGAVA 630 VAGAGAAATA AAEVQELLVR LEAAYRAHLM AAWAPAGISH TGRGGSSSSS SSSSSGSNAV PFARPGPSAH 700 AAAAASSPSL AAAGSGSGSG MGTGAEPRLG PRQLATCLGA LARLRARGWH VASERRLLHL SVATAARWRL 770 SAFPPQELTT LLHALATLGH RPSGDWMAAA AGAVAAAAAG GSMSPRQLST TMWALAVLRQ RPSRALMAAW 840 ALASLQTMAH ASAYDVSQSL WAVAKLHRDA VMDAAAAAEA GGGGGGAGGA DGDGGGEAAA LWPVVGDPVL 910 AAAEGPLAGG WRCGVPVAWL AAAMERCCAV MRPAAPVPEA AGRAGDVSAT WTARRGSSNA GSSNSHGSGG 980 SSCKAQDVCN ALWAVAQLGL RPPRAWVLAV AAGALSSLPH EHPAPVLPPA GALPSPSGPH ASTIHHHQQQ 1050 QQQHYREQQP LQQPHHNGLA GPRRDGPHRG AASLPALSPP PLTPAPPTPP AAVATAAATA AAATGAATAA 1120 APPAPGAQRW RAGDVAGMMW ALAKLRVRPP PGQMLRLCRA AAGAAARGEL GEQHCANVLW ALAVLRYRPP 1190 PDVLRALGAR AAQLATRAAA GAAAARAGAG AGVAAAAGQG AARGGVEQEW TEHDVAGAGP QLVSTALWCC 1260 LRLGLPPGRG LLLPLLLRAAA AAAAATCSAA TAATPGSSGG GAGAPAAAAT AAATAAGRRM CPQSAALLLY 1330 CLARMRHLGW LDRLLLLQPP PQQPPQQLAA APVALAVAPL AAGAKGAAAA EESTATTGRL HLPVVPAPGG 1400 AAGSGGVTES AAERAAACCG GSCGDTTALL LAAAGLDIRA VLEAALRSVE EVEEDTSDCH GSSNSRSGSS 1470 SGSSNDAGSK SAMLGGGNAS SSTSTSSSTP SHSGRRINAA GGGAATGPAT APAAAAGGAR SSFPPRSLPV 1540 LLWSLSRLGC RPPEECMRRL LVHSVESLPL LSPHEAATLA SALVALRYAP PPLWLDRVEQ LLLLRRRAAAA 1610 AVAAARLAEQ LEQEEELEEA REEEGRWEEG QEEVECEAGA TGDWGRQARP TARVLLSNRA PSYVDVRQRR 1680 RRAAAALRHV ASALARLRRS LAALRAAAAA RQQAQQQQRQ 1720

FIGURE $4 \mid$ CCS2 is an OPR protein. (A) Amino acid sequence of the deduced CCS2 protein. Light gray text indicates the protein sequence that was fused to GFP for targeting experiments (Figure 6), light gray highlighting indicates OPRs recognized with p-values of at least $1 e^{-10}$, as shown in (B). The underlined portion indicates the location of the previously recognized "PPPEW" motif. The red arrows indicate the positions of internal HA tags that were introduced to test neutrality of the tag with respect to CCS2 function (see Materials and Methods). (B) MEME-generated distribution of OPR motifs within the Chlamydomonas OPR proteins that have been functionally characterized. Heights of blocks indicate relative proportion of the p-value $1 e^{-10}$. Red boxes represent motifs found by the MEME program while faded boxes represent motifs found by other programs within the MEME Suite. Sequences of Chlamydomonas OPR proteins CCS2 (KC292647), ASA2 (EDP00850.1), TBC2 (CAD20887.1), TDA1 (CCA62914.20), RAA1 (CAE53330.1), TAB1 (ADY68544.1), RAT2 (EDP02536.1), TAA1 (Cre06.g262650), RAA8 (Cre10.g440000), MCG1 (Cre10.g429400), MBl1 (Cre06.g272450), and Arabidopsis RAP (OAP08625.1) were used (see Supplementary Figure S1). (C) WebLogo consensus sequence of OPRs identified by the MEME program depicted in red in Figure 4B (Bailey and Elkan, 1994; Crooks et al., 2004). Letter height indicates the probability of a particular amino acid (y-axis) at a given position within the 38 amino acid repeat (x-axis). OPR sequences used to calculate this consensus sequence are found in Supplementary Figure S2.

FIGURE 5 | Immunodetection of CCS2-HA in whole cells. For (\mathbf{A}, \mathbf{B}), a cell wall minus ccs2-1 strain was transformed with plasmids carrying the 8.2 kb genomic fragment (CCS2), the 8.2 kb genomic fragment expressing HA tagged CCS2 (CCS2-HA), the CCS2 coding sequence under the PSAD promoter (CCS2 \uparrow), and HA tagged CCS2 coding sequence under the PSAD promoter (CCS2-HA \uparrow), respectively. One representative transformant, selected on minimal medium, was used for the analysis. (A) Ten-fold dilution series of algal cells on acetate containing ($0.6 \mu \mathrm{E} / \mathrm{m}^{2} / \mathrm{s}$) or minimal media $\left(50 \mu \mathrm{E} / \mathrm{m}^{2} / \mathrm{s}\right)$, incubated for 1 week at $25^{\circ} \mathrm{C}$. (B) Anti-HA immunodetection using whole cell extracts. The HA-tagged MCA1 strain is used as a control (Raynaud et al., 2007). MCA1 is a plastid-localized PPR protein (PPR for pentatricopeptide repeat). Black arrows indicate the two CCS2 species, gray arrows indicate the two MCA1 species. The lower bands correspond to the expected molecular mass for CCS2 ($\sim 176 \mathrm{kDa}$) and MCA1 ($\sim 105 \mathrm{kDa}$). The asterisk indicates the CCS2 species of high molecular weight that is detected in the ccs2 strain expressing CCS2-HA under its native promoter. Ponceau staining serves as a loading control.

Immunodetection of the CCS2 Protein

In order to detect CCS2 and assess its subcellular localization, a series of constructs expressing HA tagged proteins were engineered. The tagged proteins were either expressed under the control of the native CCS2 promoter or the PSAD promoter, which allows increased expression of Chlamydomonas genes (Fischer and Rochaix, 2001). We saw no difference in the ability of the two HA-tagged CCS2 constructs to complement the ccs2-1 mutation as compared to the WT gene (Figure 5A).

Immunoblotting analysis against whole cell extracts from transformants over-expressing CCS2-HA revealed that the protein occurs as two species, one of which appears to migrate at the expected size ($\simeq 176 \mathrm{kDa}$) (Figure 5B). A similar pattern was also seen in cells expressing HA-tagged MCA1, a PPR (PPR for pentatricopeptide repeat) protein with plastid localization (Raynaud et al., 2007; Boulouis et al., 2011). This suggests that the immunoreactive species with higher mobility may be a result of the extraction conditions and/or the denaturation step needed to immunodetect CCS2 (see Materials and Methods). Detection of CCS2-HA was only possible from freshly grown cultures when a cocktail of protease inhibitors was used immediately followed by denaturing at $70^{\circ} \mathrm{C}$ (instead of $100^{\circ} \mathrm{C}$), an indication that the protein is likely highly sensitive to proteolysis. Interestingly, Rahire et al. (2012) noted that the OPR protein TDA1 was also very susceptible to proteolysis.

The CCS2 Protein Localizes to the Plastid

A chloroplast targeting sequence is assigned by both ChloroP (Emanuelsson et al., 1999) and WoLF PSORT (Horton et al., 2007) at the N-terminus of CCS2, an indication that CCS2 might reside in the plastid. However, the extraction methods necessary for detection of CCS2-HA precluded the use of subcellular fractionation to determine protein localization. Hence, we tested the ability of the CCS2 2 -terminus to direct GFP to the plastid in a heterologous system such as N. benthamiana. This is justified, as targeting sequences from Chlamydomonas nuclear-encoded proteins retain their function as transit peptides for import into chloroplasts in several species of land plants including Nicotiana (Nakazato et al., 2003; Falciatore et al., 2005; Levitan et al., 2005; Li et al., 2016; Yamaoka et al., 2016). To this end, we constructed CCS2-GFP, which encoded a protein consisting of the first 100 amino acids of CCS2, including the putative targeting sequence, translationally fused to the amino-terminus of GFP. This CCS2-GFP expressing construct was introduced into N. benthamiana leaves. Fluorescence microscopy shows clear overlay of chlorophyll auto-fluorescence, which is a feature of the chloroplast, and GFP fluorescence (Figure 6). These results indicate that the first 100 amino acids of CCS2 are sufficient to target GFP to the chloroplast of N. benthamiana and hence the CCS2 protein is likely localized to the plastid of Chlamydomonas.

DISCUSSION

Identification of CCS2 as an OPR Protein Controlling Cytochrome c Assembly

Here, we have identified CCS2, a chloroplast localized cytochrome c assembly factor that, based on primary sequence similarity, appears to be unique to specific branches of the chlorophycean algae. This protein has been recognized as a member of the recently designated OPR family, which contains 43 members in Chlamydomonas (Eberhard et al., 2011). OPRs are defined by loosely conserved repeats of $38-40$ amino acids

FIGURE 6 | Localization of GFP to chloroplast via CCS2 N-terminal sequence. Top row ($\mathrm{N}_{\text {ter CCS2-GFP): imaging of a protoplast from Nicotiana benthamiana leaves }}$ transformed with the pGWB5/ccs2target plasmid expressing the first 100 amino acids of CCS2 fused to GFP. Bottom row (GFP-NLS/GFP-NES): imaging of a protoplast from N. benthamiana leaves transformed with the construct expressing a NLS-GFP/NES-GFP fusion protein shuttling between the nucleus and the cytosol via a nuclear localization signal (NLS) and a nuclear export signal (NES). DIC, differential interference contrast microscopy.
(Auchincloss et al., 2002; Eberhard et al., 2011; Rahire et al., 2012).

Via bioinformatics analysis, OPR proteins have been assigned to the ' α-solenoid' superfamily, which contains proteins defined by similar tandem repeats, such as TPRs (tetratricopeptide repeat, 34 amino acids) and PPRs (pentatricopeptide repeat, 35 amino acids) (Eberhard et al., 2011; Rahire et al., 2012). Three dimensional structure analyses of TPRs (Das et al., 1998; D'Andrea and Regan, 2003; Zeytuni and Zarivach, 2012) and PPRs (Ringel et al., 2011; Nakamura et al., 2012; Shen et al., 2016) indicate that these motifs result in a series of anti-parallel α-helices. Protein predictions using I-TASSER (Zhang, 2008; Roy et al., 2010) suggest that the OPR proteins are organized in a similar manner (Auchincloss et al., 2002; Eberhard et al., 2011; Rahire et al., 2012). I-TASSER also predicts regions of anti-parallel α-helices in CCS2 (not shown). TPR proteins act as scaffolds to mediate protein-protein interactions and control a wide range of cellular functions such as the cell cycle, transcription in the nucleus, or protein import into mitochondria and peroxisomes (D'Andrea and Regan, 2003). On the other hand, all the PPR proteins described so far were shown to be control maturation, stability, or translation of organellar RNAs, presumably via direct interaction with their target transcript(s) (Barkan and Small, 2014; Manna, 2015).

The PPR family has expanded greatly in the plant lineage, with 450 representatives in Arabidopsis alone, while the typical non-plant, eukaryotic genome encodes for fewer than 40 representatives (Barkan and Small, 2014; Manna, 2015). Similar to the PPR protein family expansion seen in land plants, chlorophycean algae have an expansion in the number of OPR containing proteins (Eberhard et al., 2011; Rahire et al., 2012). The majority of functionally characterized OPR proteins are involved in translation, maturation, or stability of transcripts in
the chloroplast of Chlamydomonas. For instance, TBC2, TDA1, and TAB1 are factors involved in the translation of the $p s b C$, $\operatorname{atp} A$, or $p s a B$ transcripts, respectively (Auchincloss et al., 2002; Eberhard et al., 2011; Rahire et al., 2012), while RAA1/RAA8 and RAT2 are involved in the maturation of $p s a A$ and $t s c A$ RNAs (Balczun et al., 2005; Merendino et al., 2006; Marx et al., 2015). In Arabidopsis, RAP is the sole OPR containing protein and loss of RAP function yields a defect in the maturation of the chloroplast 16S ribosomal RNA (Kleinknecht et al., 2014). Recent studies have uncovered the role of MCG1 and MBI1 in stabilizing the petG mRNA, encoding a small subunit of the cytochrome $b_{6} f$ complex and the $p s b I$ mRNA, coding for a small subunit of photosystem II, respectively (Wang et al., 2015).

If the role of most OPR containing proteins as transcriptinteracting factors was inferred from the phenotypic analysis of loss-of-function mutations, the demonstration that OPR motifs interact directly with their relevant target RNAs was only provided for TAB1 (Rahire et al., 2012). A recent study revealed that gain of function mutations in the OPR motifs of NCC1 and NCC2 confer an ability to recognize chloroplast transcripts as novel targets of action (Boulouis et al., 2015). This suggests that specific amino acids within these OPR motifs must govern nucleotide recognition, but the basis of this specificity still remains to be deciphered.

The molecular mass range of the functionally identified OPR proteins extends from 45 to 269 kDa with an average length of 1428 amino acids and 5-17 OPR motifs. These repeats are found primarily in the central regions of proteins while the carboxyland amino-termini are typically characterized by stretches of single amino acid repeats (Auchincloss et al., 2002; Merendino et al., 2006; Rahire et al., 2012). The OPR motifs themselves can be highly divergent, and so the repeat count per protein fluctuates depending on how stringently one defines a single OPR motif
(Figure 4B). This divergence is reflected in the fact that OPR repeats in CCS2 are characterized by a LWALAR consensus motif (Figure 4A) while repeats in TBC2, TDA1, and TAB1 contain a PPPEW sequence (Auchincloss et al., 2002; Eberhard et al., 2011; Rahire et al., 2012). While in some instances OPR motifs are serially repeated, the motifs can also be separated by gaps (Figure 4B), often by stretches of amino acids such as alanine. We noted the frequent occurrence of a poly-glutamine stretch upstream of the OPR motif in CCS2. Interestingly, glutamine-rich regions are known to form polar zippers involved in protein interaction but they have also been recognized as motifs for transcriptional activation (Courey and Tjian, 1988; Stott et al., 1995).

That CCS2 functions directly in the heme attachment reaction in the thylakoid lumen is very unlikely, considering its large size and the absence of a typical bipartite targeting sequence for luminal localization. Considering its inclusion in the OPR family, one possibility is that CCS2 controls the maturation, stability, or translation of a chloroplast transcript in the stroma involved in cytochrome c assembly. In the chloroplast genome, the $\operatorname{ccs} A$ gene encodes a heme delivery factor required for cytochrome c maturation (Xie and Merchant, 1996). While the level of ccsA transcript in the ccs2 mutants was previously shown to be unaltered, indicating that CCS2 is not required to stabilize the ccsA mRNA (Xie et al., 1998), the hypothesis that CCS2 is involved in the translation of $\operatorname{ccs} A$ remains plausible. Unfortunately, this was not tested due to the lack of an anti-CcsA antibody. Another likely scenario is that CCS2 functions like a TPR containing protein and mediates the assembly of protein complexes containing other CCS factors. The OPR family also includes ASA2 (ATP Synthase Associated protein), a subunit of the unusual mitochondrial ATP synthase, found only in chlorophycean algae (van Lis et al., 2007; Cano-Estrada et al., 2010) (Figure 4B). While a 200 kDa CCS complex containing $\operatorname{ccs} A(40 \mathrm{kDa})$ and $\operatorname{Ccs} 1(60 \mathrm{kDa})$ has been identified at the thylakoid membrane (Hamel et al., 2003), it is unlikely that the

REFERENCES

Allen, J. W., Sawyer, E. B., Ginger, M. L., Barker, P. D., and Ferguson, S. J. (2009). Variant c-type cytochromes as probes of the substrate specificity of the E. coli cytochrome c maturation (Ccm) apparatus. Biochem. J. 419, 177-184. doi: 10.1042/BJ20081999
Allen, J. W. A. (2011). Cytochrome c biogenesis in mitochondria - systems III and V. FEBS J. 278, 4198-4216. doi: 10.1111/j.1742-4658.2011.08231.x

Auchincloss, A. H., Zerges, W., Perron, K., Girard-Bascou, J., and Rochaix, J. D. (2002). Characterization of Tbc2, a nucleus-encoded factor specifically required for translation of the chloroplast psbC mRNA in Chlamydomonas reinhardtii. J. Cell Biol. 157, 953-962.

Bailey, T. L., and Elkan, C. (1994). Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2, 28-36.
Balczun, C., Bunse, A., Hahn, D., Bennoun, P., Nickelsen, J., and Kuck, U. (2005). Two adjacent nuclear genes are required for functional complementation of a chloroplast trans-splicing mutant from Chlamydomonas reinhardtii. Plant J. 43, 636-648.
Barkan, A., and Small, I. (2014). Pentatricopeptide repeat proteins in plants. Annu. Rev. Plant Biol. 65, 415-442. doi: 10.1146/annurev-arplant-050213-040159

170 kDa CCS2 is a component of this complex because of its large size. However, it is conceivable that CCS2 could stabilize the CCS complex via protein-protein interactions or facilitate the recruitment of the components of this complex on the stromal side of the thylakoid membrane.

AUTHOR CONTRIBUTIONS

SC executed the experiments, interpreted the data and wrote the manuscript; PH designed the experiments, interpreted the data and wrote the manuscript; IL executed experiments.

FUNDING

This work was primarily supported by a National Science Foundation grant (MCB-0920062) and a U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) grant (DE-SC0014562) to PH.

ACKNOWLEDGMENTS

We thank Dr. Meier for the gift of the GFP-NLS-GFP-NES expressing construct and Dr. Zhou for technical help with the microscopy experiments. We also wish to thank Dr. O. Vallon for scientific discussion on the OPR proteins and Dr. R. Lamb for her comments on the manuscript. PH thanks Sabeeha Merchant in whose laboratory the project was initiated.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fpls.2017.01306/ full\#supplementary-material

Beckett, C. S., Loughman, J. A., Karberg, K. A., Donato, G. M., Goldman, W. E., and Kranz, R. G. (2000). Four genes are required for the System II cytochrome c biogenesis pathway in Bordetella pertussis, a unique bacterial model. Mol. Microbiol. 38, 465-481.
Bonnard, G., Corvest, V., Meyer, E. H., and Hamel, P. P. (2010). Redox processes controlling the biogenesis of c-type cytochromes. Antioxid. Redox Signal. 13, 1385-1401. doi: 10.1089/ars.2010.3161
Boulouis, A., Drapier, D., Razafimanantsoa, H., Wostrikoff, K., Tourasse, N. J., Pascal, K., et al. (2015). Spontaneous dominant mutations in chlamydomonas highlight ongoing evolution by gene diversification. Plant Cell 27, 984-1001. doi: 10.1105/tpc.15.00010
Boulouis, A., Raynaud, C., Bujaldon, S., Aznar, A., Wollman, F. A., and Choquet, Y. (2011). The nucleus-encoded trans-acting factor MCA1 plays a critical role in the regulation of cytochrome f synthesis in Chlamydomonas chloroplasts. Plant Cell 23, 333-349. doi: 10.1105/tpc.110.078170
Bowman, S. E. J., and Bren, K. L. (2008). The chemistry and biochemistry of heme c: functional bases for covalent attachment. Nat. Prod. Rep. 25, 1118-1130. doi: 10.1039/b717196j
Cano-Estrada, A., Vázquez-Acevedo, M., Villavicencio-Queijeiro, A., FigueroaMartínez, F., Miranda-Astudillo, H., Cordeiro, Y., et al. (2010). Subunit-subunit interactions and overall topology of the dimeric mitochondrial ATP synthase of

Polytomella sp. Biochim. Biophys. Acta 1797, 1439-1448. doi: 10.1016/j.bbabio. 2010.02.024

Cha, H. J., Dalal, N. G., Pham, M.-Q., Kramer, S. F., Vakharia, V. N., and Bentley, W. E. (2002). Increased efficiency of cloning large DNA fragments using a lower copy number plasmid. Biotechniques 32, 992-998.
Courey, A. J., and Tjian, R. (1988). Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell 55, 887-898.
Crooks, G. E., Hon, G., Chandonia, J. M., and Brenner, S. E. (2004). WebLogo: a sequence logo generator. Genome Res. 14, 1188-1190.
D'Andrea, L. D., and Regan, L. (2003). TPR proteins: the versatile helix. Trends Biochem. Sci. 28, 655-662.
Das, A. K., Cohen, P. W., and Barford, D. (1998). The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPRmediated protein-protein interactions. EMBO J. 17, 1192-1199.
de Vitry, C. (2011). Cytochrome c maturation system on the negative side of bioenergetic membranes: CCB or System IV. FEBS J. 278, 4189-4197. doi: 10.1111/j.1742-4658.2011.08373.x
Dreyfuss, B. W., Hamel, P. P., Nakamoto, S. S., and Merchant, S. (2003). Functional analysis of a divergent System II protein, Ccs1, involved in c-type cytochrome biogenesis. J. Biol. Chem. 278, 2604-2613.
Eberhard, S., Loiselay, C., Drapier, D., Bujaldon, S., Girard-Bascou, J., Kuras, R., et al. (2011). Dual functions of the nucleus-encoded factor TDA1 in trapping and translation activation of atpA transcripts in Chlamydomonas reinhardtii chloroplasts. Plant J. 67, 1055-1066. doi: 10.1111/j.1365-313X.2011. 04657.x

Emanuelsson, O., Nielsen, H., and von Heijne, G. (1999). ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci. 8, 978-984.
Falciatore, A., Merendino, L., Barneche, F., Ceol, M., Meskauskiene, R., Apel, K., et al. (2005). The FLP proteins act as regulators of chlorophyll synthesis in response to light and plastid signals in Chlamydomonas. Genes Dev. 19, 176-187. doi: 10.1101/gad. 321305
Feissner, R. E., Beckett, C. S., Loughman, J. A., and Kranz, R. G. (2005). Mutations in cytochrome assembly and periplasmic redox pathways in Bordetella pertussis. J. Bacteriol. 187, 3941-3949.

Fischer, N., and Rochaix, J. D. (2001). The flanking regions of PsaD drive efficient gene expression in the nucleus of the green alga Chlamydomonas reinhardtii. Mol. Genet. Genomics 265, 888-894.
Frawley, E. R., and Kranz, R. G. (2009). CcsBA is a cytochrome c synthetase that also functions in heme transport. Proc. Natl. Acad. Sci. U.S.A. 106, 10201-10206. doi: 10.1073/pnas. 0903132106
Gabilly, S. T., and Hamel, P. P. (2017). Maturation of plastid c-type cytochromes. Front. Plant Sci. 8:1313. doi: 10.3389/fpls.2017.01313
Gabilly, S. T., Dreyfuss, B. W., Karamoko, M., Corvest, V., Kropat, J., Page, M. D., et al. (2010). CCS5, a thioredoxin-like protein involved in the assembly of plastid c-type cytochromes. J. Biol. Chem. 285, 29738-29749. doi: 10.1074/jbc. M109.099069
Gabilly, S. T., Kropat, J., Karamoko, M., Page, M. D., Nakamoto, S. S., Merchant, S. S., et al. (2011). A novel component of the disulfide-reducing pathway required for cytochrome c assembly in plastids. Genetics 187, 793-802. doi: 10.1534/genetics.110.125369
Hamel, P., Corvest, V., Giege, P., and Bonnard, G. (2009). Biochemical requirements for the maturation of mitochondrial c-type cytochromes. Biochim. Biophys. Acta 1793, 125-138. doi: 10.1016/j.bbamcr.2008. 06.017

Hamel, P. P., Dreyfuss, B. W., Xie, Z., Gabilly, S. T., and Merchant, S. (2003). Essential histidine and tryptophan residues in CcsA, a System II polytopic cytochrome c biogenesis protein. J. Biol. Chem. 278, 2593-2603.
Harris, E. H. (1989). The Chlamydomonas Sourcebook: A Comprehensive Guide to Biology and Laboratory Use. San Diego, CA: Academic Press.
Horton, P., Park, K. J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C. J., et al. (2007). WoLF PSORT: protein localization predictor. Nucleic Acids Res. 35, W585-W587.
Howe, G., and Merchant, S. (1992). The biosynthesis of membrane and soluble plastidic c-type cytochromes of Chlamydomonas reinhardtii is dependent on multiple common gene products. EMBO J. 11, 2789-2801.

Howe, G., and Merchant, S. (1993). Maturation of thylakoid lumen proteins proceeds post-translationally through an intermediate in vivo. Proc. Natl. Acad. Sci. U.S.A. 90, 1862-1866.
Howe, G., and Merchant, S. (1994). Role of heme in the biosynthesis of cytochrome c6. J. Biol. Chem. 269, 5824-5832.
Inoue, K., Dreyfuss, B. W., Kindle, K. L., Stern, D. B., Merchant, S., and Sodeinde, O. A. (1997). CCS1, a nuclear gene required for the post-translational assembly of chloroplast c-type cytochromes. J. Biol. Chem. 272, 31747-31754.
Karamoko, M., Gabilly, S. T., and Hamel, P. P. (2013). Operation of trans-thylakoid thiol-metabolizing pathways in photosynthesis. Front. Plant Sci. 4:476. doi: $10.3389 /$ fpls. 2013.00476
Karimi, M., Inze, D., and Depicker, A. (2002). GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7, 193-195.
Kleinknecht, L., Wang, F., Stube, R., Philippar, K., Nickelsen, J., and Bohne, A. V. (2014). RAP, the sole octotricopeptide repeat protein in Arabidopsis, is required for chloroplast 16 S rRNA maturation. Plant Cell 26, 777-787. doi: 10.1105/tpc. 114.122853

Kranz, R. G., Richard-Fogal, C., Taylor, J.-S., and Frawley, E. R. (2009). Cytochrome c biogenesis: mechanisms for covalent modifications and trafficking of heme and for heme-iron redox control. Microbiol. Mol. Biol. Rev. 73, 510-528. doi: $10.1128 / \mathrm{mmbr}$.00001-09
Kurvari, V., Grishin, N. V., and Snell, W. J. (1998). A gamete-specific, sex-limited homeodomain protein in Chlamydomonas. J. Cell Biol. 143, 1971-1980.
Le Brun, N. E., Bengtsson, J., and Hederstedt, L. (2000). Genes required for cytochrome c synthesis in Bacillus subtilis. Mol. Microbiol. 36, 638-650.
Levitan, A., Trebitsh, T., Kiss, V., Pereg, Y., Dangoor, I., and Danon, A. (2005). Dual targeting of the protein disulfide isomerase RB60 to the chloroplast and the endoplasmic reticulum. Proc. Natl. Acad. Sci. U.S.A. 102, 6225-6230. doi: 10.1073/pnas. 0500676102
Li, Z., Peers, G., Dent, R. M., Bai, Y., Yang, S. Y., Apel, W., et al. (2016). Evolution of an atypical de-epoxidase for photoprotection in the green lineage. Nat. Plants 2:16140. doi: 10.1038/nplants.2016.140
Manna, S. (2015). An overview of pentatricopeptide repeat proteins and their applications. Biochimie 113, 93-99. doi: 10.1016/j.biochi.2015.04.004
Marx, C., Wünsch, C., and Kück, U. (2015). The octatricopeptide repeat protein Raa8 is required for chloroplast trans splicing. Eukaryot. Cell 14, 998-1005. doi: 10.1128/ec.00096-15
Mavridou, D. A. I., Ferguson, S. J., and Stevens, J. M. (2013). Cytochrome c assembly. IUBMB Life 65, 209-216. doi: 10.1002/iub. 1123
Merendino, L., Perron, K., Rahire, M., Howald, I., Rochaix, J. D., and GoldschmidtClermont, M. (2006). A novel multifunctional factor involved in trans-splicing of chloroplast introns in Chlamydomonas. Nucleic Acids Res. 34, 262-274.
Nakagawa, T., Kurose, T., Hino, T., Tanaka, K., Kawamukai, M., Niwa, Y., et al. (2007). Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J. Biosci. Bioeng. 104, 34-41.
Nakamura, T., Yagi, Y., and Kobayashi, K. (2012). Mechanistic insight into pentatricopeptide repeat proteins as sequence-specific RNA-binding proteins for organellar RNAs in plants. Plant Cell Physiol. 53, 1171-1179. doi: 10.1093/ pcp/pcs069
Nakazato, E., Fukuzawa, H., Tabata, S., Takahashi, H., and Tanaka, K. (2003). Identification and expression analysis of cDNA encoding a chloroplast recombination protein REC1, the chloroplast RecA homologue in Chlamydomonas reinhardtii. Biosci. Biotechnol. Biochem. 67, 2608-2613. doi: 10.1271/bbb.67.2608
Page, M. L. D., Hamel, P. P., Gabilly, S. T., Zegzouti, H., Perea, J. V., Alonso, J. M., et al. (2004). A homolog of prokaryotic thiol disulfide transporter CcdA is required for the assembly of the cytochrome $b_{6} f$ complex in Arabidopsis chloroplasts. J. Biol. Chem. 279, 32474-32482. doi: 10.1074/jbc.M404285200
Pollock, S. V., Prout, D. L., Godfrey, A. C., Lemaire, S. D., and Moroney, J. V. (2004). The Chlamydomonas reinhardtii proteins Ccp1 and Ccp2 are required for long-term growth, but are not necessary for efficient photosynthesis, in a low- CO_{2} environment. Plant Mol. Biol. 56, 125-132.
Purton, S., and Rochaix, J. D. (1994). Complementation of a Chlamydomonas reinhardtii mutant using a genomic cosmid library. Plant Mol. Biol. 24, 533-537.
Quinn, J. M., and Merchant, S. (1998). Copper-responsive gene expression during adaptation to copper deficiency. Methods Enzymol. 297, 263-279.

Rahire, M., Laroche, F., Cerutti, L., and Rochaix, J. D. (2012). Identification of an OPR protein involved in the translation initiation of the PsaB subunit of photosystem I. Plant J. 72, 652-661. doi: 10.1111/j.1365-313X.2012. 05111.x

Raynaud, C., Loiselay, C., Wostrikoff, K., Kuras, R., Girard-Bascou, J., Wollman, F. A., et al. (2007). Evidence for regulatory function of nucleus-encoded factors on mRNA stabilization and translation in the chloroplast. Proc. Natl. Acad. Sci. U.S.A. 104, 9093-9098.

Ringel, R., Sologub, M., Morozov, Y. I., Litonin, D., Cramer, P., and Temiakov, D. (2011). Structure of human mitochondrial RNA polymerase. Nature 478, 269-273. doi: 10.1038/nature10435
Roy, A., Kucukural, A., and Zhang, Y. (2010). I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 5, 725-738. doi: $10.1038 /$ nprot. 2010.5
Sanders, C., Turkarslan, S., Lee, D.-W., and Daldal, F. (2010). Cytochrome c biogenesis: the Ccm system. Trends Microbiol. 18, 266-274. doi: 10.1016/j.tim. 2010.03.006

Shen, C., Zhang, D., Guan, Z., Liu, Y., Yang, Z., Yang, Y., et al. (2016). Structural basis for specific single-stranded RNA recognition by designer pentatricopeptide repeat proteins. Nat. Commun. 7:11285. doi: 10.1038/ ncomms11285
Shimogawara, K., Fujiwara, S., Grossman, A., and Usuda, H. (1998). Highefficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics 148, 1821-1828.
Simon, J., and Hederstedt, L. (2011). Composition and function of cytochrome c biogenesis System II. FEBS J. 278, 4179-4188. doi: 10.1111/j.1742-4658.2011. 08374.x

Stott, K., Blackburn, J. M., Butler, P. J., and Perutz, M. (1995). Incorporation of glutamine repeats makes protein oligomerize: implications for neurodegenerative diseases. Proc. Natl. Acad. Sci. U.S.A. 92, 6509-6513.
Thony-Meyer, L. (1997). Biogenesis of respiratory cytochromes in bacteria. Microbiol. Mol. Biol. Rev. 61, 337-376.
van Lis, R., Mendoza-Hernandez, G., Groth, G., and Atteia, A. (2007). New insights into the unique structure of the F0F1-ATP synthase from the chlamydomonad algae Polytomella sp. and Chlamydomonas reinhardtii. Plant Physiol. 144, 1190-1199.

Verissimo, A. F., and Daldal, F. (2014). Cytochrome c biogenesis System I: an intricate process catalyzed by a maturase supercomplex? Biochim. Biophys. Acta 1837, 989-998. doi: 10.1016/j.bbabio.2014.03.003
Wang, F., Johnson, X., Cavaiuolo, M., Bohne, A. V., Nickelsen, J., and Vallon, O. (2015). Two Chlamydomonas OPR proteins stabilize chloroplast mRNAs encoding small subunits of photosystem II and cytochrome b_{6} f. Plant J. 82, 861-873. doi: 10.1111/tpj. 12858
Xie, Z., Culler, D., Dreyfuss, B. W., Kuras, R., Wollman, F. A., Girard-Bascou, J., et al. (1998). Genetic analysis of chloroplast c-type cytochrome assembly in Chlamydomonas reinhardtii: one chloroplast locus and at least four nuclear loci are required for heme attachment. Genetics 148, 681-692.
Xie, Z., and Merchant, S. (1996). The plastid-encoded $\operatorname{ccs} A$ gene is required for heme attachment to chloroplast c-type cytochromes. J. Biol. Chem. 271, 4632-4639.
Yamaoka, Y., Achard, D., Jang, S., Legéret, B., Kamisuki, S., Ko, D., et al. (2016). Identification of a Chlamydomonas plastidial 2-lysophosphatidic acid acyltransferase and its use to engineer microalgae with increased oil content. Plant Biotechnol. J. 14, 2158-2167. doi: 10.1111/pbi. 12572
Zeytuni, N., and Zarivach, R. (2012). Structural and functional discussion of the tetra-trico-peptide repeat, a protein interaction module. Structure 20, 397-405. doi: 10.1016/j.str.2012.01.006
Zhang, H., Herman, P. L., and Weeks, D. P. (1994). Gene isolation through genomic complementation using an indexed library of Chlamydomonas reinhardtii DNA. Plant Mol. Biol. 24, 663-672.
Zhang, Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40. doi: 10.1186/1471-2105-9-40

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Cline, Laughbaum and Hamel. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Table S1. Primers used within the context of this study.

Primer Name	Sequence
CCS2.69	TACTGCTACAACCGGGCGGCTTC
CCS2.66TP	CAGCTACAGCATTGCTATTGCTAC
CCS2.19	ACTGCGCCAACGTGCT
CCS2.54	GCTATGACTGGGCGTGCTAC
CCS2.21	GCCGGCAGTAGCAACAGT
CCS2.18	GTCCACTCCTGCTCCACAC
CCS2.79	GCACCTGTCGGTGGCGAC
CCS2.02	CGTTGGTGGTGCAGGTGTAA
CCS2.27	ATGCCGACTACAGCCAATG
CCS2.28	AGCGTCGCCAGCGCATGAAGC
CCS2.51	CAACCGCAGCAGCTTGAGTT
CCS2.26	CGGCCTGTGTGTGAGATG
CCS2.81ATG	ATGCTCGCTCCACACAGCGCGAC
CCS2.70	GGCACTGCAAACCACCCGACCTG
CCS2.11	CACCATGCTTGCTCCTCATTCTGC
CCS2.t2	AGACTTATCAGATCCTTGTTG
10aa-F	CACCATGGCAGTACTTGGAGGTCTTGCTGCACTT
10aa-R	AAGTGCAGCAAGACCTCCAAGTACTGCCATGGTG
CCS2-HA_BsiWI-F	CGCCTCTGGCGTACATCAACGTTACCCATACGAATGTTCCAGATTAC
CCS2-HA_BsiWI-R	GAGCAACAGGGCGCCGTACGGGCGTAATCTGGAACATCGTATGGG
CCS2_HA_BspEI-F	GTTGCTGTCGGCACAGCACGTTACCCATACGATGTTCCAGATTAC
CCS2_HA_BspEI-R	GTCGGTCCGAGCTGCTCCGGAGCGTAATCTGGAACATCGTATGGG
CCS2-PshAI.R	GAACGAGGTGCTTGAGGGACAC
CCS2-BsiWI.F	TGTTGAGCAACAGGGCGCCGTAC
CCS2-XcmI.F	GAGGCGGCGGGCACCATCCT
CCS2-XcmI.R	CAGTCAGTCGTGTGCCAGATG
8.PROM-f	ATCCTAGATCTATTAATTAATGCTCGAGCACACACCTGCC
8.PROM-r	GTGTGGAGCGAGCATCCTCGATGGGCTTGTTGTGAGTAGC
8.3xHA-f	GCAGCAGCAGCAGCGGCAGTGGGAATTCTACCCCTACGAC
8.3xHA-r	CACTAGTAATTTAAATTCTAGCTAGCGGCGTAGTCGGGCAC
SG1	CCACTATCGACTACGCGATCATGG
PH3	GGAGTCCCGGGATGGATTAAGG
CCS2.69	TACTGCTACAACCGGGCGGCTTC

Figure S1. OPR protein sequences used for the creation of Figure 4B.
>TDA1 (CCA62914.20)
MLSRASASLFAACGPQNADNCLTPSPSSSLLQPARSALASRLNSASGRRSPAFFVTTGLRSRVIL ASCSLRQPGPPEDANSDSSPHPPAAQPSTPPDVPGGTARARSTHLGGTGLGDGPLSGPDAVPAPH QSSSNSGIGGSGGSSGSSGRPVDNSSTGSSGSAAGSEASSSTPTSASPDSGPQTMSSTGSGAEGS SVAGGSPHQAVPPAAAAGRPYLNGHAGPSAMAPGGEADGAAADDRPGVGPSSLPPLRLDFLDLWA KMQMPPQDGPAFGGSGWQLGQPPASTPSPSSASSPSARSGPSPAGGGADKTAGRYPRSSGGGASG GRRRRESATRSRDERARQLVLAAKTLVQLRLVVERHLPDMGPGTAALALSRLAGLAAATQRLRRA QQEPQLPQTQSQQQPLPSGVVASAPVQEQQQADGVGPLADPSAAAGEAPSASMPGAAPSAPTASA AVQLPPGTLQVELPATASTSAATGAAIGTVDEDDDSDMDNVEGGAVGVKPGGRAAADGGARVPRS SLRLMRRMLYHIAASVAPDLYASPPQEAAAATASASIASTSTRDRTATSSTSTSTSSYHVGRGRF SPPEHRAKLAGSVLAAMARAGLRPDAEDSRALSALLEASRPDLFLATPAQLCRLASSLPLLRLAP SSRWLDHFAAVSRSKMYAASPLQLAAYVWALARLGYHPGDLWLYSLTQQLSRDGRLAAASAGQLC EVLWALHRLGFSPDPDWRAQAAEAVAFVAAREVRSVGGGGGGASRSGGAPADMEAEEESIQDGSW

SAVSGDSGSRGGPMASGTRPDTHGATGAATQWSAAGSAGGLSGGFGGGNTAAEMCSLLLWAVRTG TAPASAAMEACLDRLQPHLRGLRRVHLLRLLLALAESGHRPREELMARVLGCLQPKLASMSATHL TQALVSISQLRFVPPQSWLMAFLCASRAQLRHYTPAHVTATYQVFAGWQLRPPRSYLEALHTYMD GLLPGFNAKGLATVLQSMASLGIKPQRRWLLRALEALADCGARGIAAGSGAVLAEQFRSGQQPVQ QVAGAGVAAAGAAPLGEEVAATAPRAGLSAAQQQHQLRQQQRAALATSLVIALCSLRGVVQLEAQ TQAQQEASDEAKQAPTATAQESLDASEVAASVAAAANTDGPTAAAAPAAASLLPYELWPGVKAVA DVSRELLDAMSGPQLARLVSALARVNFYPGREFLAAHSRATARAGAQLLPEDKEAVAGCYSRLAA LAPLMASEARRQAELRQARTAVLVADPWAGA
>CCS2 (KC292647)
MLAPHSATLPPRCTCHSHGLAQLQTSVLRPSTGYGAQQAVARPRPDASMQASAEPGDSANATDPQ LDHTQHLRRRSTAAVPPPRAWAPFPPASQQGSDKSPAPAPAPAPASAPAPAPTATLPPADSSCTA PGRRRHSGYGASVPVSVSVFATPVAVGPAPAAPEPGTVQDQSSGALLLPLPATHPAAATATAASR RRSRRGGGRRAAAAHQGQQLGRCSGDGEGESAAEGDAGEPEAGEEPGVVLVPVWEGQPWQQPRRH GAAQYSEQQRHRQQQELHPVAAFAPAAADATVAVGTARPEQLGPTWGAAAAAAAEADVIRVAVPA DASRLASAVPRPRLQQPQPQPQQLELDLVYSRRRAGDLSEAGVAEQGLCGVAPAREAAAAAAAVA AVAAGRVVCSAAGGGPTATGHAERPPLGPRRSMPAGTPAGAAAGVGRGGRPGAHTATAAATATAV APMVETAGNCTQEVERAESREPGGTGYATAGDTGGRAWGGSGSSDGPRGWRLRDEPGGAAPAALS FRSVGKGRAAAGAAEAAAARQLMRQLMACRDWRELYEVISPCLGGTTARAAAAAATEGAVAEAGA TATAMPTTANALHITAALNQLASMQLPPPQGTAAATAAAGQGAVAVAGAGAAATAAAEVQELLVR LEAAYRAHLMAAWAPAGISHTGRGGSSSSSSSSSSGSNAVPFARPGPSAHAAAAASSPSLAAAGS GSGSGMGTGAEPRLGPRQLATCLGALARLRARGWHVASERRLLHLSVATAARWRLSAFPPQELTT LLHALATLGHRPSGDWMAAAAGAVAAAAAGGSMS PRQLSTTMWALAVLRQRPSRALMAAWALASL QTMAHASAYDVSQSLWAVAKLHRDAVMDAAAAAEAGGGGGGAGGADGDGGGEAAALWPVVGDPVL AAAEGPLAGGWRCGVPVAWLAAAMERCCAVMRPAAPVPEAAGRAGDVSATWTARRGSSNAGSSNS HGSGGSSCKAQDVCNALWAVAQLGLRPPRAWVLAVAAGALSSLPHEHPAPVLPPAGALPSPSGPH ASTIHHHQQQQQQHYREQQPLQQPHHNGLAGPRRDGPHRGAASLPALSPPPLTPAPPTPPAAVAT AAATAAAATGAATAAAPPAPGAQRWRAGDVAGMMWALAKLRVRPPPGQMLRLCRAAAGAAARGEL GEQHCANVLWALAVLRYRPPPDVLRALGARAAQLATRAAAGAAAARAGAGAGVAAAAGQGAARGG VEQEWTEHDVAGAGPQLVSTALWCCLRLGLPPGRGLLLPLLRAAAAAAAATCSAATAATPGSSGG GAGAPAAAATAAATAAGRRMCPQSAALLLYCLARMRHLGWLDRLLLLQPPPQQPPQQLAAAPVAL AVAPLAAGAKGAAAAEESTATTGRLHLPVVPAPGGAAGSGGVTESAAERAAACCGGSCGDTTALL LAAAGLDIRAVLEAALRSVEEVEEDTSDCHGSSNSRSGSSSGSSNDAGSKSAMLGGGNASSSTST SSSTPSHSGRRINAAGGGAATGPATAPAAAAGGARSSFPPRSLPVLLWSLSRLGCRPPEECMRRL LVHSVESLPLLSPHEAATLASALVALRYAPPPLWLDRVEQLLLRRRAAAAAVAAARLAEQLEQEE ELEEAREEEGRWEEGQEEVECEAGATGDWGRQARPTARVLLSNRAPSYVDVRQRRRRAAAALRHV ASALARLRRSLAALRAAAAARQQAQQQQRQ
>TBC2 (CAD20887.1)
MLPLEHKASGRVQATGRGVRASVELSSVLPQQRAAQLQHQKCNTGARLGRDPRRGVDAERTLVCT AATTASVPSTSGASPSGSQLSSKALRPRRFSAPVIARLLRSTTTVQELADLVQQQSLYMDSSHVG IAMLHLALLVSRAEQQAAAQLQLQLAAKQAATRRAGSGASTSGRARGWGSGPGRNGSGSSSVSVN GSGSSSNGSSSSSSSLAMGMQLSMAS IGDDVVSGVNAGPVPSGGADALLDLEMSSILDDDDGAGA RQLQQMSDDLAAGLEAAATTTAAPEAGVAAAGGTGAGAAADAAASSSAPSLVAAAAAAAAAAASP ASSPDVARTLRTLLSRAFSLGLDSLSGPQLAAVFTGLAVLRRPRQQQQQQQQAGAAGAGANAGAG GVGGVGVSAGDRLVAEQLLAAMGPKLYECRPQDLANTLASVALLGLPPDADLRTSFYAAVRQQQR RFGPRELATTLWAYGAMGTYVQEDAVQLVLELSRARLTSFSPLQLAKAVQGLAALRYRPSPEWVE AYCSVLRPALRRMSSRELCAVLLALASLQVGLDGGTRAALLVHTFSGPLPGMAPGEVALSLWALG RLSAVDMDLPALIDLDMSGRVLDLTSRLLAAGGFSGGELQQLLEGLTRLALQPPLEWMQAFVAAL QPQLDKLDAQQLAGVLNSLAAQQYRPQPQMQEVVLAATQANMKQLLADTTCSAALLTALRRLNIE PPPGWVGALLEESRSALKNRCTDLHLANLAGSLAAWGVRPDGRWAARLMWRSQVLMNEDRMSPRA LVALLQAMVSLGLSPNPVWTQLCLQAAVRRASQPAFEPHHYGTLMASLHALGIQPPQEWLTRMLL

STYRCWDRFSVTHWSSLLPALVLLKARPPREWLRRFEATSAARLADCSALQLLTLAVSLAQLHQL HAAGAVADTPLLLPGAAAAAAAAAPAGASSAAAAGDSPAALSAVPAAAGDGALVPSFMSIDDDGT AAVAAAATALAAAEPAAHAATSTTTATAVAHPQPQLLPQAQALPQPGPEWQAAWWAASTRLLLRV RYAPSELVLTAGWLGSLGLRPPPEWLQACAEVAARYSKVMDAAERQQLAAAVAPLALEAVAPPSA PPAGAASTAH
>RAA1 (CAE53330.1)
MRRHPTCGIATPQAYGVAWPRLPPVAPRPASGQLPPRCRRAVLCAARRPAGGTRAASGADAGGSA GEGEGATAAADSHGTRSRPTGLEGRSASGSAVPAGIGGGAGSDSDGDAESAQRSGPRRRGRPPGM RQTMAVAPPTPNAGSAPATALAASSAVQQTVGQAANSPGSGSDGEGSGLATRRRGRPRRSTADAS GGGCSIGGSTRAVTSAADYEAASAAAAPMPGMPLASGRAEPQPQPQPQSQPQLQQQTEAGGSTAT APGGAGAGSSGSGSTQRDGRSGAGGGAGGPLSRLLRSQRSRAMGGVGGAAPNATMPGGAAPPGDD SLQFASPMSSFEPAPERSSESDTEGGAVGRSGGATSRRQTPPPPDPQPPHQQAPPQQQQQPPDAA GAASAGSMASTDWMLGSMLEDGEAGSGLAFGSPGGASSGSDQDFIITADLDVVGSTAPPLNLDLS DLDWGDDTGAGGGWGWGDASTGGSAGSAMGALDGVGVGLGAATSGIIGIWGGDASASAAVAGDAS ALGQTPGSAAAALDSWPGVLQDDEAPQPQQPQQPQPQQPQQAPQAPQAPQALQTPQALQAPQGRP PVLLKGPAAESGPSRPVPAGDGGGAEATQSGSRMDSHPHPGLDSDFDLVSSYDAEMSYPDAVDCL LPEGVAAAAAAAGAGAPGGGGWSEGVLDSMADAGLPDLSYSGSGGGSGSGGGGGSSEGGKDSAHE ARLPVAVAGAGRAPVASSSTPIAAAPAVPATAPAAAVPAPAAAKAAAGAAKAATGAAKGGAQAAS GSSGSSSGSSIDGSSRTAAAFAELLAGGSSAHGAGRADPLVQRLARVLSYVESELLGAPEEAAAA AADAAAELPGVSLPPLPRPLVPAAAQPLELFAEPPATARLLAAAEAAEAGGLAAPPRQVEAPPSA DEWALLGGAAPASAASAASAASAASAAGTSRAGPGRYGGGAGYEDDTDGGSSWEREREREGDGEA DFERRLEAGPAYVAYLRAVVLGGLGGDSGGGSGGGGGGGRGGGGPVQAGAVQAALLEQVEAAGDW LQLCWLLEAAAAQGVALGPRAAAAAFKQAAGLVAPQGALPRSLAAATTTATTSGLEAAAYRQLCD RLAAAGVAALGTSVSAAASTHTAARAAGGRASTSRRGVPPGITAGGRGGGGGGAGSHVSAASGSD VAQISYGMGALQITCPQLYGAVLHVSASQLAALTARRRAAASLTAAAAAALRRSAAAVPTDSAGR GGGGGGDGVRRVSDRE IMMAAAAASSAVQPNHASELPPQQLQQQQQQQATSGRGPLSGSAATAKS ALTAAAGGVWTAADLAALAWGVANAYAGSAAAVAASAAATADSCATASKAQRQQRQQRQPQQPPR PPKHRQLQGTQQPQPQPPLPLPVPGGDWLRSLVGASYELMATEGGGGGGGGGVGPRQLWGLAWSF ARLGYAPSQEWMLALLSRAEACLSQFDTEGLCRLLWALAAMDYVPERLWLRAVAGQLQARARDFT PDQVVTLHCALARLGYAPRPEVCVALHAAAARLMPLMTGPQLAALAHAAASFARWRPGPGFLVAA ASATGGAAAPVPSASSPAAAVQMPAGLLMALATRVLVGMRQATTEAAAVASSPAGGEAGAWAQPQ PQPTALAAAAVDGSDLSMALWALALLRRQQQQQQQQPAADVLQLMPEWLAAWWAAAAEPAVAATF DATCVSQSLWALAELRETPGLPHSGAAAAAAAAASGGAASSTYADAARDAGQQAAAQAAAGAVAA LLAALVPQLGQAATADLSTTIAALADLQYRPSDQWMALFTAEARRRLGTATATATATGTATTAAT ATNEDHGLIAYGLAVLGWPLSEAWVQELAAGGYRAMAGASGEGLALLLWGLSARGWSTASGRFWD TVFRESGSKWDSCGPRGAVLLYCAVADMMPPGQEPPIPWQRQLVKALRLRVRPRPRTALLLPAAL RTAAGGCLGPLTRAERQQLWQAGAAAAAARAAGGGAGGIGLVLGAEAYTAVPGSGLAGAVWWSAL PQPHPRPPSLPGVKGWAWPQGGPQGSGADEVQDPEEVGVLASRVLLPCELCEPEEHPALAAAVAE GRSWWAHDVAAELARRWGLVRWS
>RAP (OAP08625.1)
MECVVPFRRCFCLNPPETRHRIVNHNHRNLHISLSSSSFASGILPLSNKKYRFVGPLAQRSSLHR RTDSLKHLPFSVNASVIGNSEEEVEEEDDDGDWEAEFLGEIDPLDIQPPKKRKKQKNSKALEDTE GMDWCVRARKIALKSIEARGLSSRMAEVMPLKKKKKKKSKKVIVKKDKVKSKSIPEDDFDTEDED LDFEDGFVEDKMGDLRKRVSSLAGGMFEEKKEKMKEQLAQRLSQFSGPSDRMKEINLNKAIIEAQ TAEEVLEVTAETIMAVAKGLSPSPLSPLNIATALHRIAKNMEKVSMMRTRRLAFARQREMSMLVA LAMTCLPECSAQGISNISWALSKIGGELLYLTEMDRVAEVATSKVGEFNSQNVANIAGAFASMRH SAPELFAELSKRASTIINTFKGQEIAQLLWSFASLYEPADPLLESLDSAFKSSDQFKCYLTKEIT NSDEVVDAEVSDDVSRSPALSFNRDQLGNIAWSYAVLGQVERPFFANIWNTLTTLEEQRLSEQYR EDVMFASQVYLVNQCLKLECPHLQLSLCQELEEKISRAGKTKRFNQKITSSFQKEVGRLLISTGL

DWAKEHDVDGYTVDVALVEKKVALEIDGPTHFSRNSGLPLGHTMLKRRYVAAAGWKVVSLSLQEW EEHEGSHEQLEYLREILTGCI
>MCG1 (Cre10.g429400)
MRTTGWATTAGGHPFAARGKLRCDLVTARAAAPHTGNTNRSEARSSLQIHGPPAAAESALVSVTP DALVRPLKVNGHATHGSSEPGSGRSSTSATLAGNTDACGLLTGARPVPADAAKSVHSLQIAPEHS LVPAANGRSHPPAATSRDAPPLVRGAPLRGAPARETGGRGQDEDAAAGAPAATASWEYARTAEQQ HVPPSPASTSSASGSSASLNGWPGAHDSGGGGSGGGRGVAYLGRGSSRVAHSYRPQEELEQPQQR QQHTQATSNYSPSSRGAGGGSRQPGMSYFTGGASARGSTGPANTGGATSAGASAGVWPSGADLVN AGLLAKIDAATNWYELRAVLASSGGGSGSTSTSHSRSPRNAGGGAASATAAAASSPSAAATALAV LRRLAAVTRYDMRPAECAALGAFLERWLLECALPALPAMRAADLAAAMHAVAKLARALPAPPPAW TAGWFAAAAPHLRAAAFRPKDISLSLWALSKLAARPPAGGLQLLLAAAEPHLHRFNAQDLSLVAL ALAALRGRDGGVSSGSGSGEGSTDGEGRGSTGGEGEGLQQLLPSAEWRQLYLARVGEVVRQEAVG ALGSSTSQLGGGTSSYSGGRGGDCGPQALCNLLHGLVRSGLLSSSVPAPPDADRALPPAGLAGTD GRGPAAGPSWLDEEGGEELAMAVVASATLSPVSAAVLAPSPSSPLVAAAAVDARWLLEDLCTALY SVLPQCTPQGLANALSALAAAGHVPDAGWLERFYIESAARMDTGSSSGSSGSSSGSGREGADGAD SSISGGNGSSSRWCNADDLAHMAAAAAELRLAPPRWWAARLYGAMERRLTHGGGGCSARQLSQML HGAAQLHRSYGQLPLAPVASNTKSGAGVDALAPHAAAPVVAPAPPCTVAAAAAARPPPSLLAAWH RAAAAALPGFNAVDAAHSLWALAALGERPPPDWLQRLLVGVRGALVAAPPSELAVLLWSLSELRF RPTWSWIADCVEASAPGLPRMEGQDFAMLLSGLVRLGGRPTPEWSARLMAALAPRLRRLRLRSLS QCVWALYRLRVQPPPEVLTQLAAELRRRWLQQAAAASASASASASAATSAAAGEEQREQLRHSVM LLWVIS IWLGSEGRKHRPAVAAALAAGGRNGAGRGPGGRLTGAPRLRLRRPVNGNTGAAGLSSVE PRSPDVAIKQQPHSAVAAGPQTHRPPAPACRLSSRMLRRRRAARPGHLAAALGGDAAAAAALRRS LASQLLPAALAATEPLLAARRATAQDAALLAAVVRRMPRQVRRAAATAAPAWPQALLDATEPLLP SMTHAGLLQTLAAAKLLLRGSGKEQGAGAVVDGRWVAAAERAVAVQLGAASPLLPCAARVTLLRR LTALGASGSAARLNGASMPCQPAASNGSSSSSSSGSSCGCGTATTPAGGIRTVTAAGSSRVLLDA VAAMRRTGTVAEPLVALQAALLRARVRLRKLRAALRGAHAAAAARRARGPPPAASAALAAAAQDV AAATELAVAAAAGAQSACRPKTLAAAQWRVQAAVVAATYALLPPRGSGSGGLADEDDGEEEDVAA PAVRVNGGRQPLPPLSVEQRRWIQARAERTVAAQLLAAAPPEHVAQLAALAAVPLAAQAGRAAAT GASQQAGGPSHRRRQQEQEEAARSLLWLAAACSARWRRMLRPHRALAARSWRAALASLELSSPAL AQQLAAVLPAVVSGGARPGGHGAGGAGDMTGESDCKAAARAAVCAELAAASGVVLEAATSAAANG R
>TAA1 (Cre06.g262650)
MQSHCAHYKAGAAARREKSSREISSSAPTRPLHCRSSQPSRAITFAINLRADGSYDAGLTRPQAA RQRARRRTGPPSTATVSRWSASDSDASRFDWLDGAKQQQTQVLVDALFAAESVPPPRLPVLLALL EGRPDLEQALVEAGLPAAAAAVLRSDLLQRLLPGGLLLETLMGLIEDRATELPAEQLLMACRLVA AWHPPNGCEALGPASASLATAIADAVLAGPDSTGEADKADSRGSGGSSADFAATAGMLADALTLL QPWLAWRASGSGSAAAAAGTSAASAAALGLLDAGVAAAEEAAEAADALAAARGAAEALLRRPEVA AAADTGVLLAVTAAAAAYDVEVPRDLARTAVSLASTASSSSPTASAGSSSTTSSGAGSSSATTAA ELAAQLVAASVAGAAGGAAGHGRGRGRNQLSGEELESVVWARLASEVGAAEHAAFLRELLGRVRQ MAPGSGRLQLQPEEQQHEQQPGSKAGEAGPADEQQAARRALVVALGSAAGGLGPDALALAAECAA AVFPGDTIGDGADALASTAAAELLGCAADASAEPAAACTADQVCRLAAAVLALRARVGASVNETA VARVLAAAEAVQLQSASTDAVAALVAAAAVPGGGLALPPPLVDALLVQLTAAAATAAPVEDVAVD GSAGTAKSGRKQEAAPAAAAVAQLTPQQAAALLEVAVAAAEEAAQAAAAAVPSSSTAAEPATPAP IPPQRAAVLCAAIDVAMRLLTPSVRRVDSVSDITRLLVLAHRCQRAGLRPREQRGLLWAAHERLR VLGLSMSPAEAVGVLRACAALKWAPSVLFSELLLPLLRQLQASAAAAAAAAGGPSPASGAGSTSG ADDTSALGAWGEAGSGGAASRPWTLREVRSALALLAAVGYDGPMAASLVKLGVGELLRAHHVAAT AASRRSSSEAGAEGEGALLGAEDMTQLLWVCVALRYRGGAVLRPLLQLLLLVPAPQVSVRAAAQA VWAAARLGVVGERLVRWALAACQGQGKLAAAPPQSLANLCWGLGKLGVKPPRAFVTAMAVASLGQ LPHFTPQELATTAFVLATWGGRLGAAASGLVRHVVATRSHFDGPALCVAAWAVQRLAAAPPADAT ADAAASADVTPGLDAASLGLLEQRLLEAVQEAAHERRGRPGTGDFLQSLPGVADHHLLRFFSAAS

AAGYRPAALLAAYCDALLPRLQRFNGCSPAAAAGAARRARLLWSAARVLQTFRVTAAERPELLAA LEHAAEQCQAILGPQALAGVLSAMSDLGHYPAGWAARGLLRCVRLGLVEADATEAAAIVAALAAW GERLEEGEAAAAAAAAAAAAGAEDGRQGNGLAAAGGEEAGNPSRAAKAAKPAPSGKQAVSRRLDL LRQVAVARLTELCVPPPVVAAAGPGAAAAAAAHGQALPSAAGAAAAAPSPAEASGAGLTPAAAAT AAAAAEAPSAGGAIAQPSIEPEVALSLLRSLARLRWHSDPLEGALVRAAAALTADPAGRRRVPAL TTLLWAMASLRQDVPELLDDLQAALMGLPRNTRSLAEEVALLESGRLAGALGADSQRPPAPPSVP PVQPVQPVQQHSQAAAEPTPVVEASAQPTVVLAAAQAAAQPRPSPAASPSAPSTPSNSTTASAAA SNNHNHNSTNGNGLLARPNKPAVPTPATADTVSPTASLSSLSSLSSMDGGAGGGFDTAAATAAAA AALNQRLEQQLVGAAGRGRLASEPWAPVDVFKALWACAKMNRHPGPQILAAAERSWVLHTTDGAA GGAEGRTLPPLHTVTGLLWSLSVFRHHNSAFAQQLAAQLAARLGVLAAAAAADGGEADGAAAAAA ALEKQAPQLAACLLAAAADRTDSPLNAALAPEARGRLLNVWRARQAERVARPPGRYQTDLVSVLR KMGYTAAANVATPDGVAVADVAVAVTPNAGLRAASTASASPGTSSTSSMDSGDGAAAATAATADS GLGSGAAAAAAAAPAPAAPRLLALELVGRHNSAANSPRIMGEAVIKYRLLQAHGYLVVPVSCYEW DRISHQDVWTKMVYLQAKIDRRTGTGLAASSVSAAAAAAAAAPAAGAEGQTQTQAVSASSGLSRS QPQ
>MBI1 (Cre06.g272450)
MWKEGLSSSSLRGCARNAIYARAQLAKPKLDGRSAEPASAHANHSWPPSAGIQVSLQHLPARTQE PQHAIAVERASVASADPTLAAQPLNEEFERPAGSRSSADCAPSTSARGYAGGSKQPRGSFRRGVD SAGGNSRDAAALTRRITHSKTTSELHDVVTRHKSQFNSIHTAAAIVKLAKLTAGEPEQPHHQQQH QRHQRHHRQAQAGLHEVVGNGHLQAAAPVAGAAADGQLGSSSADASGADPAAFGTPGSRNQGQLF RSRHTPSRGAAAAAAADDARLRESLLEELSEAFLAHAQQQQYPSARQFANVVWALGSMRIRSPRQ RPDTPPASSPSASSLEPQPQPGTSTTLQAIAGEPQPQPSSMLQLGPLLSVTAAQLLSGNGSRLTS ALPQELSNLALGLAKLGYREVPLWAAIIAAGKARLPAFKPQELHNLAWAVAAASQDRSMISAAVQ AALPQLGAFTPSGLSNLLWACATAQCHVEELFDGAAAALLRVPPAQLNSQDVANTAWAFAKVQHP HPGLMRHLGGLVLRAATGRDAVAGSGATDAEAGTAAGAGAMQGPEAGTGRGLRGVATQELVNVLW AFASMPPQGLGLPDAAAGGVPAQGRGSTWGGVNASSSSGASTSSSNTSGGGGGGSTAGLTTQLLA ALLPEVVRRRDLTPQGASNALWAAGRLQPCPVPPDALADALRAASTRAASMSDQELANALWAAGE LRGAGHYVPPAAVAPLFAAACCPSRLEATPAAGVAQLVSAAVKLRLVGSQHMDALAKRVMRGLGS LGPQELCVLAAAVAEAVHVAAYCNPILLNGLANAAVAQVDRLDPQGLSTLLWAFARAGKHYHGPL TTTICRVAAPRLREFSDLELSNLVWALAVLKCQDRQLLVRAARVLVGRVRLRRQRQQAAAAGAAG LAAMQQQRRYWSGQMADGSMPPQQMQTQQQQRAEAEAQRRLGLGLRQGPGQDAGGPVRIRLDAPA AASASGWRRAGSDGGVNAAAQPHPPESPSPAAAHLGSNGNGTAPAASGSAPIGSAFVSTATAGSA TSSMDEGSLPDDRPLLRRLPSLHHHDETHVMLQARRPHPRDASAVAAAAAAAGAVAAASGSAAGG GRGLQSCDGSDVPAAVPTVRRRRLTDSLSDGEDPEGGSAGLGAGGAAPTAQGHAKSMAKLLWGFA KCNLYNQALYRLLVQELRPLMHLLTPHEVVQVLWSVAYHSHSCPELLDAAAPAIASRLGRFCPWD ASVVAWAYAKLDHPHRDLFESLQHHALRYGSRYKEPCLLRLVWACAQLQLHVREPLLAQLHALRT GRSRAASSYDGADGEPPPPSDAGRMEPEWW
>TAB1 (ADY68544.1)
MMPSLKNLGGGFGRVSVGTTPFRKCARAAGRRAAPGLCSAHSAGESPLLSNTELERRQTGAQRQV VPSRRQSGSGGPGAPPLAPSQLTAAIHACTSTAQLLALYRQHGKRFTHVQASAALRQLVNVAPLP APESEEDAQGGASSSSNSARSPEALAARQVTGRLTVRQGEGEVVAEQRRNSNYEASTSAAAPAPA QPPSKGKGKRPLLQDPEPTTTADLALTEQPSDASTIGTLAPQPDVAAALPAAVPQPQPSRRQITS MAAGLAAVLSHSCGVMDGRGVATAANAMARLRYDDLALLEQLEQRSLVLMGVPAEALPSASASSA RHAAVAVGRQQQQEQQQQTRWAVKPDRRRRDRASPAAASASAGAASSSAAVSAAVEASPAGAAAE AAAPSAAGPMTASELLALVSAFGSLGYRPSQTWLLSFTRCTAPHLTTYASTPESLPTLLSSLGNT GHRPPPAWLQSACAAAAPHLPSYSSAQLKALAAGLCAMRHLPDDPWVAAYLGASAQLLPGYSAAE LTVTISSLAGLGCRPGDEWMEGFYARATAVVGTTGGLTGPQAASILASLSKLNCRPTSDWLNTVL LGTRRSLSDASAQQLTELAASLARLRFRPPEPWLQQYFNASFQRLPFYTPAQACTAAQALARLGR RPTKLWMEEFGRLLGAKLPLMPGGQQCEAVAALVDLGYVPSPAWLAGYEQHSNAQLASCTSDQLC LVLPALAKVNFRPQVSWLYSFIMSAYSQLDAFSSPQLALVFECLPALTPHGSWLDEIIQICAAEA

AMRGAGPVGSSSAAAVSAAEVAEPDAVVVPVPGIAAAAAAVAAAPAAAPAQPASAGLFATGPLYG DGPGASAAAGNGVASTAAVGPIDANVPINGAAAPTDAALSAAATLPDTSTIQISSELVPSSDAVT LSAPYRFSASAGYGSAASEAAANAAAAATVLDLTDMQLAAVPIATPAAAAAAAAAGGRAAEGMNG RREGRGGRSDSGWGGPGGGGGAGGGSVGRGDLSSPSADLLRRPARVPRPAVAVLASSIEAADAVP TSSASASAPNPAPSVTPSSVTAGSAISSPYAPASPTASWSDADLLLPGSPDQQPQLLAQPRPPAQ LLQRPRLRSAFSALPASSPAMEPIVAAGSSAAAASSARLDAVAAATAARVAAAAASRRPLTSAAP LGLQAMDATAAAAMAAGSAVAAALAAGAADDEVRVQYLDSASLNRLIGPPDGPPGPDFSGCQKRA MEAAARKARRGTNNLFSLGRVWTNELGGSDAGPDIVGGTGGGMPSPVPSPVG
>RAT2 (EDP02536.1)
MQSPALAPSLPEPLPSAAALPDEPPLRSELIDLTRAVQRCRTWQQLRRLYWRVRTRQGPMNMVGF FTRLAALVGPGLPQLLGEEGEEEAIMVTAEGPGQELRVPGQEAEDGAAAGREAGAGKAQRSRSRG PEGSPRGQQGPPVPSGPLQSHAERAALRQLVVRMMYDACSFTREHAAADLLDVMRRNPLPPWNMP AFAAYTQQQVAALQAAHQRGGAGLGTRAGAGVGVGAGGGAAAGRQVSFLEWLREHPEMWEHPYEA ILDEHVHHWRASPGAGAGTTGADGADSAYGSGRSRSSSGRSGAGGTRSRQAPVCYGPHELSALVW AAARLRLPGAVAAEHLTWLLDDLLSASFGVMPDFDGRQLSQLAYSLSQLGPLAVPPPPWRRAFLA ASRRRLFQMDAQSLANLSHALEPLRLSPDPPWLRDLLAATGAAMSITGPGQGLRGQGQGHGGQGQ EQGQQRWGPAQRPGTLRPAPPELTQLAWALFSLRRRCATRAATAAISDRGRSRPGSLEAVLRSWR KHYQCFHHQQRKHGVAAGDGGGVPQAMAAAAPATATTTTLGECPCCP
>ASA2 (EDP00850.1)
MRSAAVRVLGAQWAGVGAQEAGSRAARAFATATFVPGVSGDASGVVSAVDALMSHDSAATGKDVA DAAVALAYLGTRGNRRVWGKVLEKAASTPLDGPSLANLSWALSAANVDHTRTLAELAGPLAASLK SLSPAQVSFAVEAVGKSGAADVELFAAVTELAAARTADFKAADLARLLWGFGAAGVQDGKLVKAA SAGLVAKAAELGGREAAQALWGLAALRRVPDAALAGALTKALKAGVEAPADAAAAAWALATLAVK ADAGTVKALADKAKAGVADLSAAQAVQGGWGLAMLGDKDGAAALLGAAAAAVQKDPTSLSPSALA LLHAGAVVSGAGLPNPVSDFAAKGFGLAVEHGRHSRSSAAAAFHAELAEAVAYASGARHRPDVAS KVASFVSSGPDGSTLDVVVPADANTKLAVLGVEAEALASSGAVLGGSLAAARVREAQGFKVAVVP QTEFPTGAPLKQRAAAVLGAIKKAVPGLSAMADKLSREL
>RAA8 (Cre10.g440000)
MLRVAGAGKFPGDANAEAATAAAARGFGGSRPGRGVRGSSGTGSRQGDGFGSVRGGRSGGRSWGG RSGSSGGRGPGSRGPPPQVGTRVPPASPDDVAAWVGTADGGDSGGGIMGRITAATLWQQLTAILE SEAGAVAAAAAAAAATATATATAAAFPAAAATAAVGSMAASSTSTSIPPPGGDRAEEAAMPGEAG GGASTRTTPPPPPPSLGEPELLLLLWRAVCGCLQTFTDGSLLLLPPPPLPVGSQSGTGAALFPHM PALPGSTATTHAATPSPFGATMGGGGAIDDLFSFSASGVDLTNGLGTGAARAPLAAAGAAVTTVP MWTVAPLAGSGVARQRCLRALAAALARLAPRLSPAGLAAGVQLAARLGQVAAGGNTGGGGGGGAG GYVQEGHRQAAGAAAWELAAPLLQATAATAAAATAAAAVTAGAGDGGPALVAVAPETATALVDVL VALPLLQALEPDHGPGSHQQAGLQAQQQRRRPPQQQHDGQGDRPSEACPLSRRVLETALGTLCVR AGAVAPSTRELAVCLAAAARCGLAPPPAWLALLQCEVRSQLLLLTPAQGAVLLAAVQGLERHAGG SGGRGAAGMPAPLVAPAWADMVWREVRGRAGAAPAAGGGGGPSCGLGLGFGFSGGGVGGGVFGPQ ALVDPDLQELGWFADAGLLLMPPPPLPPSPSDTPQELGGQGGAGAGDGHGGREDPVGWLVQHLAV RTARQWLLPTEAAAPQAAGPGPQELVAVLAALARVAPFAGAAATAGKDAGGGATATDSAGAGADG GMVADAAATQLGGGAGWRQELLAAAVAAVLQCLGGTPALAAPAPAAQPATAELASRAGCSMEWLQ LAQCTEALAALAQAAAEDEAQGNRAAAAVPTGPATAATAATAASAGSATAAAVGSAKLPDLDALV WRLQQALLEAAAAAGSRAAVATMAAAVGPGELVWLLRAEAALLRMQELWPRQAHHLPPARGLARR LLAALIAPLLRQAPLAQAAHNPASHAAAATAAAAMPPAQLLQLLAAAQHPWTAGMFDGELLAAGS SSNSSSSSSSSGRSTSRSGEAAAAGRLTVPAQAASARGVVVTALLDSLPLTTASAGARGDAAAAA AAAAALDLAVALLPAAVHALRTPADAVAALRAAADRQQRHQRQQQALQQQGQRTGRLRQADALAA AALPAALSRLLALAIPPPPHQEPGFMDVGAAAPAPAALVAPEVWCEALAALLDGVRALDPANAKA ASSTSSPAAAVGAPAGPRRAATSSAAAAGYFAWPPQAFSPPPPPPPLVQLRRLWGALDRCWPLMA PGQLVRVLGLLADLHAPLSAMSSRGAAAAGGEPTAADLQALQRAVASRMADMTPTELAEAVTATA

RLPAAAPPCDEWLAALTTVLAAPPPPPAPLAGGLQGLRAAEALALVLACLDMKAAAPVTARDAVM VPVLPLLEQLGLALVADHGPPGPVRDAAKALRAAPDEAAAATAVAAAVAGAAAAPATPAAPSPPQ PTRPLPPPPSCGELCRLLPRLAALATHPATAQAMGSAAAPMLSYLAAVGFAGAGPADLAACVSGL GRLLVLPGGHWVAALCEATRPLLLSRGTSLAELAALSHAMATALLLPPPQWQRDLEAATAQRMAR AAAEAAQLAAAGVAEAPGSGRGGSRSAGGGGGGGGGLRSAADLKALDQLLTAQALWWRLSSGSST SSSSSSSSSSSSSSSSSSSSSSSSSRKDSGAEAAAVTELRPSPGWLDALVECAAALMAALGPAAS PQSALAGLPYTLHVLGHDPGPDFISALLAACSRYLPLLPLARDPGLAHEHTAPGAPTPTLSPTPN ANPGGGGGGGTQQQQAQEAAGPHVVVQVPASAPAFTGPQLSRLALGLAGLGYQPEDAWVRCLQME SALRLSGCDPHELADLLEGLLLLAEGCEAGGGSSSSSASGSSSTSGSSGEAQWVDSRLVPAFLGC WWAAAEIAMHNDTAVAAAALERRARRVDLRLATAMRAELRARLSDRSGAGAAWGYWSEQLPGLDP DRLFEMSDQDIEAELAALQFPVFDAGMALAAAQEEQQADQQEQEEQEQEQGRTGRWRRPQPDGGS GGGGGPIKDGNKVSFDVGMPVLQRYTLWAILRGGGSSSTAAGEASEPAGRIPGPLPEGAAAWVGS LAVRSVALLSGPRAAPAADGRLTAAQLQQLAAAAAAPGSAVVVAPPAFWLESMLACQAAAMMLGA YGGAGSLSLAEYESAVGHDADGAEAGEPWRRQLLQRRAAAAQRAALLQAAAAQRAALLQAAAAAR AWALPPVPEWGEAFLRASRLAFLSPPPPPLPQPSRQSSPPAAGVGPGASAADAADTAAAVTGPGG GDGSGGDGGSGGSASCLSELLQLLLAAVALDMQPGEGWLRAAEATSVDLMRGGGGSGVGPEEAVA LVLALQRLGHTPSRLWAEAVLERMAQGLPTPTQLSEPGAPGAYATAAPSVTGNPAPMLGAAAAAA EAAGAAALLPPASVAGVVVALAAMRVRPSDGWVEAALAALHERHGDLPAPLRARLLAALPQLDVT PSAVWLGPAVEAFWEGVPLLLEPLRQRLRQLSRGGTETGAAAGAAAGAAGASSDTQPGLEAAGEG AGAPGDAAAAALVAPLVSGLTAVSELGVPVKQQQLTALLGRLSDLMAPPPTAAAAAAAAAAAAAR SPGAATTSSAAATTTAAAATLAAAEVGRVLVCLAAMRRATPSRANQRVLDSLFAAAAERLPLSGP LTAELLDAWDKLVPP

Figure S2. OPR motif sequences used for the creation of Figures $4 B$ and $4 C$.

Name Start P-value

CCS2 769 8.70E-018
TDA1 665 5.04E-017
RAA1 1452 9.30E-017
TBC2 491 5.55E-016
CCS2 979 9.92E-016
TDA1 977 6.76E-015
TAA1 1002 8.43E-015
TDA1 705 8.43E-015
MBI1 856 1.17E-014
MCG1 916 1.31E-014
MBI1 387 2.01E-014
CCS2 1166 3.83E-014
MBI1 460 5.26E-014
RAP 369 8.88E-014
MCG1 992 2.03E-013
TAB1 629 2.24E-013
TAB1 591 2.49E-013
CCS2 1567 2.75E-013
TBC2 415 4.12E-013
MBI1 1227 5.03E-013
TDA1 $11765.03 E^{-013}$
RAA1 1414 8.27E-013

Site

RLSAFPPQELTTLLHALATLGHRPSGDWMAAAAGAVAA KMYAASPLQLAAYVWALARLGYHPGDLWLYSLTQQLSR CLSQFDTEGLCRLLWALAAMDYVPERLWLRAVAGQLQA RLTSFSPLQLAKAVQGLAALRYRPSPEWVEAYCSVLRP GGSSCKAQDVCNALWAVAQLGLRPPRAWVLAVAAGALS LLPGFNAKGLATVLQSMASLGIKPQRRWLLRALEALAD KLAAAPPQSLANLCWGLGKLGVKPPRAFVTAMAVASLG RLAAASAGQLCEVLWALHRLGFSPDPDWRAQAAEAVAF RLREFSDLELSNLVWALAVLKCQDRQLLVRAARVLVGR ALPGFNAVDAAHSLWALAALGERPPPDWLQRLLVGVRG RLTSALPQELSNLALGLAKLGYREVPLWAAIIAAGKAR ARGELGEQHCANVLWALAVLRYRPPPDVLRALGARAAQ QLGAFTPSGLSNLLWACATAQCHVEELFDGAAAALLRV KVGEFNSQNVANIAGAFASMRHSAPELFAELSKRASTI GLPRMEGQDFAMLLSGLVRLGGRPTPEWSARLMAALAP RLPFYTPAQACTAAQALARLGRRPTKLWMEEFGRLLGA SLSDASAQQLTELAASLARLRFRPPEPWLQQYFNASFQ SLPLLSPHEAATLASALVALRYAPPPLWLDRVEQLLLR KLYECRPQDLANTLASVALLGLPPDADLRTSFYAAVRQ RLGRFCPWDASVVAWAYAKLDHPHRDLFESLQHHALRY LLDAMSGPQLARLVSALARVNFYPGREFLAAHSRATAR GGGGVGPRQLWGLAWSFARLGYAPSQEWMLALLSRAEA

CCS2 809 8.27E-013
RAA1 1490 9.13E-013
MCG1 717 1.01E 012
TAB1 512 1.49E-012
TAB1 705 1.64E-012
TDA1 901 1.64E-012
RAP 406 1.99E-012
CCS2 1529 2.66E-012
MCG1 1030 3.54E-012
MCG1 954 3.54E-012
RAA1 1763 3.54E-012
TBC2 732 4.28E-012
TBC2 453 4.28E-012
RAT2 $395 \quad 5.18 \mathrm{E}^{-012}$
TBC2 812 1.09E-011
RAA8 1851 1.44E-011
TBC2 653 1.90E-011
RAP $330 \quad 2.49 E^{-011}$
MBI1 818 3.57E-011
TBC2 850 4.67E-011
TAB1 667 6.65E-011
MBI1 498 6.65E-011
TBC2 772 7.27E-011
CCS2 1126 7.93E-011
TAB1 553 8.66E-011
TAB1 396 1.03E-010
MBII $11901.46 \mathrm{E}^{-010}$
MCG1 506 1.59E-010
RAP 473 1.59E-010
ASA2 165 1.73E-010
TAB1 474 1.89E-010
MBI1 299 4.39E-010
MBII 424 6.66E-010
MCG1 468 1.00E-009
TAB1 436 1.09E-009
MBI1 $12641.09 \mathrm{E}^{-009}$
TAA1 1711 1.09E-009
TBC2 $10381.09 \mathrm{E}^{-009}$
RAA8 2394 2.07E-009
RAA1 1162 2.24E-009
RAA1 1686 2.84E-009
ASA2 202 3.07E-009
TAA1 1040 3.07E-009
MBI1 697 3.89E-009
TDA1 863 4.20E-009
TBC2 615 4.91E-009
TBC2 529 4.91E-009

AGGSMS PRQLSTTMWALAVLRQRPSRALMAAWALASLQ RARDFTPDQVVTLHCALARLGYAPRPEVCVALHAAAAR VLPQCTPQGLANALSALAAAGHVPDAGWLERFYIESAA LLPGYSAAELTVTISSLAGLGCRPGDEWMEGFYARATA QLASCTSDQLCLVLPALAKVNFRPQVSWLYSFIMSAYS KLASMSATHLTQALVSISQLRFVPPQSWLMAFLCASRA IINTFKGQEIAQLLWSFASLYEPADPLLESLDSAFKSS ARSSFPPRSLPVLLWSLSRLGCRPPEECMRRLLVHSVE RLRRLRLRSLSQCVWALYRLRVQPPPEVLTQLAAELRR ALVAAPPSELAVLLWSLSELRFRPTWSWIADCVEASAP QLGQAATADLSTTIAALADLQYRPSDQWMALFTAEARR LKNRCTDLHLANLAGSLAAWGVRPDGRWAARLMWRSQV QQRRFGPRELATTLWAYGAMGTYVQEDAVQLVLELSRA RLFQMDAQSLANLSHALEPLRLSPDPPWLRDLLAATGA SQPAFEPHHYGTLMASLHALGIQPPQEWLTRMLLSTYR SAPAFTGPQLSRLALGLAGLGYQPEDAWVRCLQMESAL QLDKLDAQQLAGVLNSLAAQQYRPQPQMQEVVLAATQA CLPECSAQGISNISWALSKIGGELLYLTEMDRVAEVAT QVDRLDPQGLSTLLWAFARAGKHYHGPLTTTICRVAAP CWDRFSVTHWSSLLPALVLLKARPPREWLRRFEATSAA KLPLMPGGQQCEAVAALVDLGYVPSPAWLAGYEQHSNA PPAQLNSQDVANTAWAFAKVQHPHPGLMRHLGGLVLRA NEDRMS PRALVALLQAMVSLGLS PNPVWTQLCLQAAVR GAQRWRAGDVAGMMWALAKLRVRPPPGQMLRLCRAAAG TTGGLTGPQAAS ILASLSKLNCRPTSDWLNTVLLGTRR AAGPMTASELLALVSAFGSLGYRPSQTWLLSFTRCTAP LMHLLTPHEVVQVLWSVAYHSHSCPELLDAAAPAIASR HLHRFNAQDLSLVALALAALRGRDGGVSSGSGSGEGST PALSFNRDQLGNIAWSYAVLGQVERPFFANIWNTLTTL RTADFKAADLARLLWGFGAAGVQDGKLVKAASAGLVAK HLPSYSSAQLKALAAGLCAMRHLPDDPWVAAYLGASAQ QQQYPSARQFANVVWALGSMRIRSPRQRPDTPPASSPS RLPAFKPQELHNLAWAVAAASQDRSMISAAVQAALPQL RAAAFRPKDISLSLWALSKLAARPPAGGLQLLLAAAEP TTYASTPESLPTLLSSLGNTGHRPPPAWLQSACAAAAP YGSRYKEPCLLRLVWACAQLQLHVREPLLAQLHALRTG ASEPWAPVDVFKALWACAKMNRHPGPQILAAAERSWVL LRVRYAPSELVLTAGWLGSLGLRPPPEWLQACAEVAAR GGSGVGPEEAVALVLALQRLGHTPSRLWAEAVLERMAQ HVSAASGSDVAQISYGMGALQITCPQLYGAVLHVSASQ VAATFDATCVSQSLWALAELRETPGLPHSGAAAAAAAA KAAELGGREAAQALWGLAALRRVPDAALAGALTKALKA QLPHFTPQELATTAFVLATWGGRLGAAASGLVRHVVAT RAASMSDQELANALWAAGELRGAGHYVPPAAVAPLFAA HLRGLRRVHLLRLLLALAESGHRPREELMARVLGCLQP AAGGFSGGELQQLLEGLTRLALQPPLEWMQAFVAALQP ALRRMSSRELCAVLLALASLQVGLDGGTRAALLVHTFS

	790	$5.30 \mathrm{E}^{-0}$	
TBC2	693	$5.30 \mathrm{E}^{-009}$	KQLLADTTCSAALLTALRRLNIEPPPGWVGALLEESRS
MBII	658	6.19 E	RRRDLTPQGASNALWAAGRLQPCPVPPDALADALRAAS
TDA1	939	$6.19 \mathrm{E}^{-0}$	QLRHYTPAHVTATYQVFAGWQLRPPRSYLEALHTYMDG
RAA8	2475	$7.21 \mathrm{E}^{-009}$	AAALLPPASVAGVVVALAAMRVRPSDGWVEAALAALHE
MBI1	1153	1.05 E	PTAQGHAKSMAKLLWGFAKCNLYNQALYRLLVQELRPL
MBII	571	$1.05 \mathrm{E}^{-0}$	GLRGVATQELVNVLWAFASMPPQGLGLPDAAAGGVPAQ
RAT2	355	$1.42 \mathrm{E}^{-}$	VMPDFDGRQLSQLAYSLSQLGPLAVPPPPWRRAFLAAS
TA	272	1.	SCGVMDGRGVATAANAMARLRYDDLALLEQLEQRSLVL
MBI1	162	$1.53 \mathrm{E}^{-00}$	HKSQFNSIHTAAAIVKLAKLTAGEPEQPHHQQQHQRHQ
CCS2	847	2.06 E	TMAHASAYDVSQSLWAVAKLHRDAVMDAAAAAEAGGGG
TD	627	$2.06 \mathrm{E}^{-0}$	DLFLATPAQLCRLASSLPLLRLAPSSRWLDHFAAVSRS
TBC2	568	$2.77 \mathrm{E}^{-008}$	PLPGMAPGEVALSLWALGRLSAVDMDLPALIDLDMSGR
TAA1	782	3.20 E	LGLSMSPAEAVGVLRACAALKWAPSVLFSELLLPLLRQ
MCG1	832	$3.97 \mathrm{E}^{-0}$	GGGGCSARQLSQMLHGAAQLHRSYGQLPLAPVASNTKS
CCS2	725	$4.27 \mathrm{E}^{-008}$	AEPRLGPRQLATCLGALARLRARGWHVASERRLLHLSV
RAA8	522	4.93 E	GAVAPSTRELAVCLAAAARCGLAPPPAWLALLQCEVRS
RA	162	$5.68 \mathrm{E}^{-0}$	KKKKKKKSKKVIVKKDKVKSKSIPEDDFDTEDEDLDFE
TBC2	346	$6.55 \mathrm{E}^{-0}$	GLDSLSGPQLAAVFTGLAVLRRPRQQQQQQQQAGAAGA
TAA1	925	$7.54 \mathrm{E}^{-}$	EGALLGAEDMTQLLWVCVALRYRGGAVLRPLLQLLLLV
RAA8	1544	$8.09 \mathrm{E}^{-00}$	RP
RAA8	1348	$9.30 \mathrm{E}^{-0}$	RMADMTPTELAEAVTATARLPAAAPPCDEWLAALTTVL
TAA1	1243	9.97E-008	CQAILGPQALAGVLSAMSDLGHYPAGWAARGLLRCVRL
CCS2	1244	$1.07 \mathrm{E}^{-007}$	ALWCCLRLGLPPGRGLLLPLLRAAAA
ASA2	128	1.15 E	SLKSLSPAQVSFAVEAVGKSGAADVELFAAVTELAAAR
ASA2	55	$1.23 \mathrm{E}^{-00}$	HDSAATGKDVADAAVALAYLGTRGNRRVWGKVLEKAAS
TAA1	1281	$1.41 \mathrm{E}^{-00}$	GLVEADATEAAAIVAALAAWGERLEEGEAAAAAAAAAA
TAB1	743	1.51 E	QLDAFSSPQLALVFECLPALTPHGSWLDEIIQICAAEA
TAA1	1486	$2.27 \mathrm{E}^{-007}$	PAGRRRVPALTTLLWAMASLRQDVPELLDDLQAALMGL
RAA1	1632	$2.27 \mathrm{E}^{-00}$	DGSDLSMALWALALLRRQQQQQQQQPAADVLQL
RAT2	469	$4.12 \mathrm{E}^{-00}$	GTLRPAPPELTQLAWALFSLRRRCATRAATAAISDRGR
RAA8	1889	$6.09 \mathrm{E}^{-00}$	RLSGCDPHELADLLEGLLLLAEGCEAGGGSSSSSASGS
A1	1817	$6.92 \mathrm{E}^{-}$	TAATATNEDHGLIAYGLAVLGWPLSEAWVQELAAGGYR
RAP	560	$8.38 \mathrm{E}^{-00}$	KTKRFNQKITSSFQKEVGRLLISTGLDWAKEHDVDGYT
MBI1	777	$8.93 \mathrm{E}^{-00}$	GLGSLGPQELCVLAAAVAEAVHVAAYCNPILLNGLANA
RAP	281	1.22 E	SPPLSPLNIATALHRIAKNMEKVSMMRTRRLAFARQR
RAA8	2351	$1.39 \mathrm{E}^{-00}$	GGSASCLSELLQLLLAAVALDMQPGEGWLRAAEATSVD
TAA1	1445	$1.39 \mathrm{E}^{-00}$	AQPSIEPEVALSLLRSLARLRWHSDPLEGALVRAAAAL
RAA8	1584	$2.89 \mathrm{E}^{-}$	LSRGTSLAELAALSHAMATALLLPPPQWQRDLEAATAQ
TAA1	2011	$2.89 \mathrm{E}^{-0}$	SCYEWDRISHQDVWTKMVYLQAKIDRRTGTGLAASSVS
RAA8	2513	$3.89 \mathrm{E}^{-00}$	RHGDLPAPLRARLLAALPQLDVTPSAVWLGPAVEAFWE
RAA8	1295	$4.37 \mathrm{E}^{-00}$	CWPLMAPGQLVRVLGLLADLHAPLSAMSSRGAAAAGGE
ASA2	238	$1.37 \mathrm{E}^{-00}$	KAGVEAPADAAAAAWALATLAVKADAGTVKALADKAKA
RAP	201	$2.24 \mathrm{E}^{-005}$	GFVEDKMGDLRKRVSSLAGGMFEEKKEKMKEQLAQRLS
RAT2	165	$8.99 \mathrm{E}^{-005}$	MYDACSFTREHAAADLLDVMRRNPLPPWNMPAFAAYTQ
RAP	25	$1.85 \mathrm{E}^{-004}$	HNHRNLHISLSSSSFASGILPLSNKKYRFVGPLAQRSS
RAP	240	$2.23 E^{-004}$	FSGPSDRMKEINLNKAIIEAQTAEEVLEVTAETIMAVA

RAP 107 2.33E-004 DPLDIQPPKKRKKQKNSKALEDTEGMDWCVRARKIALK

[^0]: ${ }^{1}$ http://genomes.mcdb.ucla.edu/Cre454/

