Furstenberg’s intersection conjecture and the L^q norm of convolutions

Pablo Shmerkin

Department of Mathematics and Statistics
Universidad T. Di Tella and CONICET

HAFS 2017, OSU, February 4 2017
What? CIMPA School on Harmonic Analysis, Geometric Measure Theory and Applications

What? CIMPA School on Harmonic Analysis, Geometric Measure Theory and Applications

CIMPA School on Harmonic Analysis, Geometric Measure Theory and Applications

Advertisement I: CIMPA school in Buenos Aires

cms.dm.uba.ar/actividades/congresos/cimpa2017/

What? CIMPA School on Harmonic Analysis, Geometric Measure Theory and Applications

www.mfo.de/occasion/1741

What? Arbeitsgemeinschaft (working group): Additive Combinatorics, Entropy, and Fractal Geometry.

When? October 8-13, 2017

Where? Oberwolfach, Germany.

Who? Organized by E. Breuillard, M. Hochman and P.S.

When? October 8-13, 2017

Where? Oberwolfach, Germany.

When? October 8-13, 2017

Where? Oberwolfach, Germany.

Who? Organized by E. Breuillard, M. Hochman and P.S.

When? October 8-13, 2017

Where? Oberwolfach, Germany.

Who? Organized by E. Breuillard, M. Hochman and P.S.
Let \(p \in \mathbb{N}_{\geq 2} \). Every point \(x \in [0, 1) \) has an expansion to base \(p \):

\[
x = 0.x_1x_2\ldots = \sum_{n=1}^{\infty} x_n p^{-n}, \quad x_i \in \{0, 1, \ldots, p-1\}.
\]

Basic facts:

1. All but countably many (rational) points have a unique expansion; the remaining ones have two expansions.

2. A point is rational if and only if the expansion is eventually periodic.

3. Expansions in bases \(p^n \) and \(p^k \) are “almost the same” (look at base \(p \) in blocks of length \(n \) and \(k \)).
Base p expansions

Let $p \in \mathbb{N}_{\geq 2}$. Every point $x \in [0, 1)$ has an expansion to base p:

$$x = 0.x_1x_2\ldots = \sum_{n=1}^{\infty} x_np^{-n}, \quad x_i \in \{0, 1, \ldots, p - 1\}.$$

Basic facts:

1. All but countably many (rational) points have a unique expansion; the remaining ones have two expansions.
2. A point is rational if and only if the expansion is eventually periodic.
3. Expansions in bases p^n and p^k are “almost the same” (look at base p in blocks of length n and k).
Base p expansions

Let $p \in \mathbb{N}_{\geq 2}$. Every point $x \in [0, 1)$ has an expansion to base p:

$$x = 0.x_1x_2 \ldots = \sum_{n=1}^{\infty} x_np^{-n}, \quad x_i \in \{0, 1, \ldots, p - 1\}.$$

Basic facts:

1. All but countably many (rational) points have a unique expansion; the remaining ones have two expansions.
2. A point is rational if and only if the expansion is eventually periodic.
3. Expansions in bases p^n and p^k are “almost the same” (look at base p in blocks of length n and k).
Multiplication by p

Definition

For $p \in \mathbb{N}_{\geq 2}$, let

$$T_p = px \mod 1$$

be multiplication by p on the circle.

Symbolically, $T_p x$ corresponds to shifting the p-ary expansion x: there is a factor map, which is one-to-one outside of the countably many points with two p-ary expansions.
Multiplying by 2 and by 3: the founding father
Some of the areas that Furstenberg initiated

1. Ergodic theoretic methods in combinatorics (ergodic proof of Szemerédi’s Theorem,...).
2. Products of random matrices, non-commutative ergodic theory (simplicity of Lyapunov exponents, ...).
3. Unique ergodicity of horocycle flow, toral maps, ...
4. Disjointness of dynamical systems.
5. $\times 2$, $\times 3$, rigidity of higher order actions.
6. Fractal geometry \cap ergodic theory (CP-processes, ...).
Some of the areas that Furstenberg initiated

1. Ergodic theoretic methods in combinatorics (ergodic proof of Szemerédi’s Theorem,...).
2. Products of random matrices, non-commutative ergodic theory (simplicity of Lyapunov exponents, ...).
3. Unique ergodicity of horocycle flow, toral maps, ...
4. Disjointness of dynamical systems.
5. ×2, ×3, rigidity of higher order actions.
6. Fractal geometry ∩ ergodic theory (CP-processes, ...).
Some of the areas that Furstenberg initiated

1. Ergodic theoretic methods in combinatorics (ergodic proof of Szemerédi’s Theorem,...).
2. Products of random matrices, non-commutative ergodic theory (simplicity of Lyapunov exponents,...).
3. Unique ergodicity of horocycle flow, toral maps, ...
4. Disjointness of dynamical systems.
5. $\times 2, \times 3$, rigidity of higher order actions.
6. Fractal geometry \cap ergodic theory (CP-processes, ...).
Some of the areas that Furstenberg initiated

1. Ergodic theoretic methods in combinatorics (ergodic proof of Szemerédi’s Theorem, ...).
2. Products of random matrices, non-commutative ergodic theory (simplicity of Lyapunov exponents, ...).
3. Unique ergodicity of horocycle flow, toral maps, ...
4. Disjointness of dynamical systems.
5. $\times 2, \times 3$, rigidity of higher order actions.
6. Fractal geometry \cap ergodic theory (CP-processes, ...).
Some of the areas that Furstenberg initiated

1. Ergodic theoretic methods in combinatorics (ergodic proof of Szemerédi’s Theorem,...).
2. Products of random matrices, non-commutative ergodic theory (simplicity of Lyapunov exponents, ...).
3. Unique ergodicity of horocycle flow, toral maps, ...
4. Disjointness of dynamical systems.
5. $\times 2$, $\times 3$, rigidity of higher order actions.
6. Fractal geometry \cap ergodic theory (CP-processes, ...).
Some of the areas that Furstenberg initiated

1. Ergodic theoretic methods in combinatorics (ergodic proof of Szemerédi’s Theorem,...).
2. Products of random matrices, non-commutative ergodic theory (simplicity of Lyapunov exponents, ...).
3. Unique ergodicity of horocycle flow, toral maps, ...
4. Disjointness of dynamical systems.
5. $\times 2, \times 3$, rigidity of higher order actions.
6. Fractal geometry \cap ergodic theory (CP-processes, ...).
Expansions in different bases

Principle (Furstenberg)

Expansions in bases 2 and 3 have no common structure. More generally, this holds for bases p and q which are not powers of a common integer or, equivalently, $\log p / \log q$ is irrational.

Remark

Furstenberg proved some results, and proposed many conjectures, which make precise (in different ways) the concept of “no common structure”.

P. Shmerkin (U.T. Di Tella/CONICET)
Expansions in different bases

Principle (Furstenberg)

Expansions in bases 2 and 3 have no common structure. More generally, this holds for bases p and q which are not powers of a common integer or, equivalently, $\log p / \log q$ is irrational.

Remark

Furstenberg proved some results, and proposed many conjectures, which make precise (in different ways) the concept of “no common structure”.
Invariant sets

Definition

A set $A \subset [0, 1)$ is T_p-invariant if $T_p(A) \subset A$. That is, shifting the p-ary expansion of a point in A gives another point in A.

- If p and q are coprime, then $\{1/q, \ldots, (q - 1)/q\}$ is T_p-invariant.
- $[0, 1)$ is T_p-invariant.
- Let $D \subset \{0, 1, \ldots, p - 1\}$. The set $A = A_{p,D}$ of points whose base p-expansion has only digits from D is T_p-invariant. We call it a p-Cantor set. Example: the middle-thirds Cantor set.
- There is a wild abundance of invariant sets and no classification or description is possible.
Invariant sets

Definition

A set $A \subset [0, 1)$ is T_p-invariant if $T_p(A) \subset A$. That is, shifting the p-ary expansion of a point in A gives another point in A.

- If p and q are coprime, then $\{1/q, \ldots, (q - 1)/q\}$ is T_p-invariant.
- $[0, 1)$ is T_p-invariant.
- Let $D \subset \{0, 1, \ldots, p - 1\}$. The set $A = A_{p,D}$ of points whose base p-expansion has only digits from D is T_p-invariant. We call it a p-Cantor set. Example: the middle-thirds Cantor set.
- There is a wild abundance of invariant sets and no classification or description is possible.
Invariant sets

Definition

A set $A \subset [0, 1)$ is T_p-invariant if $T_p(A) \subset A$. That is, shifting the p-ary expansion of a point in A gives another point in A.

- If p and q are coprime, then $\{1/q, \ldots, (q - 1)/q\}$ is T_p-invariant.
- $[0, 1)$ is T_p-invariant.
- Let $D \subset \{0, 1, \ldots, p - 1\}$. The set $A = A_{p, D}$ of points whose base p-expansion has only digits from D is T_p-invariant. We call it a p-Cantor set. Example: the middle-thirds Cantor set.
- There is a wild abundance of invariant sets and no classification or description is possible.
Invariant sets

Definition

A set \(A \subset [0, 1) \) is \(T_p \)-invariant if \(T_p(A) \subset A \). That is, shifting the \(p \)-ary expansion of a point in \(A \) gives another point in \(A \).

- If \(p \) and \(q \) are coprime, then \(\{ 1/q, \ldots, (q - 1)/q \} \) is \(T_p \)-invariant.
- \([0, 1)\) is \(T_p \)-invariant.
- Let \(D \subset \{ 0, 1, \ldots, p - 1 \} \). The set \(A = A_{p,D} \) of points whose base-\(p \)-expansion has only digits from \(D \) is \(T_p \)-invariant. We call it a \(p \)-Cantor set. Example: the middle-thirds Cantor set.

There is a wild abundance of invariant sets and no classification or description is possible.
Invariant sets

Definition

A set $A \subset [0,1)$ is T_p-invariant if $T_p(A) \subset A$. That is, shifting the p-ary expansion of a point in A gives another point in A.

- If p and q are coprime, then $\{1/q, \ldots, (q-1)/q\}$ is T_p-invariant.
- $[0,1)$ is T_p-invariant.
- Let $D \subset \{0, 1, \ldots, p-1\}$. The set $A = A_{p,D}$ of points whose base p-expansion has only digits from D is T_p-invariant. We call it a p-Cantor set. Example: the middle-thirds Cantor set.
- There is a wild abundance of invariant sets and no classification or description is possible.
Invariant sets and shared structure

Principle (Furstenberg, slightly more concrete version)

If A, B are closed and invariant under T_2, T_3 respectively, then A and B have no common structure.

Theorem (Furstenberg (1967))

If A is jointly invariant under T_2 and T_3, then A is either finite or the whole circle $[0, 1)$.

Remarks

- The theorem is a weak confirmation of the principle since the set A and itself certainly have a lot of common structure!
- One should think of finite sets and the whole circle as sets "without structure".

P. Shmerkin (U.T. Di Tella/CONICET)
Invariant sets and shared structure

Principle (Furstenberg, slightly more concrete version)

If A, B are closed and invariant under T_2, T_3 respectively, then A and B have no common structure.

Theorem (Furstenberg (1967))

If A is jointly invariant under T_2 and T_3, then A is either finite or the whole circle $[0, 1)$.

Remarks

- The theorem is a weak confirmation of the principle since the set A and itself certainly have a lot of common structure!
- One should think of finite sets and the whole circle as sets “without structure”.

P. Shmerkin (U.T. Di Tella/CONICET)
Invariant sets and shared structure

Principle (Furstenberg, slightly more concrete version)

If \(A, B \) are closed and invariant under \(T_2, T_3 \) respectively, then \(A \) and \(B \) have no common structure.

Theorem (Furstenberg (1967))

If \(A \) is jointly invariant under \(T_2 \) and \(T_3 \), then \(A \) is either finite or the whole circle \([0, 1)\).

Remarks

- The theorem is a weak confirmation of the principle since the set \(A \) and itself certainly have a lot of common structure!
- One should think of finite sets and the whole circle as sets “without structure”.

P. Shmerkin (U.T. Di Tella/CONICET)
Invariant sets and shared structure

Principle (Furstenberg, slightly more concrete version)

If A, B are closed and invariant under T_2, T_3 respectively, then A and B have no common structure.

Theorem (Furstenberg (1967))

If A is jointly invariant under T_2 and T_3, then A is either finite or the whole circle $[0, 1)$.

Remarks

- The theorem is a weak confirmation of the principle since the set A and itself certainly have a lot of common structure!
- One should think of finite sets and the whole circle as sets “without structure”.

P. Shmerkin (U.T. Di Tella/CONICET)
Invariant sets and shared structure

Principle (Furstenberg, slightly more concrete version)

If A, B are closed and invariant under T_2, T_3 respectively, then A and B have no common structure.

Theorem (Furstenberg (1967))

If A is jointly invariant under T_2 and T_3, then A is either finite or the whole circle $[0, 1)$.

Remarks

- The theorem is a weak confirmation of the principle since the set A and itself certainly have a lot of common structure!
- One should think of finite sets and the whole circle as sets “without structure”.
A corollary in terms of orbits

Observation

- If x is rational, then the orbit $\{T_2^n T_3^m x\}^{\infty}_{n,m=1}$ is finite.
- If x is irrational, then the orbit $\{T_2^n T_3^m x\}^{\infty}_{n,m=1}$ is infinite (and its closure is invariant under T_2 and T_3).

Corollary (Furstenberg 1967)

If x is irrational, then the orbit $\{T_2^n T_3^m x\}^{\infty}_{n,m=1}$ is dense in $[0, 1)$.
A corollary in terms of orbits

Observation

- If x is rational, then the orbit $\{T_2^n T_3^m x\}_{n,m=1}^\infty$ is finite.
- If x is irrational, then the orbit $\{T_2^n T_3^m x\}_{n,m=1}^\infty$ is infinite (and its closure is invariant under T_2 and T_3).

Corollary (Furstenberg 1967)

If x is irrational, then the orbit $\{T_2^n T_3^m x\}_{n,m=1}^\infty$ is dense in $[0,1)$.
A corollary in terms of orbits

Observation

- If x is rational, then the orbit $\{T_2^n T_3^m x\}_{n,m=1}^\infty$ is finite.
- If x is irrational, then the orbit $\{T_2^n T_3^m x\}_{n,m=1}^\infty$ is infinite (and its closure is invariant under T_2 and T_3).

Corollary (Furstenberg 1967)

If x is irrational, then the orbit $\{T_2^n T_3^m x\}_{n,m=1}^\infty$ is dense in $[0, 1)$.
A corollary in terms of orbits

Observation

- If x is rational, then the orbit $\{T_2^n T_3^m x\}_{n,m=1}^{\infty}$ is finite.
- If x is irrational, then the orbit $\{T_2^n T_3^m x\}_{n,m=1}^{\infty}$ is infinite (and its closure is invariant under T_2 and T_3).

Corollary (Furstenberg 1967)

If x is irrational, then the orbit $\{T_2^n T_3^m x\}_{n,m=1}^{\infty}$ is dense in $[0, 1)$.
Definition

A Borel probability measure μ on $[0, 1)$ is T_p-invariant if

$$\mu(B) = \mu(T_p^{-1}B)$$

for all Borel sets B.

Conjecture (Furstenberg 1967)

If μ is T_2 and T_3 invariant, then μ is a convex combination of Lebesgue measure and an atomic measure supported on rationals.
“The” $\times 2, \times 3$ Furstenberg conjecture

Definition

A Borel probability measure μ on $[0, 1)$ is T_p-invariant if

$$\mu(B) = \mu(T_p^{-1}B)$$

for all Borel sets B.

Conjecture (Furstenberg 1967)

If μ is T_2 and T_3 invariant, then μ is a convex combination of Lebesgue measure and an atomic measure supported on rationals.
How to quantify “shared structure”

1 Furstenberg’s Theorem says that non-trivial T_2 and T_3 invariant sets do not have too much shared structure in the most basic sense: they cannot be equal.

2 How can we quantify shared structure in finer/more quantitative ways? The sets we are interested in are fractal: they are uncountable but of zero Lebesgue measure, and have some form of (sub)-self-similarity.

3 Geometry helps quantify common structure. If two sets $A, B \subset \mathbb{R}$ have no shared structure then the intersection $A \cap B$ should be “as small as possible” (perhaps even after distorting A and/or B in some way).
How to quantify “shared structure”

1. Furstenberg’s Theorem says that non-trivial T_2 and T_3 invariant sets do not have too much shared structure in the most basic sense: they cannot be equal.

2. How can we quantify shared structure in finer/more quantitative ways? The sets we are interested in are fractal: they are uncountable but of zero Lebesgue measure, and have some form of (sub)-self-similarity.

3. Geometry helps quantify common structure. If two sets $A, B \subset \mathbb{R}$ have no shared structure then the intersection $A \cap B$ should be “as small as possible” (perhaps even after distorting A and/or B in some way).
How to quantify “shared structure”

1 Furstenberg’s Theorem says that non-trivial T_2 and T_3 invariant sets do not have too much shared structure in the most basic sense: they cannot be equal.

2 How can we quantify shared structure in finer/more quantitative ways? The sets we are interested in are fractal: they are uncountable but of zero Lebesgue measure, and have some form of (sub)-self-similarity.

3 Geometry helps quantify common structure. If two sets $A, B \subset \mathbb{R}$ have no shared structure then the intersection $A \cap B$ should be “as small as possible” (perhaps even after distorting A and/or B in some way).
Hausdorff Dimension

- Best exponent for coverings of the set by balls of arbitrary (possibly different) radii:
 \[\dim_H(A) = \inf \left\{ s : \inf \sum_i r_i^s : A \subset \bigcup_i B(x_i, r_i) \right\} = 0 \]

- Gives a notion of “size” for sets in \(\mathbb{R}^d \), varies between 0 and \(d \), gives the right size to smooth objects, is invariant under bi-Lipschitz maps, is countably stable, assigns size \(\log 2 / \log 3 \) to the middle-thirds Cantor set,...

- If \(A \subset T \) is \(T_p \)-invariant, then \(\dim_H A = \frac{h_{\text{top}}(A)}{\log p} \).

- If \(A = A_{p,D} \) is a \(p \)-Cantor set, then \(\dim_H A = \frac{\log |D|}{\log p} \).
Hausdorff Dimension

- Best exponent for coverings of the set by balls of arbitrary (possibly different) radii:

\[\dim_H(A) = \inf \left\{ s : \inf \left\{ \sum_i r_i^s : A \subset \bigcup_i B(x_i, r_i) \right\} = 0 \right\} \]

- Gives a notion of “size” for sets in \(\mathbb{R}^d \), varies between 0 and \(d \), gives the right size to smooth objects, is invariant under bi-Lipschitz maps, is countably stable, assigns size \(\log 2 / \log 3 \) to the middle-thirds Cantor set,...

- If \(A \subset \mathbb{T} \) is \(T_p \)-invariant, then \(\dim_H A = h_{\text{top}}(A) / \log p \).

- If \(A = A_{p,D} \) is a \(p \)-Cantor set, then \(\dim_H A = \log |D| / \log p \).
Hausdorff Dimension

- Best exponent for coverings of the set by balls of arbitrary (possibly different) radii:
 \[\dim_H(A) = \inf \left\{ s : \inf \left\{ \sum_i r_i^s : A \subset \bigcup_i B(x_i, r_i) \right\} = 0 \right\} \]

- Gives a notion of “size” for sets in \(\mathbb{R}^d \), varies between 0 and \(d \), gives the right size to smooth objects, is invariant under bi-Lipschitz maps, is countably stable, assigns size \(\log 2 / \log 3 \) to the middle-thirds Cantor set,...

- If \(A \subset \mathbb{T} \) is \(T_p \)-invariant, then \(\dim_H A = h_{\text{top}}(A) / \log p \).
- If \(A = A_{\rho,D} \) is a \(p \)-Cantor set, then \(\dim_H A = \log |D| / \log p \).
Hausdorff Dimension

- Best exponent for coverings of the set by balls of arbitrary (possibly different) radii:

\[\dim_H(A) = \inf \left\{ s : \inf \left\{ \sum_i r_i^s : A \subset \bigcup_i B(x_i, r_i) \right\} = 0 \right\} \]

- Gives a notion of “size” for sets in \(\mathbb{R}^d \), varies between 0 and \(d \), gives the right size to smooth objects, is invariant under bi-Lipschitz maps, is countably stable, assigns size \(\log 2 / \log 3 \) to the middle-thirds Cantor set, ...

- If \(A \subset \mathbb{T} \) is \(T_p \)-invariant, then \(\dim_H A = h_{\text{top}}(A) / \log p \).

- If \(A = A_{p,D} \) is a \(p \)-Cantor set, then \(\dim_H A = \log |D| / \log p \).
Dimensions of intersections

Question

If $A, B \subset \mathbb{R}^d$, what do we expect $\dim_H(A \cap B)$ to be “typically”?

Remark

If A, B are affine planes in \mathbb{R}^d in general position, then

$$\dim(A \cap B) = \min(\dim(A) + \dim(B) - d, 0).$$

Theorem (Marstrand 1954)

If $A, B \subset \mathbb{R}$ are “nice” sets, then for almost all affine maps $f : \mathbb{R} \to \mathbb{R}$,

$$\dim_H(A \cap f(B)) \leq \min(\dim_H(A) + \dim_H(B) - 1, 0),$$

and this does not hold for any smaller number on the RHS.
Dimensions of intersections

Question

If $A, B \subset \mathbb{R}^d$, what do we expect $\dim_H(A \cap B)$ to be “typically”?

Remark

If A, B are affine planes in \mathbb{R}^d in general position, then

$$\dim(A \cap B) = \min(\dim(A) + \dim(B) - d, 0).$$

Theorem (Marstrand 1954)

If $A, B \subset \mathbb{R}$ are “nice” sets, then for almost all affine maps $f : \mathbb{R} \to \mathbb{R}$,

$$\dim_H(A \cap f(B)) \leq \min(\dim_H(A) + \dim_H(B) - 1, 0),$$

and this does not hold for any smaller number on the RHS.
Dimensions of intersections

Question

If $A, B \subset \mathbb{R}^d$, what do we expect $\dim_{H}(A \cap B)$ to be “typically”?

Remark

If A, B are affine planes in \mathbb{R}^d in general position, then

$$\dim(A \cap B) = \min(\dim(A) + \dim(B) - d, 0).$$

Theorem (Marstrand 1954)

If $A, B \subset \mathbb{R}$ are “nice” sets, then for almost all affine maps $f : \mathbb{R} \to \mathbb{R}$,

$$\dim_{H}(A \cap f(B)) \leq \min(\dim_{H}(A) + \dim_{H}(B) - 1, 0),$$

and this does not hold for any smaller number on the RHS.
Conjecture (Furstenberg 1969)

Let A, B be closed and invariant under T_p, T_q (seen as subsets of \mathbb{R}). Then for every affine bijection $f : \mathbb{R} \to \mathbb{R}$,

$$\dim_H(A \cap f(B)) \leq \max(\dim_H(A) + \dim_H(B) - 1, 0).$$
Remarks

Furstenberg’s intersection conjecture gave rise to the study of “Furstenberg sets”, containing a set of dimension \(\alpha \) in (almost-)every direction. Finding the smallest possible dimension is such sets is a wide open problem.

Theorem (Furstenberg 1969, Wolff 2000)

The conjecture holds if \(\dim_H(A) + \dim_H(B) \leq 1/2 \). More generally, one always has

\[
\dim_H(A \cap f(B)) \leq \max(\dim_H(A) + \dim_H(B) - 1/2, 0).
\]

Remark

No example of invariant sets \(A, B \) for which the conjecture holds with \(\dim_H(A) + \dim_H(B) > 1/2 \) was known.
Previous results on Furstenberg’s conjecture

Remark

Furstenberg’s intersection conjecture gave rise to the study of “Furstenberg sets”, containing a set of dimension α in (almost-)every direction. Finding the smallest possible dimension is such sets is a wide open problem.

Theorem (Furstenberg 1969, Wolff 2000)

The conjecture holds if $\dim_H(A) + \dim_H(B) \leq 1/2$. More generally, one always has

$$\dim_H(A \cap f(B)) \leq \max(\dim_H(A) + \dim_H(B) - 1/2, 0).$$

Remark

No example of invariant sets A, B for which the conjecture holds with $\dim_H(A) + \dim_H(B) > 1/2$ was known.
Previous results on Furstenberg’s conjecture

Remark
Furstenberg’s intersection conjecture gave rise to the study of “Furstenberg sets”, containing a set of dimension α in (almost-)every direction. Finding the smallest possible dimension is such sets is a wide open problem.

Theorem (Furstenberg 1969, Wolff 2000)
The conjecture holds if $\dim_H(A) + \dim_H(B) \leq 1/2$. More generally, one always has

$$\dim_H(A \cap f(B)) \leq \max(\dim_H(A) + \dim_H(B) - 1/2, 0).$$

Remark
No example of invariant sets A, B for which the conjecture holds with $\dim_H(A) + \dim_H(B) > 1/2$ was known.
Solution to Furstenberg’s intersection conjecture

Theorem (P.S. 2016)

Furstenberg’s intersection conjecture is true.

Remark

Meng Wu independently found another proof. The proofs are completely different. Wu’s proof is purely ergodic theoretical, using CP-processes (introduced by Furstenberg in the paper where he stated the conjecture) and Sinai’s factor theorem.

Remark

The proof also gives new results about slices of fractals and the dimensions and abolute continuity of Bernoulli convolutions (and other self-similar measures).
Solution to Furstenberg’s intersection conjecture

Theorem (P.S. 2016)

Furstenberg’s intersection conjecture is true.

Remark

Meng Wu independently found another proof. Wu’s proof is purely ergodic theoretical, using CP-processes (introduced by Furstenberg in the paper where he stated the conjecture) and Sinai’s factor theorem.

Remark

The proof also gives new results about slices of fractals and the dimensions and absolute continuity of Bernoulli convolutions (and other self-similar measures).
Solution to Furstenberg’s intersection conjecture

Theorem (P.S. 2016)

Furstenberg’s intersection conjecture is true.

Remark

Meng Wu independently found another proof. The proofs are completely different. Wu’s proof is purely ergodic theoretical, using CP-processes (introduced by Furstenberg in the paper where he stated the conjecture) and Sinai’s factor theorem.

Remark

The proof also gives new results about slices of fractals and the dimensions and absolute continuity of Bernoulli convolutions (and other self-similar measures).
A picture!

\[A \times B. \]
$A \times B \cap \text{diagonal} = A \cap B.$
$A \times B \cap \text{any line} = A \cap \text{affine image of } B.$
Tools involved in the proof

1. **Additive combinatorics**: an inverse theorem for the L^q norm of the convolution of two finitely supported measures (Balog-Szemerédi-Gowers Theorem, Bourgain’s additive part of discretized sum-product results).

2. **Ergodic theory**: key role played by subadditive cocycle over an irrational rotation (cocycle borrowed from Nazarov-Peres-S. 2012, uses the proof of the subadditive ergodic theorem given by Katznelson-Weiss).

3. **Multifractal analysis** (L^q spectrum, regularity at points of differentiability).

4. General scheme of proof follows **Mike Hochman**’s strategy in his recent landmark paper on the dimensions of self-similar measures.
1. **Additive combinatorics**: an inverse theorem for the L^q norm of the convolution of two finitely supported measures (Balog-Szemerédi-Gowers Theorem, Bourgain’s additive part of discretized sum-product results).

2. **Ergodic theory**: key role played by subadditive cocycle over an irrational rotation (cocycle borrowed from Nazarov-Peres-S. 2012, uses the proof of the subadditive ergodic theorem given by Katznelson-Weiss).

3. **Multifractal analysis** (L^q spectrum, regularity at points of differentiability).

4. General scheme of proof follows **Mike Hochman**’s strategy in his recent landmark paper on the dimensions of self-similar measures.
Tools involved in the proof

1. **Additive combinatorics**: an inverse theorem for the L^q norm of the convolution of two finitely supported measures (Balog-Szemerédi-Gowers Theorem, Bourgain’s additive part of discretized sum-product results).

2. **Ergodic theory**: key role played by subadditive cocycle over an irrational rotation (cocycle borrowed from Nazarov-Peres-S. 2012, uses the proof of the subadditive ergodic theorem given by Katznelson-Weiss).

3. **Multifractal analysis** (L^q spectrum, regularity at points of differentiability).

4. General scheme of proof follows Mike Hochman’s strategy in his recent landmark paper on the dimensions of self-similar measures.
Additive combinatorics: an inverse theorem for the L^q norm of the convolution of two finitely supported measures (Balog-Szemerédi-Gowers Theorem, Bourgain’s additive part of discretized sum-product results).

Ergodic theory: key role played by subadditive cocycle over an irrational rotation (cocycle borrowed from Nazarov-Peres-S. 2012, uses the proof of the subadditive ergodic theorem given by Katznelson-Weiss).

Multifractal analysis (L^q spectrum, regularity at points of differentiability).

General scheme of proof follows Mike Hochman’s strategy in his recent landmark paper on the dimensions of self-similar measures.
From now on a measure is a probability measure supported on $2^{-m} \mathbb{Z} \cap [0, 1) = \{ j2^{-m} : 0 \leq j < 2^m \}$ for some large m.

The L^q norm of μ ($q \geq 1$) is

$$\| \mu \|_q^q = \sum_x \mu(x)^q, \quad \| \mu \|_\infty = \max_x \mu(x).$$

$$2^{-m/q'} \leq \| \mu \|_q \leq 1,$$

with a “small” L^q norm corresponding to “uniform” measures and a large L^q norm to “localized” measures.
From now on a measure is a probability measure supported on $2^{-m} \mathbb{Z} \cap [0, 1) = \{ j2^{-m} : 0 \leq j < 2^m \}$ for some large m.

The L^q norm of μ ($q \geq 1$) is

$$\| \mu \|^q_q = \sum_x \mu(x)^q, \quad \| \mu \|_\infty = \max_x \mu(x).$$

$$2^{-m/q'} \leq \| \mu \|_q \leq 1,$$

with a “small” L^q norm corresponding to “uniform” measures and a large L^q norm to “localized” measures.
From now on a **measure** is a probability measure supported on
\[2^{-m}\mathbb{Z} \cap [0, 1) = \{j2^{-m} : 0 \leq j < 2^m\}\] for some large \(m\).

The \(L^q\) norm of \(\mu\) \((q \geq 1)\) is

\[\|\mu\|_q = \sum_x \mu(x)^q, \quad \|\mu\|_\infty = \max_x \mu(x).\]

with a “small” \(L^q\) norm corresponding to “uniform” measures and
a large \(L^q\) norm to “localized” measures.

\[2^{-m/q'} \leq \|\mu\|_q \leq 1,\]
L^q norms of convolutions

The convolution of μ, ν is

$$(\mu \ast \nu)(x) = \sum_{a+b=x} \mu(a)\nu(b).$$

(Addition modulo 1, although it makes no difference)

Young’s inequality (just convexity of $t \mapsto t^q$)

$$\|\mu \ast \nu\|_q \leq \|\mu\|_q \|\nu\|_1 = \|\mu\|_q.$$

When is there (almost) equality in Young’s inequality? (for $1 < q < \infty$). Two easy situations:

1. μ is (almost) uniform.
2. ν is (almost) an atom.

There are less trivial examples: let A be a set that is “uniform” on some scales and “an atom” at the complementary scales. Then $\mu = 1_A/|A|$ satisfies $\|\mu \ast \mu\|_q \sim \|\mu\|_q$.

P. Shmerkin (U.T. Di Tella/CONICET)
\(L^q \) norms of convolutions

- The convolution of \(\mu, \nu \) is
 \[
 (\mu \ast \nu)(x) = \sum_{a+b=x} \mu(a)\nu(b).
 \]
 (Addition modulo 1, although it makes no difference)

- Young’s inequality (just convexity of \(t \mapsto t^q \))
 \[
 \|\mu \ast \nu\|_q \leq \|\mu\|_q \|\nu\|_1 = \|\mu\|_q.
 \]

When is there (almost) equality in Young’s inequality? (for \(1 < q < \infty \)). Two easy situations:

1. \(\mu \) is (almost) uniform.
2. \(\nu \) is (almost) an atom.

There are less trivial examples: let \(A \) be a set that is “uniform” on some scales and “an atom” at the complementary scales. Then \(\mu = 1_A/|A| \) satisfies \(\|\mu \ast \mu\|_q \sim \|\mu\|_q \).
L^q norms of convolutions

The convolution of μ, ν is

$$(\mu * \nu)(x) = \sum_{a+b=x} \mu(a)\nu(b).$$

(Addition modulo 1, although it makes no difference)

Young’s inequality (just convexity of $t \mapsto t^q$)

$$\|\mu * \nu\|_q \leq \|\mu\|_q \|\nu\|_1 = \|\mu\|_q.$$

When is there (almost) equality in Young’s inequality? (for $1 < q < \infty$). Two easy situations:

1. μ is (almost) uniform.
2. ν is (almost) an atom.

There are less trivial examples: let A be a set that is “uniform” on some scales and “an atom” at the complementary scales. Then $\mu = 1_A/|A|$ satisfies $\|\mu * \mu\|_q \sim \|\mu\|_q$.

P. Shmerkin (U.T. Di Tella/CONICET)
The convolution of μ, ν is

$$(\mu * \nu)(x) = \sum_{a+b=x} \mu(a)\nu(b).$$

(Addition modulo 1, although it makes no difference)

Young's inequality (just convexity of $t \mapsto t^q$)

$$\|\mu * \nu\|_q \leq \|\mu\|_q \|\nu\|_1 = \|\mu\|_q.$$

When is there (almost) equality in Young’s inequality? (for $1 < q < \infty$). Two easy situations:

1. μ is (almost) uniform.
2. ν is (almost) an atom.

There are less trivial examples: let A be a set that is “uniform” on some scales and “an atom” at the complementary scales. Then $\mu = \mathbf{1}_A/|A|$ satisfies $\|\mu * \mu\|_q \sim \|\mu\|_q$.

P. Shmerkin (U.T. Di Tella/CONICET)
L^q norms of convolutions

The convolution of μ, ν is

$$(\mu * \nu)(x) = \sum_{a+b=x} \mu(a)\nu(b).$$

(Addition modulo 1, although it makes no difference)

Young’s inequality (just convexity of $t \mapsto t^q$)

$$\|\mu * \nu\|_q \leq \|\mu\|_q \|\nu\|_1 = \|\mu\|_q.$$

When is there (almost) equality in Young’s inequality? (for $1 < q < \infty$). Two easy situations:

1. μ is (almost) uniform.
2. ν is (almost) an atom.

There are less trivial examples: let A be a set that is “uniform” on some scales and “an atom” at the complementary scales. Then $\mu = 1_A/|A|$ satisfies $\|\mu * \mu\|_q \sim \|\mu\|_q$.

P. Shmerkin (U.T. Di Tella/CONICET)
The convolution of μ, ν is

$$(\mu \ast \nu)(x) = \sum_{a+b=x} \mu(a)\nu(b).$$

(Addition modulo 1, although it makes no difference)

Young's inequality (just convexity of $t \mapsto t^q$)

$$\|\mu \ast \nu\|_q \leq \|\mu\|_q \|\nu\|_1 = \|\mu\|_q.$$
An inverse theorem for the flattening of L^q norms

Theorem (Informal version)

Let μ, ν be measures such that

$$\|\mu \ast \nu\|_q \geq 2^{-\varepsilon m} \|\mu\|_q.$$

Then there are “regular” sets A, B of “large” μ, ν-measure such that in a “multiscale decomposition”, on each scale either “A is almost uniform” or “B is an atom”.

P. Shmerkin (U.T. Di Tella/CONICET)
Trees, branching, regular sets

Definition

Suppose $m = \ell m'$ for some (large) ℓ, m'. Given a set $A \subset m\mathbb{Z} \cap [0,1)$, we consider the associated base-2^ℓ tree T_A: its vertices of level j are those dyadic intervals I of length $(2^{-\ell})^j$ that intersect A.

Definition

Given a sequence $k = (k_1, \ldots, k_{m'})$ with $k_i \in \{1, \ldots, \ell\}$, we say that A is k-regular if the following holds:

For each dyadic interval of I of length $2^{-j\ell}$ that intersects A, there are exactly k_{j+1} intervals J of length $2^{-(j+1)\ell}$ that intersect $A \cap I$.

In other words, for the tree T_A, each vertex of level j has exactly k_{j+1} children.
Definition

Suppose $m = \ell m'$ for some (large) ℓ, m'. Given a set $A \subset m\mathbb{Z} \cap [0, 1)$, we consider the associated base-2^ℓ tree T_A: its vertices of level j are those dyadic intervals I of length $(2^{-\ell})^j$ that intersect A.

Definition

Given a sequence $k = (k_1, \ldots, k_{m'})$ with $k_i \in \{1, \ldots, \ell\}$, we say that A is k-regular if the following holds:
For each dyadic interval of I of length $2^{-j\ell}$ that intersects A, there are exactly k_{j+1} intervals J of length $2^{-(j+1)\ell}$ that intersect $A \cap I$.
In other words, for the tree T_A, each vertex of level j has exactly k_{j+1} children.
The inverse theorem with more details

Theorem (P.S. 2016)

Given $\delta > 0$, there is $\varepsilon > 0$ such that the following holds for ℓ, m' large enough. Let $m = \ell m'$. If

$$\|\mu * \nu\|_q \geq 2^{-\varepsilon m} \|\mu\|_q,$$

then there are sets A, B such that:

- $\|\mu|_A\|_q \geq 2^{-\delta m} \|\mu\|_q, \nu(B) \geq 2^{-\delta m} \|\nu\|_1$.
- $\mu(x) \leq 2\mu(y)$ for all $x, y \in A$, same for ν and B.
- A and B are k-regular and k' regular respectively for some sequences $(k_1, \ldots, k_{m'})$, $(k'_1, \ldots, k'_{m'})$.
- For each j, Either $k_j \geq 2^{(1-\delta)\ell}$ or $k'_j = 1$.

P. Shmerkin (U.T. Di Tella/CONICET)
The inverse theorem with more details

Theorem (P.S. 2016)

Given $\delta > 0$, there is $\varepsilon > 0$ such that the following holds for ℓ, m' large enough. Let $m = \ell m'$. If

$$\|\mu * \nu\|_q \geq 2^{-\varepsilon m} \|\mu\|_q,$$

then there are sets A, B such that:

- $\|\mu|_A\|_q \geq 2^{-\delta m} \|\mu\|_q, \nu(B) \geq 2^{-\delta m} \|\nu\|_1$.
- $\mu(x) \leq 2\mu(y)$ for all $x, y \in A$, same for ν and B.
- A and B are k-regular and k' regular respectively for some sequences $(k_1, \ldots, k_{m'})$, $(k'_1, \ldots, k'_{m'})$.
- For each j, either $k_j \geq 2^{(1-\delta)\ell}$ or $k'_j = 1$.
The inverse theorem with more details

Theorem (P.S. 2016)

Given \(\delta > 0 \), there is \(\varepsilon > 0 \) such that the following holds for \(\ell, m' \) large enough. Let \(m = \ell m' \). If

\[
\| \mu * \nu \|_q \geq 2^{-\varepsilon m} \| \mu \|_q,
\]

then there are sets \(A, B \) such that:

- \(\| \mu |_A \|_q \geq 2^{-\delta m} \| \mu \|_q \), \(\nu(B) \geq 2^{-\delta m} \| \nu \|_1 \).
- \(\mu(x) \leq 2\mu(y) \) for all \(x, y \in A \), same for \(\nu \) and \(B \).
- \(A \) and \(B \) are \(k \)-regular and \(k' \) regular respectively for some sequences \((k_1, \ldots, k_m) \), \((k'_1, \ldots, k'_{m'}) \).
- For each \(j \),

 Either \(k_j \geq 2^{(1-\delta)\ell} \) or \(k_j' = 1 \).
The inverse theorem with more details

Theorem (P.S. 2016)

Given $\delta > 0$, there is $\varepsilon > 0$ such that the following holds for ℓ, m' large enough. Let $m = \ell m'$. If

$$\|\mu \ast \nu\|_q \geq 2^{-\varepsilon m} \|\mu\|_q,$$

then there are sets A, B such that:

- $\|\mu|_A\|_q \geq 2^{-\delta m} \|\mu\|_q$, $\nu(B) \geq 2^{-\delta m} \|\nu\|_1$.
- $\mu(x) \leq 2\mu(y)$ for all $x, y \in A$, same for ν and B.
- A and B are k-regular and k' regular respectively for some sequences (k_1, \ldots, k_m), $(k'_1, \ldots, k'_{m'})$.
- For each j, either $k_j \geq 2^{(1-\delta)\ell}$ or $k'_j = 1$.

P. Shmerkin (U.T. Di Tella/CONICET)
The inverse theorem with more details

Theorem (P.S. 2016)

Given \(\delta > 0 \), there is \(\varepsilon > 0 \) such that the following holds for \(\ell, m' \) large enough. Let \(m = \ell m' \). If

\[
\|\mu * \nu\|_q \geq 2^{-\varepsilon m} \|\mu\|_q,
\]

then there are sets \(A, B \) such that:

- \(\|\mu|_A\|_q \geq 2^{-\delta m} \|\mu\|_q, \nu(B) \geq 2^{-\delta m} \|\nu\|_1 \).
- \(\mu(x) \leq 2\mu(y) \) for all \(x, y \in A \), same for \(\nu \) and \(B \).
- \(A \) and \(B \) are \(k \)-regular and \(k' \) regular respectively for some sequences \((k_1, \ldots, k_{m'}) \), \((k'_1, \ldots, k'_{m'}) \).
- For each \(j \),

\[
\text{Either } k_j \geq 2^{(1-\delta)\ell} \text{ or } k'_j = 1.
\]
A corollary

Definition

A set $B \subset [0, 1]$ is η-porous if for every interval $I \subset [0, 1]$ there is an interval $J \subset I \cap [0, 1] \setminus B$ with $|J| \geq \eta|I|$.

If $B \subset 2^{-m}\mathbb{Z} \cap [0, 1]$, then we only require this for $|I| \geq 2^{-m}/\eta$.

Corollary

If $\text{supp}(\mu)$ is η-porous, then either

$$\|\nu\|_q \geq 2^{-\delta m},$$

or

$$\|\mu \ast \nu\|_q \leq 2^{-\varepsilon m}\|\mu\|_q,$$

where $\varepsilon = \varepsilon(\eta, \delta, q) > 0$.

In particular, this holds if μ is a (discretization of) an Ahlfors-regular measure, generalizing a result of Dyatlov-Zahl.
A corollary

Definition

A set $B \subset [0, 1]$ is η-porous if for every interval $I \subset [0, 1]$ there is an interval $J \subset I \cap [0, 1] \setminus B$ with $|J| \geq \eta|I|$.

If $B \subset 2^{-m}\mathbb{Z} \cap [0, 1]$, then we only require this for $|I| \geq 2^{-m}/\eta$.

Corollary

If $\text{supp}(\mu)$ *is* η-*porous, then either*

$$\|\nu\|_q \geq 2^{-\delta m},$$

or

$$\|\mu * \nu\|_q \leq 2^{-\varepsilon m} \|\mu\|_q,$$

where $\varepsilon = \varepsilon(\eta, \delta, q) > 0$.

In particular, this holds if μ *is a (discretization of) an Ahlfors-regular measure, generalizing a result of Dyatlov-Zahl.*
Two main tools in the proof of the inverse theorem

Asymmetric Balog-Szemerédi-Gowers Theorem (Tao-Vu): If \(A, B \subset 2^{-m}\mathbb{Z} \cap [0, 1)\) are such that

\[
\|1_A \ast 1_B\|_2 \geq 2^{-\delta m} \|1_A\|_2,
\]

then there are subsets \(A' \subset A, B' \subset B\) such that \(|A'| \geq 2^{-\varepsilon}|A|, |B'| \geq 2^{-\varepsilon}|B|,\) and

\[
|A' + B'| \leq 2^{\varepsilon m}|A'|.
\]

Bourgain’s additive part of sum-product machinery: If \(|A' + A'| \leq 2^{\varepsilon m}|A'|\), then \(A'\) contains a \(k\)-regular subset \(A''\) such that:

1. \(|A''| \geq 2^{-\varepsilon' m}|A'|\),
2. For each \(j \in \{1, \ldots, m\}\), either \(k_j = 1\) or \(k_j \geq 2^{(1-\varepsilon')\ell}\).
Two main tools in the proof of the inverse theorem

Asymmetric Balog-Szemerédi-Gowers Theorem (Tao-Vu): If \(A, B \subset 2^{-m}\mathbb{Z} \cap [0, 1) \) are such that

\[
\|1_A \ast 1_B\|_2 \geq 2^{-\delta m} \|1_A\|_2,
\]

then there are subsets \(A' \subset A, B' \subset B \) such that \(|A'| \geq 2^{-\varepsilon}|A|, |B'| \geq 2^{-\varepsilon}|B| \), and \(|A' + B'| \leq 2^{\varepsilon m}|A'| \).

Bourgain’s additive part of sum-product machinery: If \(|A' + A'| \leq 2^{\varepsilon m}|A'| \), then \(A' \) contains a \(k \)-regular subset \(A'' \) such that:

1. \(|A''| \geq 2^{-\varepsilon' m}|A'| \),
2. For each \(j \in \{1, \ldots, m'\} \), either \(k_j = 1 \) or \(k_j \geq 2^{(1-\varepsilon')\ell} \).
Two main tools in the proof of the inverse theorem

Asymmetric Balog-Szemerédi-Gowers Theorem (Tao-Vu): If
\[A, B \subset 2^{-m} \mathbb{Z} \cap [0, 1) \] are such that
\[\|1_A \ast 1_B\|_2 \geq 2^{-\delta m} \|1_A\|_2, \]
then there are subsets \(A' \subset A, B' \subset B \) such that
\[|A'| \geq 2^{-\varepsilon}|A|, \quad |B'| \geq 2^{-\varepsilon}|B|, \] and
\[|A' + B'| \leq 2^{\varepsilon m}|A'|. \]

Bourgain’s additive part of sum-product machinery: If
\[|A' + A'| \leq 2^{\varepsilon m}|A'|, \] then \(A' \) contains a \(k \)-regular subset \(A'' \) such that:
1. \[|A''| \geq 2^{-\varepsilon'|A'|}, \]
2. For each \(j \in \{1, \ldots, m'\} \), either \(k_j = 1 \) or \(k_j \geq 2^{(1-\varepsilon')\ell}. \)
Two main tools in the proof of the inverse theorem

Asymmetric Balog-Szemerédi-Gowers Theorem (Tao-Vu): If $A, B \subset 2^{-m}\mathbb{Z} \cap [0, 1)$ are such that

$$\|1_A \ast 1_B\|_2 \geq 2^{-\delta m} \|1_A\|_2,$$

then there are subsets $A' \subset A$, $B' \subset B$ such that $|A'| \geq 2^{-\varepsilon}|A|$, $|B'| \geq 2^{-\varepsilon}|B|$, and

$$|A' + B'| \leq 2^{\varepsilon m}|A'|.$$

Bourgain's additive part of sum-product machinery: If $|A' + A'| \leq 2^{\varepsilon m}|A'|$, then A' contains a k-regular subset A'' such that:

1. $|A''| \geq 2^{-\varepsilon' m}|A'|$,
2. For each $j \in \{1, \ldots, m'\}$, either $k_j = 1$ or $k_j \geq 2^{(1-\varepsilon')\ell}$.
Many thanks!!!