*student author, **postdoc author
Published/In Press
44. Lenz*, B.L., Griffith, W.A., and Sawyer, D.E. (2023) Impact-Induced Seafloor Deformation from Submarine Landslides: Diagnostic of Slide Velocity? Geophysical Research Letters, accepted.
43. Braunagel*, M. J., Griffith, W. A., Biek, R. F., Hacker, D. B., Rowley, P. D., Malone, D. H., et al. (2023). Structural relationships across the Sevier gravity slide of southwest Utah and implications for catastrophic translation and emplacement processes of long runout landslides. Geochemistry, Geophysics, Geosystems, 24, e2022GC010783. https://doi.org/10.1029/2022GC010783Received 10 NOV 2022Accepted 8 MAR 202310.1029/2022GC010783.
42. Lazari, F., Castagna, A., Nielsen, S., Griffith, A., Pennacchioni, G., Gomila, R., Resor, P., Cornelio, C. and Di Toro, G., (2023). Frictional power dissipation in a seismic ancient fault. Earth and Planetary Science Letters, 607, p.118057. https://doi.org/10.1016/j.epsl.2023.118057.
41. Holliday, M. E., Rivera, T., Jicha, B., Trayler, R. B., Biek, R. F., Braunagel, M. J., Griffith, W. A., Hacker, D. B., Malone, D. H., & Mayback, D. F. (2023). Emplacement age of the Markagunt gravity slide in southwestern Utah, USA. Terra Nova, 00, 1–7. https://doi.org/10.1111/ter.12630.
40. Smith*, Z. D., & Griffith, W. A. (2022). Evolution of pulverized fault zone rocks by dynamic tensile loading during successive earthquakes. Geophysical Research Letters, 49(19), e2022GL099971, https://doi.org/10.1029/2022GL099971.
39. Smith*, Z. D., & Griffith, W. A. (2022). Lithological controls on fault damage zone development by coseismic tensile loading. Tectonophysics, 838, 229471, https://doi.org/10.1016/j.tecto.2022.229471.
38. Mayback*, D. F., Braunagel, M. J., Malone, D. H., Griffith, W. A., Holliday, M. E., Rivera, T. A., Biek, R. F., Hacker, D. B., & Rowley, P. D. (2022). The concept of tectonic provenance: Case study of the gigantic Markagunt gravity slide basal layer. Terra Nova, 34, 449– 457. https://doi.org/10.1111/ter.12608
37. Braunagel*, M.J. and Griffith, W.A. (2022), Microstructural Controls on Mixed Mode Dynamic Fracture Propagation in Crystalline and Porous Granular Rocks, Journal of Geophysical Research: Solid Earth, https://doi.org/10.1029/2021JB022528.
36. Carter, S. C., Griffith, E. M., Jorgensen, T. A., Coifman, K. G., & Griffith, W. A. (2021). Highlighting altruism in geoscience careers aligns with diverse US student ideals better than emphasizing working outdoors. Communications Earth & Environment, 2(1), 1-7, https://doi.org/10.1038/s43247-021-00287-4.
35. Pearce, R.K., Sánchez de la Muela, A., Moorkamp, M., Hammond, J.O., Mitchell, T.M., Cembrano, J., Araya Vargas, J., Meredith, P.G., Iturrieta, P., Pérez‐Estay, N., Marshall, N.R., Yañez, G., Griffith,W.A., Marquardt, C., Stanton-Yonge, A., Núñez, R. (2020). Reactivation of fault systems by compartmentalized hydrothermal fluids in the Southern Andes revealed by magnetotelluric and seismic data. Tectonics, 39(12), p.e2019TC005997, https://doi.org/10.1029/2019TC005997.
34. Braunagel*, M.J and Griffith, W.A. (2020). A Split Hopkinson Pressure Bar Method for Controlled Rapid Stress Cycling using an Oscillating Double Striker Bar, Rock Mechanics and Rock Engineering, 3, p. 3845–3851 https://doi.org/10.1007/s00603-020-02124-0.
33. Stanton-Yonge, A., Cembrano, J., Griffith, W. A., Jensen, E., & Mitchell, T. M. (2020). Self-similar length-displacement scaling achieved by scale-dependent growth processes: Evidence from the Atacama Fault System. Journal of Structural Geology, 133, https://doi.org/10.1016/j.jsg.2020.103993 (pdf)
32. Braunagel, M. J.*, & Griffith, W. A. (2019). The Effect of Dynamic Stress Cycling on the Compressive Strength of Rocks. Geophysical Research Letters, v. 46, p 6479-6486, https://doi.org/10.1029/2019GL082723 (pdf)
31. Ghaffari, H. O., Griffith, W. A., & Barber, T. J.* (2019). Energy delocalization during dynamic rock fragmentation. Geophysical Journal International, 217(2), 1034-1046 (pdf).
30. Ghaffari, H.O., Griffith, W.A. & Pec, M. Solitonic State in Microscopic Dynamic Failures. Scientific Reports, 9, 1967 (2019). https://doi.org/10.1038/s41598-018-38037-w (pdf)
29. Pan, E., Griffith, W. A., & Liu, H., 2018. Effects of generally anisotropic crustal rocks on fault-induced displacement and strain fields. Geodesy and Geodynamics, https://doi.org/10.1016/j.geog.2018.05.004. (pdf)
28. Griffith, W.A., R.C. Julien*, H.O. Ghaffari**, and T.J. Barber, 2018, A tensile origin for pulverized fault rocks, Journal of Geophysical Research: Solid Earth, 123. https://doi.org/10.1029/2018JB015786 (pdf)
27. Barber, Troy J.* and W.A. Griffith, 2017, Experimental constraints on dynamic pulverization as a dissipative process during seismic slip, Philosophical Transactions of the Royal Society A, 375: 20160002. http://dx.doi.org/10.1098/rsta.2016.0002 (pdf).
26. Ghaffari, H.O.**, W.A. Griffith, and P. Benson, 2017, Microscopic evolution of volcanic hybrid laboratory earthquakes, Nature Scientific Reports, 7, 40560, doi: 10.1038/srep40560 (pdf).
25. Griffith, W. A., 2016, Research Focus: How dynamic weakening makes faults stronger: The role of melting in post-seismic healing, Geology, v. 44; no. 12; p. 1063–1064, doi:10.1130/focus122016.1
(pdf).
24. Stanton-Yonge, A.*, W. A. Griffith, J. Cembrano, R. St Julien*, and P. Iturrieta, 2016,Tectonic role of margin-parallel and margin-transverse structures during oblique subduction in the Southern Volcanic Zone of the Andes: Insights from Boundary Element Modeling, Tectonics, doi: 10.1002/2016TC004226 (pdf).
23. H.O. Ghaffari**, W.A. Griffith, P. Benson, K. Xia, and R.P. Young, 2016, Observation of the Kibble-Zurek mechanism in microscopic acoustic crackling noises, Nature Scientific Reports, doi:10.1038/srep21210 (pdf).
22. Beyer, J.L.* and W. A. Griffith, 2016, Influence of mechanical stratigraphy on clastic injectite growth at Sheep Mountain Anticline, WY: A case study of natural hydraulic fracture containment, Geosphere, 35, doi:10.1002/2016TC004226 (pdf) .
21. Elizalde, C.*, W. A. Grifith, and T. Miller, 2016, Thrust fault nucleation due to heterogeneous bedding plane slip: Evidence from an Ohio coal mine, Engineering Geology, doi.org/10.1016/j.enggeo.2016.03.001 (pdf).
20. Griffith, W.A. and V. Prakash, 2015, Integrating field observations and fracture mechanics models to constrain seismic source parameters for ancient earthquakes, Geology, 43(8), doi:10.1130/G36773.1 (pdf).
19. Pan, E., A. Molavi Tabrizi, A. Sangghaleh, and W.A. Griffith, 2015, Displacement and stress fields due to finite faults and opening-mode fractures in an anisotropic elastic half-space, Geophysical Journal International, 203 (2): 1193-1206, doi: 10.1093/gji/ggv362 (pdf).
18. Rowe, C.D. and W.A. Griffith, 2015, Do Faults Preserve a Record of Seismic Slip? A second opinion, Journal of Structural Geology, 78, 1-26, doi: 10.1016/j.jsg.2015.06.006 (pdf).
17. Griffith, W.A., J.B. Becker*, K.M. Cione*, and T. Miller, 2014, 3D Topographic stress perturbations and implications for ground control in underground coal mines, International Journal of Rock Mechanics and Mining Sciences, doi: 10.1016/j.ijrmms.2014.03.013 (pdf).
16. Tabrizi, A. M.*, Pan, E., Martel, S. J., Xia, K., Griffith, W. A., and Sangghaleh, A., 2014. Stress fields induced by a non-uniform displacement discontinuity in an elastic half plane. Engineering Fracture Mechanics, 132, 177-188, doi:10.1016/j.engfracmech.2014.10.009.
15. Tabrizi, A.M.*, W.A. Griffith, E. Pan, and Y. Zhao*, 2014, Combined effects of rock bedding orientation and topography on stresses around mine openings, Proceedings of the 33rd International Conference on Ground Control in Mining, p. 243-247.
14. Newman, P.* and W.A. Griffith, 2014, The work budget of rough faults, Tectonophysics, http://dx.doi.org/10.1016/ j.tecto.2014.08.007.
13. E. Pan, J.H. Yuan, W.Q. Chen, W.A. Griffith, 2014, Elastic deformation due to polygonal dislocations in a transversely isotropic half-space, Bulletin of the Seismological Society of America, Vol. 104, No. 6, doi: 10.1785/0120140161.
12. Griffith, W.A., T.M. Mitchell, J. Renner, G. Di Toro, 2012, Coseismic damage and softening of fault rocks at seismic depths, Earth and Planetary Science Letters, 353-354, 219-230.
11. Niemeijer, A., G. Di Toro, W.A. Griffith, A. Bistacchi, S.A.F. Smith, and S. Nielsen, 2012, Inferring earthquake mechanics using an integrated field and laboratory approach, Journal of Structural Geology, doi:10.1016/j.jsg.2012.02.018.
10. Ngo, D., Y. Huang, A. J. Rosakis, W.A. Griffith, and D.D. Pollard, 2012, Off-fault tensile cracks: A link between geological fault observations, lab experiments and dynamic rupture models, Journal of Geophysical Research, 117, B01307, doi:10.1029/2011JB008577
9. Bistacchi, A., W.A. Griffith, S. Nielsen, S.A.F. Smith, G. Di Toro, and R. Jones, 2011, Surface roughness of ancient seismic faults: a combined LIDAR and high resolution photogrammetric analysis of fault trace profiles, Pure and Applied Geophysics, doi: 10.1007/s00024-011-0301-7.
8. Griffith, W.A., S. Nielsen, and G. Di Toro, S. E. A. Smith, 2010, Rough faults, distributed weakening, and off-fault deformation, Journal of Geophysical Research, 115, B08409, doi:10.1029/2009JB006925.
7. Nielsen, S., G. Di Toro, W.A. Griffith, 2010, Friction and roughness of a melting rock surface, Geophysical Journal International, 182: 299–310. doi: 10.1111/j.1365-246X.2010.04607.x
6. Griffith, W.A., G. Di Toro, G. Pennacchioni, D.D. Pollard, and S. Nielsen, 2009. Static stress drop associated with brittle slip events on exhumed faults, Journal of Geophysical Research, 114, B02402, doi: 10.1029/2008JB005879.
5. Griffith, W.A., A.J. Rosakis, D.D. Pollard, and C.-W. Ko, 2009. Dynamic rupture experiments elucidate tensile crack development during propagating earthquake ruptures, Geology, 37, 795–798, doi: 10.1130/G30064A.1.
4. Griffith, W.A., P.F. Sanz, and D.D. Pollard, 2009. Influence of outcrop scale fractures on the effective stiffness of fault damage zone rocks, for Pure and Applied Geophysics Special Issue on “Mechanics, Structure, and Evolution of Fault Zones”, p. 1-33, doi: 10.1007/s00024-009-0519-9.
3. Griffith, W.A., G. Di Toro, G. Pennacchioni, and D.D. Pollard, 2008. Thin pseudotachylytes in faults of the Mt. Abbot Quadrangle, Sierra Nevada: Physical constraints for seismic slip, Journal of Structural Geology, vol. 30, pp. 1186-1194.
2. Griffith, W.A. and M.L. Cooke, 2005. How sensitive are fault slip rates in the Los Angeles Basin to tectonic boundary conditions? Bulletin of the Seismological Society of America, vol. 95, pp. 1263-1275.
1. Griffith, W.A. and M.L. Cooke, 2004. Mechanical validation of the three-dimensional intersection geometry between the Puente Hills blind-thrust system and the Whittier fault, Los Angeles, California, Bulletin of the Seismological Society of America, vol. 94 pp. 493-505.
Other Publications:
6. Braunagel*, M. J., Griffith, W. A., and Biek, R. F., (2022). Field guide to selected geology of the Marysvale gravity slide complex. In The Ohio State University Geology Field Station 1947-2022 75th Anniversary Alumni Reunion Field Trip Guide.
5. Aderhold, K, Arrowsmith, R., Atkinson, G., Ben-Zion, Y., Elbanna, A., Griffith, W., Share, P-E, Steidl, J, Trugman, D., Vernon, F., and Woodward, R., Dec. 9, 2022, Shaping of the Rupture and Fault Observatory, https://www.scec.org/article/930
4. Talukdar, M., Sone, H., & Griffith, W. A., 2021. Viscoplastic Modeling of Elastic and Creep Deformation of Fractured Berea Sandstone. In 55th US Rock Mechanics/Geomechanics Symposium. OnePetro.
3. Lapusta, N., Dunham, E., Avouac, J-P, Beroza, G., Burgmann, R., Denolle, M., Elbanna, A. and Griffith, W.A. (2020), Modeling earthquake source processes in California: building on SCEC success in integrating numerical, field, and laboratory studies, A White Paper of Future Earthquake Center: https://www.scec.org/whitepapers/2020 (not peer reviewed)
2. Conwell, C.; Kim, J-E.; Griffith, W.A.; Griffith, E.M. (2018). YouTube Channel: iGEM2: MATH 1302 . Retrieved from https://www.youtube.com/channel/UCvx2SaE8FOqw8RKaHgiqUqA
1. Huntington KW, and Klepeis, K.A., with 66 community contributors (2018). Challenges and opportunities for research in tectonics: Understanding deformation and the processes that link Earth systems, from geologic time to human time. A community vision document submitted to the U.S. National Science Foundation. University of Washington, 84 pp, https://doi.org/10.6069/H52R3PQ5