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Abstract

The present study explored whether a tool for automatic detection and recognition of inter-

actions and child-directed speech (CDS) in preschool classrooms could be developed, vali-

dated, and applied to non-coded video recordings representing children’s classroom

experiences. Using first-person video recordings collected by 13 preschool children during a

morning in their classrooms, we extracted high-level audiovisual features from recordings

using automatic speech recognition and computer vision services from a cloud computing

provider. Using manual coding for interactions and transcriptions of CDS as reference, we

trained and tested supervised classifiers and linear mappings to measure five variables of

interest. We show that the supervised classifiers trained with speech activity, proximity, and

high-level facial features achieve adequate accuracy in detecting interactions. Furthermore,

in combination with an automatic speech recognition service, the supervised classifier

achieved error rates for CDS measures that are in line with other open-source automatic

decoding tools in early childhood settings. Finally, we demonstrate our tool’s applicability by

using it to automatically code and transcribe children’s interactions and CDS exposure verti-

cally within a classroom day (morning to afternoon) and horizontally over time (fall to winter).

Developing and scaling tools for automatized capture of children’s interactions with others in

the preschool classroom, as well as exposure to CDS, may revolutionize scientific efforts to

identify precise mechanisms that foster young children’s language development.

Introduction

Language development during the early years of life is driven largely by exposure to the talk of

others [1], and linguistic input directed to the child serves to shape the cortical regions of the

brain responsible for processing linguistic forms and functions [2]. While there is some con-

troversy as to whether such linguistic input must be directed explicitly to the child, versus

overhead by the child but directed to others [3, 4], compelling evidence indicates that child-
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directed speech (CDS) is an especially important driver of young children’s language develop-

ment [5].

Scientists who study CDS customarily rely on time-intensive, meticulous processes to

hand-transcribe and codify characteristics of CDS to which children are exposed; in turn,

researchers seek to precisely represent children’s early language experiences and use this to

understand how CDS influences development and the extent to which CDS exposure varies

individually across children [4–7] and over time [8]. However, because of the laborious nature

of this work, much of the research on CDS relies on relatively brief recordings of interactions

[9] reflecting just a sliver of the CDS children experience over time. Furthermore, human cod-

ing inevitably involves biases, and researchers may struggle with inter-rater reliability issues.

Establishing automatized systems can facilitate the scientific inquiry of CDS.

To accelerate research on CDS as an important characteristic of young children’s proximal

caregiving environments, there is a great need to explore whether transcription and codifica-

tion of CDS can be automatized using emerging technologies. To this end, the purpose of the

present work is to present the Classroom Interaction Detection and Recognition (CIDR) sys-

tem for the automatic transcription and coding of CDS experienced by children in preschool

settings, empirically validate the CIDR system, and apply the system to a novel corpus of obser-

vational data.

Development and validation of CIDR builds on prior efforts to automatize coding of chil-

dren’s linguistic experiences, most notably through the use of the Language ENvironmental

Analysis (LENA) system. Currently marketed as the “industry standard” (lena.org), the system

includes both hardware in the form of a wearable recorder that captures child-directed talk

and software that processes the recorded talk. LENA analytics can provide estimates for adult

word count (AWC), child vocalization count (CVC), and adult-child conversational turns

from audio signals. AWC represents the average number of words spoken by adults near a

child over an hour, whereas CVC represents the average number of vocalizations produced by

a child over an hour, with the metric including words, babbles, and vocalizations [10]. Adult-

child conversational turns represents the number of back-and-forth exchanges between the

child and any adult per hour.

These automatized data have been deployed for a variety of purposes. For instance,

researchers used LENA recordings to identify distinctive features of vocal development in chil-

dren with autism [11], to explore the linguistic experiences of children with hearing loss in the

home environment [12], to examine the effects of peer-to-peer talk in preschool classrooms on

children’s language growth [13], and to assess the effectiveness of interventions designed to

increase parents’ talk to their children [14]. In addition, researchers recently have used the

AWC data from day-long LENA recordings to link variability in children’s language exposure

in the home environment to language-related brain structure in terms of neural connectivity

[2] and cortical surface area [15].

Despite these and many other important contributions to the literature, there are some lim-

itations to the industry standard for automated capture of children’s linguistic experiences.

First, the system does not distinguish CDS from non-CDS among adult talk captured in audio

recordings. Therefore, researchers concerned with identifying children’s exposure to CDS

must utilize extensive additional analyses and hand-coding, leading to only modest amounts

of audio-recorded talk to be evaluated (e.g., [12]). Second, the system does not provide

nuanced measures of linguistic complexity, such as number of different words and mean

length of utterance, which represent important aspects of CDS that correlate with children’s

language development [6]. Third, with the rapid pace of developments and deep-learning

applications in the automatic speech recognition (ASR) community, it is unclear whether

LENA has adopted these methods, and being a closed-source software hinders the possibility
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of adapting the system to custom acoustic environments and new developments in automatic

speech recognition [16]. Fourth, recent reviews raise concerns about the validity of the tool

[17]. As Cristia and colleagues demonstrate, there have been a number of validity studies

examining the performance of LENA relative to hand-coding and transcription in early child-

hood settings, but many of these do not provide adequate data to compute agreement mea-

sures with reference values. While the performance for adult word count estimates was high,

the results for child vocalization counts showed a tendency toward underestimation, as well as

low correlation with reference values on conversational turn counts. Furthermore, Cristia and

colleagues also point out the lack of studies reporting on the accuracy of distinguishing word

counts for the focal child from other children in the recording, which is critical when imple-

menting the system in settings with multiple children, such as preschool classrooms. It is

important to note that several of the studies reviewed in [17] utilize LENA in settings that do

not match LENA’s training data, recorded on English-speaking home environments of chil-

dren ages 1 to 42 months old [18].

To address these limitations, research was commenced to develop an open-source tool that

would automatically identify the frequency and key characteristics of CDS experienced by pre-

school-aged children. A particular interest was developing an approach to capture children’s

experiences in preschool classrooms, as there is significant interest in understanding children’s

language-specific experiences in these settings. For instance, researchers have sought to char-

acterize the ways in which teachers talk to children in their preschool classrooms, as this is pre-

sumed to be a key driver of early language development [9, 19, 20]. However, most, if not all of

this work is focused at the teacher level and does not capture the individual child’s experiences.

Thus, this study’s goal was to develop a system that would represent a given child’s exposure to

CDS in the classroom setting and depict individual differences among children in this impor-

tant early experience. Training the system involved using hand-coded reference (ground

truth) data generated to examine individual differences in preschool children’s CDS exposure

in preschool settings from previous research [21]. In order to make the tool as accessible as

possible, and without compromising accuracy, cloud-computing multimedia processing ser-

vices were employed to obtain facial and speech features when adults interacted with and

spoke to focal children, which are the inputs to deep-learning classifiers that detect interaction

instances.

In the present report, we describe development and training of the system and address the

following questions. First, used in combination with speech activity, can facial features predict

children’s interactions in a preschool classroom? Second, can facial features and speech activity

be used to detect and measure CDS exposure in a preschool classroom? Third, are there signif-

icant differences in children’s CDS exposure across a classroom day (morning to afternoon)

and over time (fall to winter)?

Method

Participants

This study involved human subjects and was approved by the Ohio State University IRB. Par-

ticipating teachers and children were drawn from one non-profit child-care center located in

an urban neighborhood of a large city. The center serves approximately 100 children from 6

weeks of age to 5 years in seven classrooms operating on a 10-hour basis (7:30 AM to 5:30

PM). For the present study, we recruited one preschool classroom to participate, with the par-

ticular classroom recommended by the center principal based on the needs of the study, the

anticipated levels of consent from caregivers, teachers’ openness to using technology, and

other ongoing activities underway in the classroom.
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Consent was solicited from all teachers and the primary caregivers of children in the class-

room. The three teachers (one master teacher, two assistant teachers) and 19 of the 20 children

were consented. For the children, consent could take two forms: consent for the child to wear

a head-mounted camera in the classroom, or for the child to be recorded but not wear the

camera. Written consent was provided for 15 children to wear the camera, and for 4 additional

children to be recorded but not wear the camera; for the latter, consent allowed children to be

recorded. For the one child in the classroom for whom no consent was provided, we arranged

alternative activities for the child to experience when the recording was taking place.

The teachers were all female and had at least an associate’s degree or higher. The children

ranged in age from 35 to 58 months at the time of the first observation, and were diverse in

terms of race (4 White, 12 African American, 3 un-reported or another race) and socioeco-

nomic status based on maternal education (1 mother did not complete high school, 1 com-

pleted high school, 5 completed a certificated training after high school, 4 completed a

bachelor’s degree, 5 a master’s degree, and 2 an educational program beyond the master’s

degree; 1 un-reported).

Procedure

The participating children wore head-mounted cameras for around one hour in the morning

and one hour in the afternoon at two time-points in the academic year (fall, winter). This

study uses existing coding and transcripts of these recordings developed in a prior study inves-

tigating preschool children’s first-person experiences. Details of the study’s design are available

in [21], and we briefly review those of relevance to the present study.

Data source. During a one-week period in the fall and winter of the academic year, each

consented child (focal child) was assigned to wear a wireless head-mounted camera on a ran-

domly assigned day for approximately one hour in the morning and one hour in the afternoon

after naptime. Four focal children simultaneously wore the head-mounted camera each day.

We followed the same procedure in the fall and winter of the same academic year. Thus, there

were potentially up to four recordings per each of the focal children: morning fall (Fall AM),

afternoon fall (PM fall), morning winter (Winter AM), and afternoon winter (Winter PM). In

actuality, there was variability in the number of children providing data at each time-point due

to absences and difficulties with the camera (e.g., the camera fell off a child’s head). As a result,

video-recordings were available for 13 children for Fall AM, 11 children for Fall PM, 10 for

Winter AM, and 11 for Winter PM. Of these, 9 children were recurring on all windows. In

addition, the camera was removed for certain activities, such as when children used the

restroom.

In this work, we focused on detecting and recognizing focal children’s interactions occur-

ring outside whole-group activities, which are more homogeneous in their audiovisual features

due to the physical proximity between interacting partners. We believe that automatic tran-

scription of CDS occurring during whole-group activities can be obtained more accurately

using audio acquisition devices that are closer to the source, like teacher-worn audio recorders.

The recorded classroom tasks outside whole-group activities were child-selected activities such

as center time during AM, and free-play during PM. For the Fall AM coded videos for each

child, we excluded from our analysis whole-group activities in which an adult addressed multi-

ple children at once (e.g., circle time and read aloud by the teacher). These activities were iden-

tified by the first author, who watched each video in its entirety and timestamped whole-group

activities for occurrence, which allowed their exclusion. The averaged employed recording

time per focal child was 40.58 minutes in Fall AM (range = 35.61 to 46.38 min), 40.78 minutes

in Fall PM (range = 27.38 to 57.34 min), 40.88 minutes in Winter AM (range = 30.80 to 58.38
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min), and 47.10 minutes in Winter PM (range = 29.18 to 59.13 min). The average employed

recording time for each focal child per day of observation (AM and PM) was 78.6 minutes in

Fall (range = 65.23 to 99.92 min) and 91.18 minutes in Winter (range 65.59 to 112.93 min).

Manual coding and transcription of CDS. Reference (ground truth) representation of

children’s exposure to CDS from both adults and peers in the classroom is drawn from manual

coding and transcription of Fall AM recordings used in a previous study. This coding and

transcription occurred over several steps and was conducted by trained, reliable research staff

who met a priori guidelines to deem them reliable coders and transcribers. Each coder was

required to complete a conceptual training and multiple practice sessions where the trainees’

coding and transcripts were compared against goal standards. Furthermore, for the coding of

focal children’s interactions, 11% of the videos, randomly selected, were routinely double-

coded to monitor and prevent drift. After coding each video, discrepancies between coders

were discussed until agreement was met. The coding and transcription of focal children’s

recordings were conducted separately.

Focal children’s interaction with peers and adults were coded using the Datavyu software.

To capture each interaction instance, representing the event of interest, the authors created a

time-event coding system to record when the interaction started and when it finished. Peer

interaction was defined as any instance in which a focal child physically or verbally engaged

with another child, or group of children, including playing, learning or working together, and

fighting. Adult interactions were operationalized as any instance in which a focal child engaged

with an adult in the classroom, including comforting (verbally or physically) the focal child,

disciplining, problem-solving, directing, and playing. Ten percent of the coded videos were

selected for double coding, and intraclass correlations (ICCs) were calculated to examine the

reliability. The absolute-agreement 2-way mixed-effects model ICC for the duration of each

category was greater than 0.97.

Only the talk directed to the focal children (i.e., CDS) was verbatim transcribed using the

Systematic Analysis of Language Transcripts (SALT) software. To be considered CDS, peers

and teacher’s talk should meet at least one of the following criteria: (a) peers’ or adults’ behav-

iors involved the focal child while they talked (e.g., through physical contact or gaze direction),

(b) peers or adults posed questions directed to the focal child, contained the focal child’s name,

or were on the same topic as a focal child’s preceding utterances and are not utterances

addressed to another person, and (c) peers’ and adults’ utterances occurred up to 3 seconds

after the focal child’s utterance. Peers’ and teachers’ utterances that did not meet these criteria

were not transcribed. Two well trained English-speaker research assistants completed the tran-

scripts, and one author of this paper check their accuracy by comparing the transcript against

the video word-by-word.

Automatizing coding and transcription of CDS. Given that the CDS transcription was

not timestamped in the original dataset, we operationalize CDS as talk occurring within an

interaction with another person, including peers and adults. Tables containing each child’s

interaction’s onset and offset were transformed into time trajectories to serve as reference

(ground truth) to the RI detectors in Matlab. In addition, the following measures were calcu-

lated using Matlab’s text analytics toolbox [22] at the individual-child level: interaction fre-

quency, median and standard deviation of duration, and total duration of interactions. For

CDS, we computed the number of utterances (NU), total number of words (TNW), number of

different words (NDW), as well as the composite measures mean length of utterance

(MLU = TNW/NU) and type-token ratio (TTR = NDW/TNW).

Multimedia analysis pipeline. Fig 1 provides a schematic view of the training and valida-

tion pipeline of the CIDR system. The system comprises four basic components: (a) scene

parsing and featurization module, (b) feature extraction module, (c) interaction detector, and
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(d) mappings to interaction and CDS measures. Boxes in light gray correspond to featurization

modules, which were the only elements in the pipeline that are not open-source in this work,

with the rest of the elements implemented as Matlab and Python code, available at http://

github.com/hugonvilla/CIDR.

Scene parsing and featurization module. We opted to get high-level audio and video features

using Amazon Web Services (AWS), specifically their computer vision service called Amazon
Rekognition [23], and their automatic speech recognition (ASR) service called Amazon Tran-
scribe [24]. Both services are offered in a pay-per-use format, which, at the time of this publica-

tion, is $0.10 per minute of video files, and $0.00004 per second of audio. While there exist

open-source alternatives for audio and video featurization that could replace AWS (see refer-

ences in [16, 25]), the rationale behind the AWS choice included ease of use, low cost, satisfac-

tory performance results on preliminary analyses with our dataset, and data security measures

provided via institutional access to the cloud computing resources. AWS deep neural network

models are trained with Amazon’s proprietary data, and their online tutorials enable their

deployment by non-experts. Rekognition’s face detection and face recognition accuracy were

independently evaluated in [26], while Transcribe’s ASR performance in conversational set-

tings was assessed in [27], both with satisfactory results for our application. Rekognition face

detection output was employed to study infant behavior in [28].

The audio-recordings were retrieved as 32 kHz mono signals, which were down-sampled to

16 kHz before the automatic transcription, following Transcribe guidelines. Amazon Tran-

scribe returns transcription of speech segments, their onset and offset, and a speaker label for

each segment (i.e., diarization). We noted that the speaker identification module returned dif-

ferent speaker labels for the same speaker captured at different distances from the focal child

microphone, so we did not use that information. As an alternative, we tested an existing

speaker recognition algorithm employed with audio from child-worn recorders in home set-

tings. However, its performance was inadequate for our application, possibly due to the differ-

ent nature of our testing dataset (preschool classroom, 3–5 year-old children). We designed an

audiovisual labeling tool in Matlab to manually label each utterance detected by Amazon Tran-

scribe as being uttered by an adult, the focal child, or a peer, irrespectively of the addressee.

Our future work contemplates training existing automatic speaker recognition algorithms

using the labeled data described in the previous sentence.

Fig 1. Schematic view of the pipeline of the Classroom Interaction Detection and Recognition (CIDR) system. Abbreviations correspond to child-directed speech

(CDS), validation branch (V) and training branch (T). Boxes in light gray correspond to featurization modules deployed using Amazon Web Services (AWS).

https://doi.org/10.1371/journal.pone.0242511.g001
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Face detection (where is a face?) and recognition (whose face is that?) were employed to

parse the visual scene. The face detection module, FaceDetect, returns 30 facial landmarks and

15 facial features, including age range, head pose, and mouth open confidence for each

detected face. The average temporal resolution for the face detection results was 500 ms. The

facial recognition module, FaceSearch, was used only to remove non-teacher adults’ data in the

video scene (primarily research staff), since our reference (ground truth) only discriminates

focal child interactions with teachers in the classroom and peers. To recognize the faces, we

selected video frames containing children and teachers’ faces following the guidelines in [23].

At least three images per child and teacher were employed to build a Face Collection, an Ama-

zon Rekognition object that assigns a face ID to each face in the image. FaceSearch compares

the faces in the video frames with the face ID to recognize faces. We also wrote a Matlab code

to correspond each face ID with the participant ID for each child. AWS preserves facial land-

marks, and not actual images, in the face collection. Besides the face ID, the FaceSearch module

returns the dimensions of the face bounding box and the head pose for each face.

Feature extraction module. To harmonize the scene featurization response and extract the

features to train the interaction detector, we wrote Matlab codes to process the Amazon Tran-
scribe and Amazon Rekognition results. We selected the following signals as the audio features

for the interaction detector: i) a Boolean variable corresponding to speech activity from the

timestamps of the automatic transcription, ii) the average word confidence score for each seg-

ment, and iii) the perceived loudness of each segment, using the acousticLoudness function

from Matlab’s Audio Toolbox. The latter implements the norm ISO 532–1 to calculate loud-

ness as perceived by persons with normal hearing [29], and was regarded as a proxy for acous-

tic proximity. We processed the transcript to separate language contractions in the same

manner as the manual transcription (e.g., you’re to you are). As an approximation to the utter-

ance segmentation approach used for the manual transcription process, we segmented utter-

ances using the punctuation marks returned by Amazon Transcribe as boundaries. From the

video scene featurization, we aligned the outputs of FaceDetect and FaceSearch by matching

timestamps and face bounding boxes. In this stage, we only allowed FaceSearch results with a

similarity index above the threshold of 92%, set by iterative experiments, to avoid misidentified

faces. Since the number of faces at any frame is variable, and most machine learning methods

accept a fixed number of features as input, we selected the features of the most representative
faces on each frame as inputs to the interaction detector. Based on iterative experiments, we

defined the most representative face in terms of the faces’ bounding box size, which is a proxy

used for distance to the focal child [30]. The features from these faces are the bounding

box size, yaw, roll, and pitch of the face, and the probabilities (confidence) for mouth open

and eyes open.

Preprocessing and interaction detector. We preprocessed the output of the scene featuriza-

tion modules prior to running the interaction detector. The output of the scene featurization

modules might not capture the fast temporal dynamics occurring during an interaction, and

our reliance on facial features made us prone to problems with face occlusion. To counteract

these issues, we reprocessed the features via a high-temporal resolution infilling using moving

averages, setting the sample period of our feature signals to be 250 ms. Outliers beyond the

99th percentile were removed using the clip method, and features were normalized before the

RI detector training routine.

Given the distinct nature of adult and peer interactions in terms of frequency and duration

as captured in the manual coding [21], we achieved higher accuracy when training separate

classifiers for interactions with adults versus peers. Long short-term memory (LSTM) are arti-

ficial recurrent neural networks often employed in sequential data classification problems,

such as voice activity detection, accelerometry, and video analysis [31]. We defined a deep-
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learning interaction sequence classifier using Matlab’s deep learning toolbox [32]. The classi-

fier consisted in a sequence input layer, a bi-directional LSTM (BILSTM) layer with 200 hid-

den units, a softmax layer, and an output classification layer, trained using 30 epochs with all

12 facial features (6 for adults, 6 for peers) and the audio features for both the adult interaction

detector and the peer interaction detector. Thus, both detectors have the same feature set, and

we will refer to them as full-feature BILSTM. We also trained the same detectors using only

the face bounding box area (face size) and speech activity, which we refer to as reduced-feature

BILSTM. The purpose of testing the reduced-feature BILSTM is to mimic less invasive data

collection tools like indoor positioning systems. In a post-processing module, the predicted RI

trajectories are smoothed by merging or deleting predicted interactions with duration of less

than one second, following results from [21].

Mappings to interaction and CDS measures. A final step was the diarization of CDS, which

involved assigning each predicted utterance to either peer, adult, or non-CDS based on the

predicted interaction trajectories. If there is an intersection between the time segments of an

utterance and an interaction with adults, then the utterance is considered labeled as adult-

CDS. Similarly, if the intersection is with an interaction with peers, the utterance is labeled as

peer-CDS. If both a peer-CDS and adult-CDS was predicted simultaneously, the utterance was

assigned to an adult. Lastly, if there is no intersection between utterance and interaction time

segments, the utterance is labeled as non-CDS. During preliminary tests, the word-by-word

accuracy achieved by Amazon Transcribe with our hardware setting in a noisy acoustic envi-

ronment was not suitable to compute grammatical complexity measures, with word error rates

(WER) above 0.6. However, we obtained acceptable estimates for the quantity of talk, includ-

ing number of utterances, number of words, and number of different words.

We calculated interaction measures using the time trajectories of the reference and pre-

dicted interactions. After computing the onset and offset of each interaction, we calculated the

frequency, median duration, and standard deviation of the duration of interactions. We used

Matlab’s Text Analytics toolbox to tokenize the segmented automatic transcription from Ama-

zon Transcribe, and computed the number of utterances, mean length of utterance, and total

number of different words following the transcription manual [21].

Results

Can facial features and speech activity predict interactions in a preschool

classroom?

This study used a leave-one-subject-out (LOSO) cross-validation method to validate the CIDR

system and determine whether speech activity and high-level facial features, operationalized in

the full-feature BILSTM, can predict interactions more accurately than employing speech

activity and face size, operationalized in both the reduced-feature BILSTM and the threshold-

ing methods. The LOSO cross-validation method consists of training the model with data

from all but one subject and subsequently testing it with data corresponding to the held-out

subject.

All Fall AM recordings corresponding to 13 children were employed in the cross-validation

procedure. The performance of the unsupervised reduced features BILSTM and full BILSTM

detectors were compared with the reference RI obtained from manual coding. To assess the

performance of the interaction detectors, we measured accuracy, precision, recall, and the F1

score. Accuracy is computed as the ratio between the number of 250-ms time samples correctly

labeled as interaction or not-interaction and the total number of time samples in the

sequences. Precision can be interpreted as the probability that a randomly selected 250-ms

time sample labeled as interaction by the detector is indeed a true interaction, whereas Recall
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is the probability that the interaction detector identifies a true interaction time sample. The F1

score combines precision and recall via the harmonic mean.

Table 1 shows LOSO validation results for adult and peer interaction detectors. For the

adult interaction detector, results show that the supervised full BILSTM classifier, trained with

full facial features, achieves higher accuracy and F1 score (81.1 and 88.1, respectively) com-

pared to the reduced feature detector (80.8 and 87.6, respectively). For the peer interaction

detectors, the reduced features detector obtains higher accuracy and F1 score (86.1 and 92.3,

respectively) than the detector trained with full features (85.1 and 91.7, respectively). While

both detectors’ performance is adequate for our application, we selected the full feature detec-

tor for further analysis, as it performed better on a separate hold-out validation run.

Can facial features and ASR detect and measure CDS in a preschool

classroom?

To measure the CIDR’s performance on CDS measures, we employed five variables for focal

children’s interaction with adults and peers. The five variables included total number of utter-

ances (TNU), total number of words (TNW), number of different words (NDW), mean length

of utterance (MLU), and type-token ratio (TTR). The MLU is the ratio between the total num-

ber of words and the total number of utterances, while the TTR is the quotient between the

number of different words and the total number of words. Table 2 shows LOSO performance

results for adult CDS and peer CDS measures, and measures of focal child speech directed to

adults and peers detected during the predicted interactions obtained using the BILSTM classi-

fiers. The raw measures correspond to those calculated using the raw output of the ASR ser-

vice. All measures were normed by 10 minutes to facilitate comparison amongst children with

Table 1. Leave-one-subject-out (LOSO) performance results for the detector of focal child interactions with adults and peers.

Adult Interaction Detector Peer Interaction Detector

Model Acc Prec Rec F1 Acc Prec Rec F1

Reduced features 80.8 90.0 85.4 87.6 86.1 98.4 87.0 92.3

Full features 81.1 92.3 84.2 88.1 85.2 96.5 87.4 91.7

Note: Reduced features model correspond to bi-directional long-short term memory (BILSTM) network trained with face size and speech activity data, while the full

feature model is a BILSTM network trained with the full set of facial features and speech activity. The performance metrics considered are accuracy (Acc), precision

(Prec), recall (Rec), and F1 score (F1).

https://doi.org/10.1371/journal.pone.0242511.t001

Table 2. Leave-one-subject-out (LOSO) cross-validation results for the CDS recognition system.

Speaker TNU TNW NDW MLU TTR

Adaptation mARE r mARE r mARE r mARE r mARE r

Adult Raw 39.0 0.75 51.3 0.79 24.3 0.84 19.7 0.32 47.2 0.88

Adapted 12.9 0.69 34.9 0.73 9.7 0.80 7.0 0.18 12.7 0.85

Peer Raw 92.9 0.46 96.1 0.50 93.3 0.49 47.6 0.44 88.7 0.52

Adapted 40.6 0.36 40.3 0.38 20.8 0.37 6.9 0.34 25.5 0.42

Focal Raw 76.4 0.44 88.7 0.44 75.0 0.54 37.2 -0.11 100.0 -0.56

Adapted 40.9 0.38 47.8 0.37 27.6 0.48 24.0 -0.58 23.5 0.51

Note: Language measures are total number of utterances (TNU), total number of words (TNW), number of different words (NDW), mean length of utterance (MLU),

and type-token ratio (TTR). The performance metrics depicted are: median absolute relative error (mARE) and linear correlation (r). Raw refers to non-adapted

measures calculated using the raw output of the automatic speech recognition service.

https://doi.org/10.1371/journal.pone.0242511.t002
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different recording times. The data presented in Table 2 shows the median values for the abso-

lute relative error (ARE) for these variables for each speaker. For any of the above five mea-

sures, denoted with X, the corresponding ARE for focal child j, represented by EX,j�0, is

computed by measuring the deviation between the values obtained by using the manual (refer-

ence) transcription Xr,j and predicted transcripts Xp,j by

EX;j ¼
jXr;j � Xp;jj

Xr;j
� 100 ð1Þ

with values close to zero representing less deviation from the reference values. Table 2 also

presents linear correlations between the reference and predicted measures, denoted by the vec-

tors Xr = [Xr,1,. . .,Xr,n] and Xp = [Xp,1,. . .,Xp,n].

It can be seen that the median absolute relative errors (mARE) for the measures corre-

sponding to the adult speakers are lower and linear correlations (R) than peer and child mea-

sures, which is not surprising, considering the lack of performance on recognizing child

speech by current ASR services [33]. For our sample, the correlation between age of the focal

child in months (between 35 and 58 months) and the mARE of TNW for the focal child was of

r = -0.44, indicating a tendency for the ASR performance to improve with age. For both adult

and children, the raw ASR output underestimates the TNU and the TNW, due, in part, to the

noisy acoustic environment. To take advantage of measures with high correlations (r) in

Table 2, we adapted (calibrated) the raw results using ordinary least products (OLP) regression

with measures obtained with manual transcriptions, following [34]. The OLP, or Type II

regressions were done as part of the LOSO validation loop. A similar adaptation, based on

ordinary least squares, was employed in [35] to estimate word count on daylong recordings.

The LOSO performance using the OLP adaptation is also shown in Table 2, showing lower

mARE compared to raw measures.

Although there are no commonly accepted conventions for interpreting Table 2 results in

the context of CDS in preschool classroom, we can interpret them relative to other tools that

allow for automatic word count estimation in home and laboratory settings with early child-

hood population. For instance, one study reported that when analyzing audio recordings con-

taining adult and child speech, the median ARE valued for TNW estimation ranges between

10% and 80% for an open-source estimator, and between 28% and 60% when using LENA

hardware and software [35].

Another recent study reviewing LENA performance [17] showed that the mean correlation

between manually transcribed TNW and LENA adult word counts (adult TNW) was R = 0.79

with a mean relative error (MRE) of 13.76%, whereas the same metrics, when applied to child

vocalizations (focal child TNW), was R = 0.77 and MRE of -40.48%. The computation of the

relative error rate is done discarding the absolute value of the differences in Eq 1. For our

adapted results, we obtained MRE for adult TNW of -1.8%, and -16.1% for focal child TNW.

Taken together, these results indicate that our CDS detector and measurement system is ade-

quate for adult TNW, while also providing estimates of NDW and TTR with similar perfor-

mance. While our system achieves a MRE for focal child TNW closer to zero, as compared to

average LENA results, the correlation with reference values remains lower, so more work is

needed to accept these results as adequate. The low performance values on both peer and focal

child’s MLU and TTR’s composite measures signify the challenge to automatically obtain these

measures with the existing automatic speech recognition services.

Finally, we report LOSO-validation performance values for total duration of interactions

(TDI) with adults and peers. For TDI with adults, the raw MRE is 23.6% with correlation

r = 0.67, while for TDI with peers, the raw MRE is 62.7% and r = 0.47.
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Are there differences in children’s CDS exposure within a classroom day

(morning to afternoon) and over time (fall to winter)?

To apply the CIDR system to data sources that have not been manually coded or transcribed,

we applied the system as depicted in Fig 1 to three additional data sources collected on the

same set of children, representing Fall PM, Winter AM, and Winter PM video-recordings. To

do so, we used data for children who had recordings in all four observed sessions (n = 9). We

examine children’s interactions and CDS exposure vertically within a classroom day (morning

to afternoon) and horizontally over time (fall to winter) to explore the stability of children’s

interactions and CDS across time.

We conducted repeated measures analysis of variance (rANOVA) with time as the

between-subjects factor for each measure, revealing no significant differences for most CDS

measures during interactions with adults between morning and afternoon and fall to winter.

However, measures concerning focal child speech were different between morning and after-

noon for TNW (p = 0.04) and NDW (p = 0.03). While the validity of these tests is unclear due

to the small sample size and modest correlation between predicted and reference measures for

focal child speech, the boxplots in Figs 2 to 4 indicate trends in the classroom’s linguistic envi-

ronment. Fig 2 shows results for adult TNW, Fig 3 for peer TNW, and Fig 4 for focal child

TNW during the four observation periods. As an aid to interpret the boxplots, the middle bar

represents the median TNW, whereas the box edges correspond to the lower (0.25 quantile)

and upper (0.75 quantile) quartiles. The whiskers (vertical lines) connect to the non-outlier

maximum and minimum values; outliers are values that are more than 1.5 IQR (interquartile

range) away from the box edges. It can be seen that median adult TNW is higher during the

morning sessions consisting largely of a structured classroom task (center time), while both

median peer and focal child TNW is higher during unstructured afternoon sessions.

Discussion

This study was designed to develop, validate, and test an automatized system for the detection

and recognition of interactions and CDS in a preschool classroom environment. The study

builds on decades of research showing the importance of CDS as instrumentally important in

facilitating young children’s language development [2, 6, 7, 9, 36] and technological efforts to

improve collection and analysis of CDS for a variety of scientific needs [10, 15, 35, 37, 38].

Here, we summarize and expand upon several primary findings in this report.

We obtained first-person video recordings using head-mounted cameras worn by children

in a preschool classroom during Fall and Winter of the school year. The average employed

recording time per child per day observation was 81.62 minutes, across child-selected activities

(center time and free play). Decoding these classroom tasks is relevant to explain the higher

heterogeneity in interactions and CDS during child-selected activities, compared to large-

group activities [21]. While studies analyzing talk in home environments employ audio

recordings with longer duration for ecological validity and reliability of speech processing

tools [16, 39], our recording times are consistent with observational studies analyzing interac-

tions and CDS in preschool classrooms [40–42].

First, teachers’ and peers’ facial features and speech activity, obtained using computer vision

and automatic speech recognition technology from first-person video recordings accurately

predicted instances of interactions in a preschool classroom with the focal children. We used

manually coded interactions employed in [21] and developed two bi-directional long-short-

term memory (BILSTM) classifiers: one with high-level facial features and speech activity as

inputs, and the other with only proximity and speech activity as inputs, with face size as a

proxy for proximity. The latter was trained to resemble non-invasive methods to detect
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interactions via indoor position sensing systems [38, 43]. For detecting interactions with

adults, the BILSTM classifier using high-level facial features outperformed the reduced features

detector and detected instances of interactions with 81.1% accuracy. Interactions with peers

were sparse and short, and the BILSTM classifier trained with proximity features achieved

higher accuracy (86.1%). Optimizing the BILSTM classifiers’ architecture could improve their

performance and provide a clear answer on whether invasive but data-rich sensing systems,

like first-person video recordings, are needed to detect interactions more accurately than less-

invasive proximity sensors like RFID.

Second, we found that, in combination with the BILSTM detector, children’s exposure to

CDS within a preschool classroom can be detected and measured using automatic speech rec-

ognition (ASR) services. While the word-by-word accuracy of the ASR service was low, we

obtained acceptable absolute error rates (ARE) on five measures of CDS during interactions

with adults and peers, including total number of words (TNW) and number of different words

(NDW). The mARE percentages for adult TNW are within the range of what has been

observed in other automatic coding of the linguistic and social environment in early childhood

Fig 2. Total number of words (TNW) by adult speakers during interactions with focal child. Box edges represent lower and upper quartile, while

middle line corresponds to the median. Whiskers depict minimum and maximum non-outlier values. Measures are normed at 10 minutes.

https://doi.org/10.1371/journal.pone.0242511.g002
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settings like LENA [17, 35]. While our system achieves a mean RER for focal child TNW closer

to zero, the correlation with reference values was modest compared to average LENA results.

Importantly, unlike our audiovisual system, audio-only sensing systems like LENA have limi-

tations in their abilities to accurately discriminate CDS from overheard talk [44]. These results

are promising since there are several avenues to improve the results, particularly in terms of

detecting and recognizing child speech [33].

Third, we used automated coding of children’s interactions and exposure to CDS to exam-

ine children’s interactions across one day and over time longitudinally. Analysis of these data

did not reveal significant differences in five CDS variables. However, Fig 2 depicts higher vol-

ume of adult speech, measured by total number of words (TNW), during structured morning

classroom task (center time), while higher exposure (TNW) to peer CDS, accompanied by

higher focal child TNW during unstructured afternoon sessions (free play) are observed in

Figs 3 and 4. Given the increased interest in peer-mediated interventions in preschool class-

rooms [45, 46], these results indicate the importance of identifying features of interactions

with peers to optimize the design of such interventions.

Fig 3. Total number of words (TNW) by uttered by peers during interactions with focal child. Box edges represent lower and upper quartile, while

middle line corresponds to the median. Whiskers depict minimum and maximum non-outlier values. Measures are normed at 10 minutes.

https://doi.org/10.1371/journal.pone.0242511.g003
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Limitations and future research

Besides of our small sample size, limiting our ability to perform inferential analysis, most of

the conceptual and technical limitations in this report refer to the audio and video signal pro-

cessing. Since we did not have timestamped CDS transcriptions, the fact that we detected CDS

within manually labeled and timestamped interactions could have introduced errors in the ref-

erence (ground truth) signal we employed to train our classifiers. We plan to continue improv-

ing our model with timestamped CDS transcripts. The video scene featurization relied on

facial detection and recognition, so it was prone to problems with face occlusion during inter-

actions. Future improvements could take advantage of body pose detection methods applied

to educational contexts [25], as well as people pathing to improve people detection during

interactions. The audio hardware used in this work was also a limitation for automatic decod-

ing. Our preliminary testing suggests that using small lavalier microphones increases ASR per-

formance, as measured by word error rate (WER) and diarization error rate (DER).

Employing more ergonomic cameras with a wider field of view can also improve results by

reducing occlusion and increasing recording times to include preschool tasks that were not

feasible to record with our current setting, such as recess, meals, and naptime. Finally, we

Fig 4. Total number of words (TNW) by focal child during interactions with adults and peers. Box edges represent lower and upper quartile, while

middle line corresponds to the median. Whiskers depict minimum and maximum non-outlier values. Measures are normed at 10 minutes.

https://doi.org/10.1371/journal.pone.0242511.g004
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expect the performance of the CIDR system to improve by increasing the training data set with

more labeled data, or data augmentation methods, as well as alternative adaptation methods,

including focal child age as an independent variable, given the negative correlation between

age and mARE reported in this work. We also expect that by employing publicly available cor-

pora in the training data set, we could extend CIDR’s applicability to other settings, such as the

home environment.

Future research can take advantage of CIDR’s facial recognition module to identify which

adults and peer the focal child interacted with. This would enable the study of the topology of

preschool classrooms’ social networks [47], which is an important and emerging area of inter-

est. Furthermore, the facial and body pose detection could be employed to study features of

“direct talk” that support positive change in language growth, including joined attention, emo-

tionality during the interactions obtained via facial and speech emotion detection, and tempo-

ral adaptations of language between interacting partners. We also plan to train diarization

routines using the labeled automatic transcriptions built for this work, to automatically dis-

criminate between speech from adults, peers, and focal child, as in [48].

Conclusion

In this study, we employed machine learning to develop, validate, and test an automatized sys-

tem for detection of recognition of interactions and child-directed speech (CDS) in a pre-

school classroom environment. Our audiovisual sensing system based on computer vision and

automatic speech recognition provided facial features and speech activity as inputs to a deep-

learning classifier that detected instances of social interactions, allowing us to accurately esti-

mate CDS measures. We tested our system by measuring five CDS variables during four obser-

vation windows, revealing the role of classroom tasks on quantity and quality of CDS exposure

during interactions with adults and peers. We identified research directions to improve the

system’s performance and directions to apply the system in longitudinal studies in language

and social-emotional development.
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