8.5, \# $\mathbf{7}$ extended: Consider a vector $\mathbf{v}=\langle 6,-7\rangle$ and $\overline{\mathrm{a}}$ vector $\mathbf{w}=\langle-1,-4\rangle$.
(a). Find $\mathbf{v} \cdot \mathbf{w}$.
(b). Find $\mathbf{v} \cdot \mathbf{v}$.
(c). Find w $\cdot \mathbf{w}$.
(d). Find $\|\mathbf{v}\|$ and $\|\mathbf{w}\|$. How are these related to things we already know?
(e). Determine whether $\|\mathbf{v}\| \mathbf{w}$ is a scalar or a vector.
(f). Determine whether $2(\mathbf{v} \cdot \mathbf{w}) \mathbf{w}$ is a scalar or a vector.
(g). Determine whether $(\mathbf{v}+\mathbf{w}) \cdot \mathbf{w}$ is a scalar or a vector.
(h). Find the angle θ between \mathbf{v} and \mathbf{w}.
8.5, \# 32: Let $\mathbf{v}=\left\langle a_{1}, b_{1}\right\rangle, \mathbf{w}=\left\langle a_{2}, b_{2}\right\rangle$, and $\mathbf{u}=$ $\left\langle a_{3}, b_{3}\right\rangle$. Prove that $\mathbf{v} \cdot(\mathbf{w}+\mathbf{u})=\mathbf{v} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{u}$.
8.5, \# 33: If θ is the angle between two nonzero vectors $\mathbf{\mathbf { v }}$ and \mathbf{w}, and $\mathbf{v} \cdot \mathbf{w}<0$, what is the range of values θ can take (in degrees) and why?
8.5, Problem: Determine whether the following pairs of vectors are orthogonal, parallel, or neither.
(a). $\mathbf{v}=\frac{1}{4} \mathbf{i}-3 \mathbf{j}$ and $\mathbf{w}=15 \mathbf{i}+\frac{5}{4} \mathbf{j}$
(b). $\mathbf{r}=17 \mathbf{i}+34 \mathbf{j}$ and $\mathbf{s}=-5 \mathbf{i}-10 \mathbf{j}$
(c). $\mathbf{a}=\langle 3,5\rangle$ and $\mathbf{b}=\langle-5,-3\rangle$.

