8.5, # 7 extended: Consider a vector $\mathbf{v} = \langle 6, -7 \rangle$ and a vector $\mathbf{w} = \langle -1, -4 \rangle$. (a). Find $\mathbf{v} \cdot \mathbf{w}$.	
(b) Find at at	8.5, # 32: Let $\mathbf{v} = \langle a_1, b_1 \rangle$, $\mathbf{w} = \langle a_2, b_2 \rangle$, and $\mathbf{u} = \langle a_3, b_3 \rangle$. Prove that $\mathbf{v} \cdot (\mathbf{w} + \mathbf{u}) = \mathbf{v} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{u}$.
(b). Find $\mathbf{v} \cdot \mathbf{v}$.	
(c). Find $\mathbf{w} \cdot \mathbf{w}$.	
(d). Find $ \mathbf{v} $ and $ \mathbf{w} $. How are these related to things we already know?	8.5, # 33: If θ is the angle between two nonzero vectors \mathbf{v} and \mathbf{w} , and $\mathbf{v} \cdot \mathbf{w} < 0$, what is the range of values θ can take (in degrees) and why?
(e). Determine whether $ \mathbf{v} \mathbf{w}$ is a scalar or a vector.	8.5, Problem: Determine whether the following pairs of vectors are orthogonal, parallel, or neither. (a). $\mathbf{v} = \frac{1}{4}\mathbf{i} - 3\mathbf{j}$ and $\mathbf{w} = 15\mathbf{i} + \frac{5}{4}\mathbf{j}$
(f). Determine whether $2(\mathbf{v} \cdot \mathbf{w})\mathbf{w}$ is a scalar or a vector.	(b). $\mathbf{r} = 17\mathbf{i} + 34\mathbf{j}$ and $\mathbf{s} = -5\mathbf{i} - 10\mathbf{j}$
(g). Determine whether $(\mathbf{v}+\mathbf{w})\cdot\mathbf{w}$ is a scalar or a vector.	
(h). Find the angle θ between v and w .	(c). $\mathbf{a} = \langle 3, 5 \rangle$ and $\mathbf{b} = \langle -5, -3 \rangle$.