8.5,\# 51: Consider vectors $\mathbf{v}=\langle-3,6\rangle$ and a vector $\overline{\mathbf{w}}=\langle 1,3\rangle$.
(a). Depict $\operatorname{proj}_{\mathbf{v}} \mathbf{w}$ on the graph paper below.

(b). Compute $\operatorname{proj}_{\mathbf{v}} \mathbf{w}$.
(c). Find vectors \mathbf{v}_{1} and \mathbf{v}_{2} such that \mathbf{v}_{1} is parallel to $\mathbf{v}, \mathbf{v}_{2}$ is orthogonal to \mathbf{v}, and $\mathbf{v}_{1}+\mathbf{v}_{2}=\mathbf{w}$.
(d). Using the results from part (b) show that \mathbf{v}_{1} is parallel to \mathbf{v} by finding a constant c such that $\mathbf{v}_{1}=c \mathbf{v}$.
(e). Show \mathbf{v}_{2} is orthogonal to \mathbf{v}.
(f). Show $\mathbf{v}_{1}+\mathbf{v}_{2}=\mathbf{w}$.
8.5, \# 65: Find the work W done by a force $\mathbf{F}=(40 \mathbf{i}+$ $15 \mathbf{j})$ lb in moving an object in a straight line given by the displacement vector $D=(30 \mathbf{i}+10 \mathbf{j}) \mathrm{ft}$.
8.5, \# 55: A boat and trailer weighing a total of 450 lb are parked on a boat ramp with an 18° angle of inclination. Assume that the weight of the boat and trailer is evenly distributed between two wheels.

(a). Write the force vector \mathbf{F} in terms of \mathbf{i} and \mathbf{j} representing the weight of the boat and trailer for a single tire.
(b). Find the component vector of \mathbf{F} parallel to the ramp. Round values to 1 decimal place.
(c). Find the magnitude of the force needed to keep the trailer from moving down the ramp. Round to the nearest pound.
8.5, \# 75: A tree removal service hooks a chain around the stump of a tree and attaches the other end of the chain to a pickup truck. The truck drags the stump horizontally 40 m to a wood chipper. The chain is directed upward 32° from the horizontal and the tension in the chain is 15,000 N. Find the amount of work done. Round to the nearest $\mathrm{N} \cdot \mathrm{m}$.
9.1, \# 23,29,32: Solve the following systems of equations if possible. If a system doesn't have a unique solution, write the general solution.
(a). $11 x=-5-4 y$
$2(x-2 y)=22+y$
(b). $3 x-4 y=6$
$9 x=12 y+4$.
(c). $2 x-y=8$
$x-\frac{1}{2} y=4$.
9.1, \# 52: A pharmacist wants to mix a 30% saline solution with a 10% saline solution to get 200 mL of a 12% saline solution. How much of each solution should she use?
9.1, \# 65: Two runners begin at the same point on a $390-\mathrm{m}$ circular track and run at different speeds. If they run in opposite directions, they pass each other in 30 sec . If they run in the same direction, they meet each other in 130 sec . Find the speed of each runner.
9.2, \# 12,15,20,34: Solve the following systems of equations if possible. If a system doesn't have a unique solution, write the general solution.
(a). $3 x=5 y-z+13$
$-(x-y)-z=x-3$
$5(x+y)=3 y-3 z-4$
(b). $-4 x-3 y=0$
$3 y+z=-1$
$4 x-z=12$
(c). $3 x+2 y+5 z=6$
$3 y-z=4$
$3 x+17 y=26$.
9.2, \# 44: A theater charges $\$ 50$ per ticket for seats in Section A, $\$ 30$ per ticket for seats in Section B, and $\$ 20$ per ticket for seats in Section C. For one play, 4000 tickets were sold for a total of $\$ 120,000$ in revenue. If 1000 more tickets in Section B were sold than the other two sections combined, how many tickets in each section were sold?
9.2, \# 46: A package in the shape of a rectangular solid is to be mailed. The combination of the girth (perimeter of a cross section defined by w and h) and the length of the package is 48 in . The width is 2 in . greater than the height, and the length is 12 in . greater than the width. Find the dimensions of the package.

