8.4, **# 92:** Given $F_1 = -12\mathbf{i} + 8\mathbf{j}$, $F_2 = -9\mathbf{i} - 15\mathbf{j}$, and $F_3 = 11\mathbf{i} + 7\mathbf{j}$, find the resultant force **R** and the additional force **F** needed for the object to be in static equilibrium.

8.4, # 96: Two forces act on an object with an angle of 63° between them. If the magnitude of the first force is 48 N and the magnitude of the second force is 70 N, find the magnitude of the resultant force to the nearest Newton.

8.4, # 13 extended: Given a vector **v** with initial point P(4,-1) and terminal point Q(7,-6) and vector w with initial point R(5,7) and terminal point S(2,12), (a). Determine whether $\mathbf{v} = \mathbf{w}$ in two ways: (1) com-**8.4,** # **54:** Let *c* be an arbitrary scalar and $\mathbf{v} = \langle a_1, b_1 \rangle$ paring their magnitudes and directions; (2) using combe an arbitrary vector. Prove $||c\mathbf{v}|| = |c|||\mathbf{v}||$. ponent form. 8.4, # 55, extended: Find the unit vector in the direction of $\mathbf{v} = 20\mathbf{i} - 21\mathbf{j}$. Then, find the direction angle $(0^{\circ} \le \theta \le 360^{\circ})$ for **v**, rounding to 1 decimal place. (b). What is the terminal point of \mathbf{v} if its initial point is placed at R? (c). Let $\mathbf{r} = \langle 2, 5 \rangle$. Compute $2\mathbf{r} - (\mathbf{w} + \mathbf{v})$ 8.4, # 72: Given $||\mathbf{v}|| = \sqrt{17}$ and $\theta = \frac{4\pi}{3}$, write **v** in 8.4, # 17.18: Use v and w in the image below to sketch component form. the following as described. 8.4, # 84: The velocity of a ship is given by the vector -6.4i + 7.7j mph. (a). Find the speed of the ship. Round to the nearest mph. 4 (b). Find the bearing of the ship. Round to the nearest degree. (a). $\mathbf{v} + \mathbf{w}$, first using head-to-tail method, then by drawing \mathbf{v} and \mathbf{w} with the same initial point. 8.4, # 85: A plane travels N30°W at 450 mph and encounters a wind blowing due west at 30 mph. (a). Express the velocity of the plane \mathbf{v}_p relative to the air in terms of **i** and **j**. (b). $\mathbf{v} - \mathbf{w}$, first using head-to-tail method, then by drawing \mathbf{v} and \mathbf{w} with the same initial point. (b). Express the velocity of the wind \mathbf{v}_w in terms of \mathbf{i} and j. (c). Express the true velocity of the plane \mathbf{v}_T in terms of **i** and **j** and find the true speed of the plane.