8.4, \# 92: Given $F_{1}=-12 \mathbf{i}+8 \mathbf{j}, F_{2}=-9 \mathbf{i}-15 \mathbf{j}$, and $F_{3}=11 \mathbf{i}+7 \mathbf{j}$, find the resultant force \mathbf{R} and the additional force \mathbf{F} needed for the object to be in static equilibrium.
8.4, \# 96: Two forces act on an object with an angle of 63° between them. If the magnitude of the first force is 48 N and the magnitude of the second force is 70 N , find the magnitude of the resultant force to the nearest Newton.
8.4, \# 13 extended: Given a vector \mathbf{v} with initial point $P(4,-1)$ and terminal point $Q(7,-6)$ and vector w with initial point $R(5,7)$ and terminal point $S(2,12)$, (a). Determine whether $\mathbf{v}=\mathbf{w}$ in two ways: (1) comparing their magnitudes and directions; (2) using component form.
(b). What is the terminal point of \mathbf{v} if its initial point is placed at R ?
(c). Let $\mathbf{r}=\langle 2,5\rangle$. Compute $2 \mathbf{r}-(\mathbf{w}+\mathbf{v})$
8.4, \# 17,18: Use v and w in the image below to sketch the following as described.

(a). $\mathbf{v}+\mathbf{w}$, first using head-to-tail method, then by drawing \mathbf{v} and \mathbf{w} with the same initial point.

(b). $\mathbf{v}-\mathbf{w}$, first using head-to-tail method, then by drawing \mathbf{v} and \mathbf{w} with the same initial point.

8.4, \# 54: Let c be an arbitrary scalar and $\mathbf{v}=\left\langle a_{1}, b_{1}\right\rangle$

8.4, \# 55, extended: Find the unit vector in the direction of $\mathbf{v}=20 \mathbf{i}-21 \mathbf{j}$. Then, find the direction angle $\left(0^{\circ} \leq \theta \leq 360^{\circ}\right)$ for \mathbf{v}, rounding to 1 decimal place.
8.4, \# 72: Given $\|\mathbf{v}\|=\sqrt{17}$ and $\theta=\frac{4 \pi}{3}$, write \mathbf{v} in component form.
8.4, \# 84: The velocity of a ship is given by the vector $-6.4 \mathbf{i}+7.7 \mathbf{j} \mathrm{mph}$.
(a). Find the speed of the ship. Round to the nearest mph.
(b). Find the bearing of the ship. Round to the nearest degree.
8.4, \# 85: A plane travels $\mathrm{N} 30^{\circ} \mathrm{W}$ at 450 mph and encounters a wind blowing due west at 30 mph .
(a). Express the velocity of the plane \mathbf{v}_{p} relative to the air in terms of \mathbf{i} and \mathbf{j}.
(b). Express the velocity of the wind \mathbf{v}_{w} in terms of \mathbf{i} and \mathbf{j}.
(c). Express the true velocity of the plane \mathbf{v}_{T} in terms of \mathbf{i} and \mathbf{j} and find the true speed of the plane.

