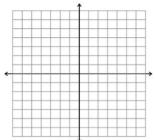
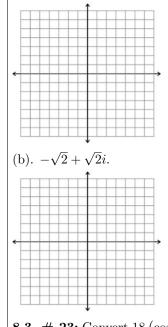

8.3, # **8,13**: Graph the following complex numbers in the plane. Then, find their modulus and write them in polar form, using approximate angles if necessary. (a). z = -4





8.3, # 32: Given $z_1 = 27(\cos 67^\circ + i \sin 67^\circ)$ and $z_2 = \overline{9(\cos 53^\circ + i \sin 53^\circ)}$, find the product $z_1 z_2$ and quotient $\frac{z_1}{z_2}$ and write them in polar form.

8.3, # 18: Graph the following complex numbers in the plane. Then, find their modulus and write them in polar form, using approximate angles if necessary. (a). $3\sqrt{2} - 3\sqrt{2}i$.

8.3, # 23: Convert 18 $\left(\cos \frac{5\pi}{3} + i \sin \frac{5\pi}{3}\right)$ to rectangular (a+bi) form.

8.3, # 39: Given $z_1 = 2 - 2i$ and $z_2 = 3 + 3i$, find the product z_1z_2 and quotient $\frac{z_1}{z_2}$ and write them in polar form.

8.3, # **50,52:** Compute the following using DeMoivre's Theorem, expressing your final answers in rectangular form.

(a). $[4(\cos 33.75^\circ + i \sin 33.75^\circ)]^4$.

(b).
$$(4+4\sqrt{3}i)^3$$