Law of Sines: applies in ASA, AAS/SAA, SSA/ASS (a.k.a. Ambiguous) cases.
Law of Cosines: Applies in SAS and SSS cases.

In the above graphic, $h=b \sin A$ by right triangle trig and oblique means "not right."
7.2, \#8,13: Solve the following triangles with side lengths a, b, and c and angles A, B, and C. Give both exact values and approximations to one decimal place. (a).

(b). $A=127^{\circ}, B=34^{\circ}, a=42$.
7.2, \# 29: Find the area of the triangle $A B C$ with angle $A=107^{\circ}$ and sides $a=17 \mathrm{ft}$ and $b=3 \mathrm{ft}$.
7.2, \# 21,24,26: For the following potential triangles with side lengths a, b, and c and angles A, B, and C, determine whether the information given defines one triangle, two triangles, or no triangle. Then, solve the resulting triangle(s).
(a). $b=33, c=25, B=38^{\circ}$.
(b). $b=6, c=12$, and $B=38^{\circ}$.
(c). $a=3, b=1$, and $B=17^{\circ}$.
7.2, \# 51: The connector rod from the piston to the crankshaft in a certain $2.0-\mathrm{L}$ engine is 6.4 in . The radius of the crank circle is 2.8 in . If the angle made by the connector rod with the horizontal at the wrist pin P is 20°, how far is the wrist pin from the center C of the crankshaft? Round to the nearest tenth of an inch.

7.3, \# 13,15,21: Solve the following triangles with side lengths a, b, and c and angles A, B, and C if possible. Give both exact values and approximations to one decimal place.
(a). $a=15, b=12, c=15$.
(b). $a=27, c=26, B=67.8^{\circ}$.
(c). $a=4.4, b=6.2, c=11.1$.
7.3, \# 26: Two boats leave the marina at the same time. The first boat travels 6 knots at a bearing of $\mathrm{N} 39^{\circ} \mathrm{E}$ and the second boat travels 4 knots at a bearing $\mathrm{S} 87^{\circ} \mathrm{W}$. (a). How far apart are the boats at the end of 2 hours?
(b). What is the bearing from the first boat to the second boat at that time?
7.3, \# 35: Use Heron's formula to find the area of the triangle with side lengths $a=13 \mathrm{in}, b=7 \mathrm{in}$, and $c=8 \mathrm{in}$.

