5.5, \#16,26: Identify the amplitude and period for the following functions:
(a). $y=2 \cos (2 x)$.
(b). $y=\frac{1}{2} \cos (2 \pi x)$.
(c). $y=\sin \left(\frac{\pi}{3} x\right)$.
5.5, \#34: Write trig functions of the following forms for the graph below

(a). $y=A \sin (B x)$, where $A<0$.
(b). $y=A \sin (B x-C)$ where $A>0$.
(c). $y=A \cos (B x-C)$, where $A<0$.
(d). $y=A \cos (B x-C)$, where $A>0$.
5.5, \#78b: Identify the amplitude, period, and phase shift for $y=2 \sin (-3 x-2 \pi)+12$. Then, find the range of the function this is the graph for and graph a full period of the function, identifying the key points as they appear.
5.5, \#65 (modified): Identify the amplitude, period, phase
 a full period of the function, identifying the key points as they appear.
5.5, \#72: The monthly high temperature for Atlantic City, New Jersey, peaks at an average high of 86° in July and goes down to an average high of 64° in January. Assume that this pattern for monthly high temperatures continues indefinitely and behaves like a cosine wave.
(a). Write a function of the form $H(t)=A \cos (B t-C)+D$ to model the average high temperature. The value $H(t)$ is the average high temperature for month t, with January as $t=0$.
(b). Graph the function from part (a) on the interval [0,13] and plot the points $(0,64),(6,86)$, and $(12,64)$ to check the accuracy of your model.
5.5, \#86: Write functions of the form $y=A \sin (B x-C)+D$ and $y=A \cos (B x-C)+D$ with $A>0$ in both cases for the following graph.

5.5, \#82: Write a function of the form $y=A \cos (B x-$ $\overline{C)+D}$ that has period $\frac{\pi}{4}$, amplitude 2 , phase shift $-\frac{\pi}{3}$, and vertical shift 7 .
5.6, \# 34: Write the range for the following functions in interval notation.
(a). $y=-3 \sec (5 \pi x)-1$.
5.6, \#21: Graph one period of the function $y=3 \csc \frac{x}{3}$.
$\underline{\text { Deriving the Graphs for } \tan x \text { and } \cot x}$:

$$
y=\tan x:
$$

(b). $y=5 \sec \left(3 x-\frac{\pi}{2}\right)-2$.
5.6, \# 50/54,52/56: Graph the following: (a). $y=3 \tan \left(4 x-\frac{\pi}{3}\right)$.
(b). $y=-\cot \frac{\pi}{4} x-3$.

$$
\underline{y=\cot x}:
$$

5.6,\#66,68: Complete the following statements.
(a). As $x \rightarrow 0^{-}, \cot x \rightarrow$ \qquad
(b). As $x \rightarrow 0^{+}, \cot x \rightarrow$ \qquad
(c). As $x \rightarrow \frac{\pi}{2}^{-}, \sec x \rightarrow$ \qquad
(d). As $x \rightarrow \frac{\pi}{2}^{+}, \sec x \rightarrow$ \qquad

