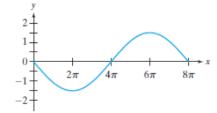
5.5, #16,26: Identify the amplitude and period for the following functions: (a). $y = 2\cos(2x)$.

(b). $y = \frac{1}{2}\cos(2\pi x)$.

(c). $y = \sin(\frac{\pi}{3}x)$.

5.5, #34: Write trig functions of the following forms for the graph below



(a). $y = A\sin(Bx)$, where A < 0.

(b).
$$y = A\sin(Bx - C)$$
 where $A > 0$.

(c).
$$y = A\cos(Bx - C)$$
, where $A < 0$.

(d).
$$y = A\cos(Bx - C)$$
, where $A > 0$.

5.5, #78b: Identify the amplitude, period, and phase shift for $y = 2\sin(-3x - 2\pi) + 12$. Then, find the range of the function this is the graph for and graph a full period of the function, identifying the key points as they appear.

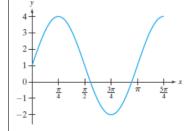
5.5, #65 (modified): Identify the amplitude, period, phase shift, and vertical shift for $y = \cos\left(-\frac{\pi}{2}x + \frac{\pi}{4}\right) + 4$. Then, graph a full period of the function, identifying the key points as they appear.

5.5, **#72**: The monthly high temperature for Atlantic City, New Jersey, peaks at an average high of 86° in July and goes down to an average high of 64° in January. Assume that this pattern for monthly high temperatures continues indefinitely and behaves like a cosine wave.

(a). Write a function of the form $H(t) = A\cos(Bt - C) + D$ to model the average high temperature. The value H(t) is the average high temperature for month t, with January as t = 0.

(b). Graph the function from part (a) on the interval [0, 13] and plot the points (0, 64), (6, 86), and (12, 64) to check the accuracy of your model.

5.5, #86: Write functions of the form $y = A\sin(Bx - C) + D$ and $y = A\cos(Bx - C) + D$ with A > 0 in both cases for the following graph.



5.5, #82: Write a function of the form $y = A\cos(Bx - bx)$ \overline{C} + D that has period $\frac{\pi}{4}$, amplitude 2, phase shift $-\frac{\pi}{3}$, 5.6, # 34: Write the range for the following functions in inand vertical shift 7. terval notation. (a). $y = -3 \sec(5\pi x) - 1$. 5.6, #21: Graph one period of the function (b). $y = 5 \sec \left(3x - \frac{\pi}{2}\right) - 2.$ $\overline{y=3\csc\frac{x}{3}}$. 5.6, # 50/54,52/56: Graph the following: (a). $y = 3 \tan \left(4x - \frac{\pi}{3}\right)$. Deriving the Graphs for $\tan x$ and $\cot x$: $y = \tan x$: (b). $y = -\cot \frac{\pi}{4}x - 3$. $y = \cot x$: 5.6, # 66,68: Complete the following statements. (a). As $x \to 0^-$, $\cot x \to$ _____ (b). As $x \to 0^+$, $\cot x \to$ _____ (c). As $x \to \frac{\pi}{2}^-$, sec $x \to$ (d). As $x \to \frac{\pi}{2}^+$, sec $x \to$