5.2, \#66: A lamppost casts a shadow of 18 feet when the angle of elevation of the sun is 33.7°. How high is the lamppost? Round to the nearest foot.
5.2,\#79: A scenic overlook along the Pacific Coast Highway in Big Sur, California, is 280 feet above sea level. A 6 foot tall hiker standing at the overlook sees a sailboat and estimates the angle of depression to be 30°. Approximately how far off the coast is the sailboat? Round to the nearest foot.
5.3, \#10: If $\csc \theta>0$ and $\cot \theta<0$, identify the quadrant that θ lies in.
5.3, Problem: Find the reference angles for the following angles.
(a). -120°.
(b). 280°.
(c). $-\frac{7 \pi}{6}$.
(d). 0.6π.
$\mathbf{5 . 3}, \# \mathbf{3 1}, \mathbf{3 8}, \mathbf{4 6}, \mathbf{4 9}, \mathbf{5 4}$: Use reference angles to find the exact values of the following.
(a). $\csc 120^{\circ}$.
(b). $\cos \left(-\frac{11 \pi}{4}\right)$.
(c). $\csc (-5 \pi)$.
(d). $\csc \frac{5 \pi}{3}$.
(e). $\tan \frac{18 \pi}{4}$.
$\mathbf{5 . 3}, \# 56,60,62$: For each equation, find two angles between 0 and 2π where the equation holds.
(a). $\cos \theta=-\frac{\sqrt{2}}{2}$.
(b). $\csc \theta=-\frac{2 \sqrt{3}}{3}$.
(c). $\cot \theta=1$.
5.3, \#66: Given $\cos \theta=-\frac{5}{8}$ and $\csc \theta>0$, find

5.3, \#83: Explain why the statement $\overline{\cos (\theta+\pi)}=-\cos (\theta)$ holds for all θ, or, if false, give a counterexample.
5.4,\#12: Does the point $\left(\frac{\sqrt{61}}{8},-\frac{\sqrt{2}}{8}\right)$ lie on the unit circle?
5.4, \#16: The point P on the unit circle below determines an angle in t radians. Evaluate the six trigonometric functions of t.

5.4, \#24 Find the coordinates of the point P on the unit circle determined by the real number t and evaluate the six trigonometric functions at t for each of the following t.
(a). $t=\frac{2 \pi}{3}$
(b). $t=-\frac{5 \pi}{4}$
(c). $t=\frac{5 \pi}{6}$
$\mathbf{5 . 4}, \# \mathbf{3 4}, \mathbf{3 8}$ Identify the t values between 0 and $\overline{2 \pi}$ for which the following are undefined. Then, using periodicity, find the domains of the following functions.
(a). $f(t)=\tan t$.
(b). $g(t)=\csc t$.
5.4, Problem: For t in Quadrant III, $\overline{\text { (a). Write } \cos t}$ in terms of $\sin t$.
(b). Write $\tan t$ in terms of $\sec t$.
(c). Write $\csc t$ in terms of $\cot t$.
5.4, \#40: Compute the following:
(a). $\cos 90^{\circ}$.
(b). $\csc \frac{\pi}{2}$.
(c). $\cot 270^{\circ}$.
(d). $\tan \frac{\pi}{2}$.
(e). $\sec \frac{3 \pi}{2}$.
(f). $\sin \frac{\pi}{2}$.
$\mathbf{5 . 4}, \# \mathbf{4 4}, \mathbf{4 6}, \mathbf{4 8}, \mathbf{5 2}, \mathbf{5 4}, \mathbf{5 6}, 80,84:$ Use the even and/or odd properties and periodicity to evaluate or simplify the following expressions
(a). $\csc 510^{\circ}$.
(b). $\cot \left(-\frac{19 \pi}{3}\right)$.
(c). $\sec \left(\frac{-13 \pi}{2}\right)$.
(d). $\sin (t+2 \pi) \cdot \sec (t+2 \pi)$
(e). $\tan (t+\pi) \cdot \csc (t+2 \pi)$.
(f). $\tan (-\theta)-3 \tan \theta$.
(g). $\cot (-3 \theta)-3 \cot (3 \theta+\pi)$.
(h). $\cot (-t) \cdot \sin (t+2 \pi)+\cos ^{2}(t) \cdot \sec (-t+2 \pi)$.
(i). $\tan ^{2}\left(\frac{2 \pi}{3}\right)+\csc ^{2}\left(-\frac{5 \pi}{4}\right)$.

