5.2, #79: A scenic overlook along the Pacific Coast Highway in Big Sur, California, is 280 feet above sea level. A 6 foot tall hiker standing at the overlook sees a sailboat and estimates the angle of depression to be 30° . Approximately how far off the coast is the sailboat? Round to the nearest foot.

5.3, **#10:** If $\csc \theta > 0$ and $\cot \theta < 0$, identify the (b). $\csc \theta = -\frac{2\sqrt{3}}{3}$.

5.3, Problem: Find the reference angles for the following angles.(a). -120°.

(b). 280°.

(d). 0.6π .

5.3, #31,38,46,49,54: Use reference angles to find the exact values of the following.
(a). csc 120°.

(b). $\cos\left(-\frac{11\pi}{4}\right)$.

(c). $\csc(-5\pi)$.

(d). $\csc \frac{5\pi}{3}$.

(e). $\tan \frac{18\pi}{4}$.

5.3, **#56,60,62**: For each equation, find two angles between 0 and 2π where the equation holds. (a). $\cos \theta = -\frac{\sqrt{2}}{2}$.

angles for the (c). $\cot \theta = 1$.

5.3, #66: Given $\cos \theta = -\frac{5}{8}$ and $\csc \theta > 0$, find $\sin \theta$ and $\tan \theta$.

5.3, #83: Explain why the statement $\overline{\cos(\theta + \pi)} = -\cos(\theta)$ holds for all θ , or, if false, give a counterexample.

<u>5.4, #12:</u> Does the point $\left(\frac{\sqrt{61}}{8}, -\frac{\sqrt{2}}{8}\right)$ lie on the unit circle?

5.4, #16: The point P on the unit circle below

(c). Write $\csc t$ in terms of $\cot t$.

 $\overline{\text{determines}}$ an angle in t radians. Evaluate the 5.4, #40: Compute the following: six trigonometric functions of t. (a). $\cos 90^{\circ}$. $P\left(-\frac{24}{25}, \frac{7}{25}\right)$ (b). $\csc \frac{\pi}{2}$. (c). $\cot 270^{\circ}$. 5.4, #24 Find the coordinates of the point P on (d). $\tan \frac{\pi}{2}$. the unit circle determined by the real number tand evaluate the six trigonometric functions at tfor each of the following t. (e). sec $\frac{3\pi}{2}$ (a). $t = \frac{2\pi}{3}$ (f). $\sin \frac{\pi}{2}$. (b). $t = -\frac{5\pi}{4}$ 5.4, #44,46,48,52,54,56,80,84: Use the even and/or odd properties and periodicity to evaluate or simplify the following expressions (a). $\csc 510^{\circ}$. (c). $t = \frac{5\pi}{6}$ (b). $\cot\left(-\frac{19\pi}{3}\right)$. (c). sec $\left(\frac{-13\pi}{2}\right)$ 5.4, #34.38 Identify the t values between 0 and $\overline{2\pi}$ for which the following are undefined. Then, using periodicity, find the domains of the follow-(d). $\sin(t + 2\pi) \cdot \sec(t + 2\pi)$ ing functions. (a). $f(t) = \tan t$. (e). $\tan(t+\pi) \cdot \csc(t+2\pi)$. (f). $\tan(-\theta) - 3\tan\theta$. (b). $q(t) = \csc t$. (g). $\cot(-3\theta) - 3\cot(3\theta + \pi)$. 5.4, Problem: For t in Quadrant III, (a). Write $\cos t$ in terms of $\sin t$. (h). $\cot(-t) \cdot \sin(t+2\pi) + \cos^2(t) \cdot \sec(-t+2\pi)$. (b). Write $\tan t$ in terms of $\sec t$. (i). $\tan^2\left(\frac{2\pi}{3}\right) + \csc^2\left(-\frac{5\pi}{4}\right)$. 2