5.1, \#100: A circular cheesecake 9 in. in diameter is cut into a slice with a 20° angle. Find the area of the slice and round to the nearest tenth of a square inch.
5.2, \#14b: Find the exact values of the six trigonometric functions for the given angle θ in the triangle depicted below.

5.2, \#16: Use the Pythagorean Theorem to find the length of the missing side. Then, find the exact values of the six trigonometric functions for the given angle θ.

5.2, \#29: If $\tan \theta=\frac{\sqrt{15}}{9}$ and θ is an acute angle, find the values of the other 5 trig functions at θ.
5.2, \#58,60: Given the function value, find a cofunction of another angle with the same value. (a). $\sin 15^{\circ}=\frac{\sqrt{6}-\sqrt{2}}{4}$.
(b). $\cot \frac{\pi}{6}=\sqrt{3}$.

State and prove the Pythagorean Identities for Trig Functions:

b
5.2, \#42,44,46:
(a). Given $\sin \theta=\frac{8}{17}$, find the value of $\cos \theta$.
(b). Given $\csc \theta=\frac{41}{40}$, find the value of $\cot \theta$.
(c). Given $\sec \theta=\frac{37}{35}$, find the value of $\tan \theta$.
5.2, \#76: Given that $\cos \frac{\pi}{12}=\frac{\sqrt{2}+\sqrt{6}}{4}$, give the exact values of the following:
(a). $\sin \frac{5 \pi}{12}$
(b). $\sin \frac{\pi}{12}$
(c). $\sec \frac{\pi}{12}$

