4.1, #15,19,21: Determine whether the following relations are graphs of one-to-one functions.

(b).
$$m(x) = x^2 - 4$$
.

(c). q(x) = |x+1|.

4.1, #33: Determine whether the functions $\overline{m(x)} = \frac{-2+x}{6}$ and n(x) = 6x - 2 are inverses.

4.1, \#93: Explain why a strictly increasing function must be one-to-one.

(b). From the graph of f, is f a one-to-one function?

(c). Write the domain and range of f in interval notation.

(d). Write an equation for $f^{-1}(x)$.

(e). Graph $y = f^{-1}(x)$ in the graph you used for part (a).

(f). Write the domain and range of f^{-1} in interval notation. Explain any restrictions in the domain.

4.2, #13: Which of the following functions are exponential functions?

(a). $f(x) = 4.2^x$; (b). $g(x) = x^{4.2}$; (c). h(x) = 4.2x; (d). $k(x) = (\sqrt{4.2})^x$; (e). $m(x) = (-4.2)^x$.

4.1, #45,49,69: Find the inverses of the following functions: (a). $m(x) = 4x^3 + 2$.

(b). $t(x) = \frac{x-4}{x+2}$.

(c).
$$q(x) = \sqrt[5]{4x - 3} + 1$$
.

4.2, **#17**: Graph the function $m(x) = \left(\frac{1}{3}\right)^x$ and give its domain and range.

4.2, #27: Use transformations of the graph $y = 3^x$ to graph the function $p(x) = 3^{x-4} - 1$, give its domain and range, and write the equation of its asymptote.

4.2, #57: The atmospheric pressure on an object decreases as altitude increases. If *a* is the height (in km) above sea level, then the pressure P(a) (in mmHg) is approximated by $P(a) = 760e^{0.13a}$.

(a). Find the atmospheric pressure at sea level.

(b). Determine the atmospheric pressure at 8.848 km (the altitude of Mt. Everest). Round to the nearest whole unit.

4.2, **#27**: Use transformations of the graph $y = e^x$ to graph the function $h(x) = -e^x - 3$, give its domain and range, and write the equation of its asymptote.

	1	
~		*
	~	

4.2, **#49**: Bethany needs to borrow \$10,000. She can borrow the money at 5.5% simple interest for 4 years or she can borrow at 5% with interest compounded continuously for 4 years.

(a). How much total interest would Bethany pay at 5.5% simple interest?

(b). How much total interest would Bethany pay at 5% interest compounded continuously?

(c). Which option results in less total interest?

4.2, #65:

(a). Graph $f(x) = 2^x$. Then, use the graph to determine whether f is a one-to-one function and write the domain and range of f in interval notation.

(b). Graph f^{-1} in the same picture/coordinate system. Then, write the domain and range of f^{-1} in interval notation and use the graph to evaluate $f^{-1}(1)$, $f^{-1}(2)$, and $f^{-1}(4)$.