Fact 0.1 [Horizontal Asymptotes] Let $f(x)=\frac{p(x)}{q(x)}$ be a rational function (quotient of polynomials).
(i) If $\operatorname{deg} p>\operatorname{deg} q$, there are no horizontal asymptotes.
(ii) If $\operatorname{deg} p=\operatorname{deg} q$, a_{n} is the leading coefficient of $p(x)$, and b_{m} is the leading coefficient of $q(x)$, then f has a horizontal asymptote $y=\frac{a_{n}}{b_{m}}$.
(iii) If $\operatorname{deg} p<\operatorname{deg} q$, then $y=0$ is the horizontal asymptote for f.

Fact 0.2 [Vertical Asymptotes and Holes] Let $f(x)=\frac{p(x)}{q(x)}$ be a rational function. The vertical asymptotes of $f(x)$ are $x=c$, where c is a zero for $q(x)$ but NOT a zero for $p(x)$. If $p(x)$ and $q(x)$ have a common zero at $x=c$, then there will be a hole in the graph of $f(x)$ at $x=c$.

Fact 0.3 [Slant Asymptotes] Let $f(x)=\frac{p(x)}{q(x)}$ be a rational function, and suppose that $\operatorname{deg} p=\operatorname{deg} q+1$. Then, f has a slant asymptote $y=a x+b$, where $p(x)=[a x+b] q(x)+r(x)$, where $r(x)$ is the remainder when $p(x)$ is divided by $q(x)$ with long division and $(a x+b)$ is obtained by long division.

Procedure 0.4 [Graphing Rational Functions] Find the x and y intercepts. Next, find all asymptotes and determine whether any horizontal or slant asymptotes were crossed. Then, determine the end behavior. Finally, use the x-values for your intercepts, vertical asymptotes, and points where slant and horizontal asymptotes were crossed to divide the number line into pieces, then plot a test points, with at least one point (x, y) with an x in each of these pieces of the number line.
3.5, \#19,22: Determine the vertical asymptotes for the following functions.
(a). $h(x)=\frac{x-3}{2 x^{2}-9 x-5}$.
(b). $n(x)=\frac{6}{x^{4}+1}$.
3.5, \#44,46: Determine the asymptotes for the following functions.
(a). $l(x)=\frac{x^{3}+3 x^{2}-2 x-4}{x^{2}-7}$
(b). $m(x)=\frac{3 x-4}{x^{3}+2 x^{2}-9 x-18}$
3.5, \#30,32: Determine the horizontal asymptotes for the following functions and the point(s) where they are crossed (if any).
(a). $q(x)=\frac{8}{x^{2}+4 x+4}$.
(b). $r(x)=\frac{-4 x^{2}+5 x-1}{x^{2}+2}$.
3.5, \#83: Graph $f(x)=\frac{x^{2}+7 x+10}{x+3}$.

3.5, \#16: Use the picture below to fill in the blanks.

(a). As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad
(b). As $x \rightarrow 1^{-}, f(x) \rightarrow$ \qquad
(c). As $x \rightarrow 1^{+}, f(x) \rightarrow$ \qquad
(d). As $x \rightarrow \infty, f(x) \rightarrow$ \qquad
(e). The graph is increasing over the interval(s)
\qquad
(f). The graph is decreasing over the interval(s)
\qquad _.
(g). The domain is \qquad
(h). The range is \qquad
(i). There is a vertical asymptote at \qquad (b). $16 p^{2} \geq 2$.
(j). There is a horizontal asymptote at \qquad
3.5, \#89: Graph $v(x)=\frac{2 x^{4}}{x^{2}+9}$.

3.6, \#12: Use the graph below to determine the intervals on which (a) $f(x)<0$,
(b) $f(x)>0$, (c) $f(x) \leq 0$, (d) $f(x) \geq 0$.
12.
 equalities.
(a). $-x^{2}+x+12=0$.
(b). $-x^{2}+x+12<0$.
(c). $-x^{2}+x+12>0$.
(d). $-x^{2}+x+12 \leq 0$.
(e). $-x^{2}+x+12 \geq 0$. equalities.
(a). $a^{2}+12 a+36=0$.
(e). $a^{2}+12 a+36 \geq 0$. ities.
(d). $(4 x+1)^{2}>-6$. ities.
(a). $\frac{5-x}{x+1} \geq 0$.
(b). $\frac{p^{2}-2 p-8}{p-1} \geq 0$.
(c). $\frac{3 x}{3 x-7} \leq 1$.
3.6, \#17: Solve the following equalities and in-
3.6, \#19: Solve the following equalities and in-
(b). $a^{2}+12 a+36<0$.
(c). $a^{2}+12 a+36>0$.
(d). $a^{2}+12 a+36 \leq 0$.
3.6, \#23,31,40,48: Solve the following inequal-
(a). $3 w^{2}+w<2(w+2)$.
(c). $3 x^{3}-3 x<4 x^{2}-4$.
3.6, \#62,68,72,82: Solve the following inequal-
(d). $\frac{5}{2-x} \leq \frac{3}{3-x}$.

