Theorem 0.1 [Remainder Theorem] If a polynomial $f(x)$ is divided by $x-c$, then the remainder is $f(c)$; that is, $f(x)=[x-c] q(x)+f(c)$ for some polynomial $q(x)$.

Theorem 0.2 [Factor Theorem] Let $f(x)$ be a polynomial with real coefficients. Then, $f(c)=0$ if and only if $(x-c)$ is a factor of $f(x)$.

Theorem 0.3 [Rational Zero Theorem] Consider a polynomial $f(x)$ with integer coefficients. Then, if $f(x)$ has rational (fraction) zeroes, they must be of the form $\pm \frac{p}{q}$ where p divides the constant term and q divides the leading coefficient of f.

Theorem 0.4 [Conjugate Zeroes Theorem] Consider a polynomial $f(x)$ with integer coefficients. If $a+b i$ is a zero for $f(x)$, then $a-b i$ must be too. Also, if $a+b \sqrt{c}$ is a zero for $f(x)$, then $a-b \sqrt{c}$ must be too.

Theorem 0.5 [Fundamental Theorem of Algebra] Consider a degree n polynomial $f(x)$ with complex coefficients. Then, $f(x)$ has n complex zeroes (not necessarily distinct; we count multiplicity), and $f(x)$ may be written as a product of n linear factors with complex coefficients.
3.3, \#13: Use long division to find $\left(-20 x^{2}+6 x^{4}-16\right) \div(2 x+4)$
3.3, \#41: Given $f(x)=2 x^{4}-5 x^{3}+x^{2}-7$, evaluate $f(4)$ and determine the remainder when $f(x)$ is divided by $(x-4)$.
3.3, \#17: Use long division to find $\frac{6 x^{4}+3 x^{3}-7 x^{2}+6 x-5}{2 x^{2}+x-3}$
3.3, \#55: Use the Factor Theorem to determine whether $(x+5)$ and $(x-2)$ are factors of $f(x)=$ $x^{4}+11 x^{3}+41 x^{2}+61 x+30$.
3.3, \#77: Find a polynomial of minimal degree with integer coefficients that has roots -2 (multiplicity 2) and $-3 i$.
3.4, \#33: Given $2-5 i$ is a zero for the polynomial $f(x)=x^{4}-4 x^{3}+22 x^{2}+28 x-203$, find all zeros of f and write $f(x)$ as a product of linear factors.
3.3, \#91: Find m so that $x+2$ is a factor of $\overline{4 x^{3}+5 x^{2}}+m x+2$.
3.4, \#37: Given $-3+2 i$ and $-\frac{1}{4}$ are zeros for the polynomial $f(x)=4 x^{5}+37 x^{4}+117 x^{3}+87 x^{2}-$ $193 x-52$, find all zeros of f and write $f(x)$ as a product of linear factors.
3.4, \#95: Explain why a degree 3 polynomial with real coefficients MUST have at least one real zero.
3.4, Example (Like \# 93): Determine whether the Intermediate Value Theorem guarantees that $f(x)=$ $4 x^{3}-5 x^{2}-23 x+6$ has a zero on the interval $[0,1]$. If there is a zero, find it using the Rational Zeroes Theorem and the Factor Theorem. Then, find the remaining zeroes of $f(x)$ and factor $f(x)$ into a product of linear factors.

