Theorem 0.1 [Remainder Theorem] If a polynomial f(x) is divided by x-c, then the remainder is f(c); that is, f(x) = [x-c]q(x) + f(c) for some polynomial q(x).

Theorem 0.2 [Factor Theorem] Let f(x) be a polynomial with real coefficients. Then, f(c) = 0 if and only if (x - c) is a factor of f(x).

Theorem 0.3 [Rational Zero Theorem] Consider a polynomial f(x) with integer coefficients. Then, if f(x) has rational (fraction) zeroes, they must be of the form $\pm \frac{p}{q}$ where p divides the constant term and q divides the leading coefficient of f.

Theorem 0.4 [Conjugate Zeroes Theorem] Consider a polynomial f(x) with integer coefficients. If a + bi is a zero for f(x), then a - bi must be too. Also, if $a + b\sqrt{c}$ is a zero for f(x), then $a - b\sqrt{c}$ must be too.

Theorem 0.5 [Fundamental Theorem of Algebra] Consider a degree n polynomial f(x) with complex coefficients. Then, f(x) has n complex zeroes (not necessarily distinct; we count multiplicity), and f(x) may be written as a product of n linear factors with complex coefficients.

3.3, #13: Use long division to find 3.3, #17: Use long division tofind $\overline{6x^4 + 3x^3 - 7x^2} + 6x - 5$ $(-20x^2 + 6x^4 - 16) \div (2x + 4)$ $\frac{3x^2}{2x^2+x-3}$ **3.3, #41:** Given $f(x) = 2x^4 - 5x^3 + x^2 - 7$, **3.3**, **#55**: Use the Factor Theorem to determine evaluate f(4) and determine the remainder when whether (x+5) and (x-2) are factors of f(x) =f(x) is divided by (x-4). $x^4 + 11x^3 + 41x^2 + 61x + 30.$

3.3, #77: Find a polynomial of minimal degree with integer coefficients that has roots -2 (multiplicity 2) and $-3i$.	3.3, #91: Find <i>m</i> so that $x + 2$ is a factor of $4x^3 + 5x^2 + mx + 2$.
3.4 , #33: Given $2 - 5i$ is a zero for the polynomial $f(x) = x^4 - 4x^3 + 22x^2 + 28x - 203$, find all zeros of f and write $f(x)$ as a product of linear factors.	3.4, #37: Given $-3+2i$ and $-\frac{1}{4}$ are zeros for the polynomial $f(x) = 4x^5 + 37x^4 + 117x^3 + 87x^2 - 193x - 52$, find all zeros of f and write $f(x)$ as a product of linear factors.

3.4, #95: Explain why a degree 3 polynomial with real coefficients MUST have at least one real zero.

3.4, Example (Like # 93): Determine whether the Intermediate Value Theorem guarantees that $f(x) = 4x^3 - 5x^2 - 23x + 6$ has a zero on the interval [0, 1]. If there is a zero, find it using the Rational Zeroes Theorem and the Factor Theorem. Then, find the remaining zeroes of f(x) and factor f(x) into a product of linear factors.