- parabola opens upward or downward.
- (b) Identify the vertex.
- (c) Determine the *x*-intercept(s).
- (d) Determine the *y*-intercept.

3.1, #14: For the quadratic function $q(x) = -\frac{1}{3}(x-1)^3 + 1$,

- (a) Determine whether the graph of the (a) Determine whether the graph of the parabola opens upward or downward.
 - (b) Identify the vertex.
 - (c) Determine the *x*-intercept(s).
 - (d) Determine the *y*-intercept.
- (e) Sketch the graph below. (e) Sketch below. the graph
- (f) Determine the axis of symmetry.
- (g) Determine the maximum or minimum value of the function.
- (h) Write the domain and range in interval notation.
- (f) Determine the axis of symmetry.
- (g) Determine the maximum or minimum value of the function.
- (h) Write the domain and range in interval notation.

3.1, #28: Find the vertex of the parabola $j(t) = -\frac{1}{4}t^2 + 10t - 5$. Then, find the discriminant and state what it means about the x-intercepts of j.

3.1, #48: The gas mileage m(x) (in mpg) for a certain vehicle can be approximated by m(x) = $-0.028x^2 + 2.688x - 35.012$, where x is the speed of the vehicle in mph. Determine the speed at which the car gets its maximum gas mileage and what the maximum gas mileage is.

3.1, #20: For the quadratic function $\overline{d(x)} = -3x^2 - 12 - 7$,

- (a) Write the function in vertex form.
- (b) Identify the vertex.
- (c) Determine the x-intercept(s).
- (d) Determine the *y*-intercept.

- (f) Determine the axis of symmetry.
- (g) Determine the maximum or minimum value of the function.
- (h) Write the domain and range in interval notation.

3.1, #40: For the quadratic function $\overline{m(x)} = 2x^2 - 8x + 8$,

- (a) Determine whether the graph of the parabola opens upward or downward.
- (b) Identify the vertex.
- (c) Determine the x-intercept(s).
- (d) Determine the *y*-intercept.

- (f) Determine the axis of symmetry.
- (g) Determine the maximum or minimum value of the function.
- (h) Write the domain and range in interval notation.

3.1, **#52**: The difference of two numbers is 30. What two numbers will minimize the product?

3.2, #18: Determine the leading term and the end behavior for $n(x) = -2(x+4)(3x-1)^3(x+5)$.

3.2, #28: Find the zeros of the function $n(x) = x^6 + 4x^5 + 4x^4$, state each of their multiplicities, and state whether each zero is a "touch point" or "cross point."