3.1, \#10: For the quadratic function $\overline{k(x)=2(x}-3)^{2}-2$,
(a) Determine whether the graph of the parabola opens upward or downward.
(b) Identify the vertex.
(c) Determine the x-intercept(s).
(d) Determine the y-intercept.
(e) Sketch the graph below.

(f) Determine the axis of symmetry.
(g) Determine the maximum or minimum value of the function.
(h) Write the domain and range in interval notation.
3.1, \#14: For the quadratic function $\overline{q(x)}=-\frac{1}{3}(x-1)^{3}+1$,
(a) Determine whether the graph of the parabola opens upward or downward.
(b) Identify the vertex.
(c) Determine the x-intercept(s).
(d) Determine the y-intercept.
(e) Sketch
the
graph
below.

(f) Determine the axis of symmetry.
(g) Determine the maximum or minimum value of the function.
(h) Write the domain and range in interval notation.
3.1, \#28: Find the vertex of the parabola $j(t)=-\frac{1}{4} t^{2}+10 t-5$. Then, find the discriminant and state what it means about the x-intercepts of j.
3.1, \#48: The gas mileage $m(x)$ (in mpg) for a certain vehicle can be approximated by $m(x)=$ $-0 . \overline{028 x^{2}+2.688 x-35.012}$, where x is the speed of the vehicle in mph . Determine the speed at which the car gets its maximum gas mileage and what the maximum gas mileage is.
3.1, \#20: For the quadratic function $\overline{d(x)}=-3 x^{2}-12-7$,
(a) Write the function in vertex form.
3.1, \#40: For the quadratic function $\overline{m(x)}=2 x^{2}-8 x+8$,
(a) Determine whether the graph of the parabola opens upward or downward.
(b) Identify the vertex.
(b) Identify the vertex.
(c) Determine the x-intercept(s).
(c) Determine the x-intercept(s).
(d) Determine the y-intercept.
(d) Determine the y-intercept.
(e) Sketch the graph

(f) Determine the axis of symmetry.
(g) Determine the maximum or minimum value of the function.
(h) Write the domain and range in interval notation.
below.
(e) Sketch the graph below.

(f) Determine the axis of symmetry.
(g) Determine the maximum or minimum value of the function.
(h) Write the domain and range in interval notation.
3.1, \#52: The difference of two numbers is 30 . What two numbers will minimize the product?
3.2, \#18: Determine the leading term and the end behavior for $n(x)=-2(x+4)(3 x-1)^{3}(x+5)$.
3.2, \#28: Find the zeros of the function $n(x)=x^{6}+4 x^{5}+4 x^{4}$, state each of their multiplicities, and state whether each zero is a "touch point" or "cross point."

